

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFl

Product Status	Obsolete
Core Processor	dsPIC
Core Size	16-Bit
Speed	-
Connectivity	CANbus, I ² C, IrDA, LINbus, QEI, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, I ² S, Motor Control PWM, POR, PWM, WDT
Number of I/O	53
Program Memory Size	512KB (170K x 24)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	48K x 8
Voltage - Supply (Vcc/Vdd)	-
Data Converters	A/D 30x10b/12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 150°C (TA)
Mounting Type	Surface Mount
Package / Case	64-VFQFN Exposed Pad
Supplier Device Package	64-VQFN (9x9)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/dspic33ep512gm706-h-mr

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

dsPIC33EPXXXGM3XX/6XX/7XX

R/W-0	U-0	R/W-0	R/W-0	R/W-0	R-0	R-0	R-0		
VAR	_	US1	US0	EDT ⁽¹⁾	DL2	DL1	DL0		
bit 15					·	·	bit 8		
R/W-0	R/W-0	R/W-1	R/W-0	R/C-0	R-0	R/W-0	R/W-0		
SATA	SATB	SATDW	ACCSAT	IPL3 ⁽²⁾	SFA	RND	IF		
bit 7							bit 0		
Legend:		C = Clearable	e bit						
R = Readable	bit	W = Writable	bit	U = Unimpler	mented bit, read	d as '0'			
-n = Value at F	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown		
bit 15	VAR: Variable 1 = Variable e 0 = Fixed exc	e Exception Pro exception proce eption process	ocessing Later essing latency sing latency is	ncy Control bit is enabled enabled					
bit 13_12		P Multiply Lips	u ianed/Signed	Control bite					
11 = Reserved 10 = DSP engine multiplies are mixed-sign 01 = DSP engine multiplies are unsigned 00 = DSP engine multiplies are signed bit 11 EDT: Early DO Loop Termination Control bit ⁽¹⁾ 1 = Terminates executing DO loop at end of current loop iteration 0 = No effect									
bit 10-8	DL<2:0>: DO 111 = 7 DO IO	Loop Nesting I ops are active op is active ops are active	∟evel Status b	its					
bit 7	SATA: ACCA 1 = Accumula 0 = Accumula	Saturation En Itor A saturatio Itor A saturatio	able bit n is enabled n is disabled						
bit 6	SATB: ACCB 1 = Accumula 0 = Accumula	Saturation En itor B saturatio itor B saturatio	able bit n is enabled n is disabled						
bit 5	SATDW: Data 1 = Data Spac 0 = Data Spac	a Space Write f ce write satura ce write satura	from DSP Eng tion is enabled tion is disable	iine Saturation ว d	Enable bit				
bit 4	ACCSAT: Acc 1 = 9.31 satur 0 = 1.31 satur	cumulator Satu ration (super sa ration (normal	ration Mode S aturation) saturation)	Select bit					
Note 1: Thi	s bit is always r	ead as '0'.							

REGISTER 3-2: CORCON: CORE CONTROL REGISTER⁽³⁾

2: The IPL3 bit is concatenated with the IPL<2:0> bits (SR<7:5>) to form the CPU Interrupt Priority Level.

3: Refer to the "dsPIC33/PIC24 Family Reference Manual", "CPU" (DS70359) for more detailed information.

TABLE 4-30: PERIPHERAL PIN SELECT OUTPUT REGISTER MAP FOR dsPIC33EPXXXGM304/604 DEVICES

SFR Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
RPOR0	0680		_		RP35R<5:0>							RP20R<5:0>						0000
RPOR1	0682	-	—		RP37R<5:0>							RP36R<5:0>						0000
RPOR2	0684	_	_		RP39R<5:0>							RP38R<5:0>					0000	
RPOR3	0686	_	_		RP41R<5:0>						_			RP40	R<5:0>			0000
RPOR4	0688	_	_			RP43	२<5:0>			—	_			RP42	R<5:0>			0000
RPOR5	068A	_	_			RP49	२<5:0>			—	_	- RP48R<5:0>				0000		
RPOR6	068C	_	_		RP55R<5:0>						_			RP54	R<5:0>			0000
RPOR7	068E	_	_			RP57	R<5:0>			_	_			RP56	R<5:0>			0000

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-31: PERIPHERAL PIN SELECT OUTPUT REGISTER MAP FOR dsPIC33EPXXXGM306/706 DEVICES

SFR Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
RPOR0	0680	_	_		RP35R<5:0>									RP20F	R<5:0>			0000
RPOR1	0682		—		RP37R<5:0>									RP36F	R<5:0>			0000
RPOR2	0684		—		RP39R<5:0>							RP38R<5:0>						0000
RPOR3	0686		—		RP41R<5:0>							RP40R<5:0>						0000
RPOR4	0688	_	-		RP43R<5:0>						_			RP42F	R<5:0>			0000
RPOR5	068A	_	-			RP49F	२<5:0>			—	_			RP48F	R<5:0>			0000
RPOR6	068C	_	-			RP55F	२<5:0>			—	_	- RP54R<5:0>						0000
RPOR7	068E	_	-		RP57R<5:0>						_	RP56R<5:0>						0000
RPOR8	0690		—		RP70R<5:0>							RP69R<5:0>					0000	
RPOR9	0692	_	_			RP97F	₹<5:0>			_		_	_	_	_	_	—	0000

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

4.3.2 EXTENDED X DATA SPACE

The lower portion of the base address space range, between 0x0000 and 0x7FFF, is always accessible regardless of the contents of the Data Space Page registers. It is indirectly addressable through the register indirect instructions. It can be regarded as being located in the default EDS Page 0 (i.e., EDS address range of 0x000000 to 0x007FFF with the base address bit, EA<15> = 0, for this address range). However, Page 0 cannot be accessed through the upper 32 Kbytes, 0x8000 to 0xFFFF, of Base Data Space, in combination with DSRPAG = 0x000 or DSWPAG = 0x000. Consequently, DSRPAG and DSWPAG are initialized to 0x001 at Reset.

- Note 1: DSxPAG should not be used to access Page 0. An EDS access with DSxPAG set to 0x000 will generate an address error trap.
 - 2: Clearing the DSxPAG in software has no effect.

FIGURE 4-11: EDS MEMORY MAP

The remaining pages, including both EDS and PSV pages, are only accessible using the DSRPAG or DSWPAG register, in combination with the upper 32 Kbytes, 0x8000 to 0xFFFF, of the base address, where the base address bit, EA<15> = 1.

For example, when DSRPAG = 0x001 or DSWPAG = 0x001, accesses to the upper 32 Kbytes, 0x8000 to 0xFFFF, of the Data Space will map to the EDS address range of 0x008000 to 0x00FFFF. When DSRPAG = 0x002 or DSWPAG = 0x002, accesses to the upper 32 Kbytes of the Data Space will map to the EDS address range of 0x010000 to 0x017FFF and so on, as shown in the EDS memory map in Figure 4-11.

For more information on the PSV page access, using Data Space Page registers, refer to the "**Program Space Visibility from Data Space**" section in "**Program Memory**" (DS70613) of the "*dsPIC33/ PIC24 Family Reference Manual*".

4.3.4 SOFTWARE STACK

The W15 register serves as a dedicated Software Stack Pointer (SSP) and is automatically modified by exception processing, subroutine calls and returns; however, W15 can be referenced by any instruction in the same manner as all other W registers. This simplifies reading, writing and manipulating of the Stack Pointer (for example, creating stack frames).

Note:	То	protec	ct	agains	st	misa	ligr	ned	st	ack
	acc	esses,	W	/15<0>	is	fixed	to	'0'	by	the
	har	dware.								

W15 is initialized to 0x1000 during all Resets. This address ensures that the SSP points to valid RAM in all dsPIC33EPXXXGM3XX/6XX/7XX devices and permits stack availability for non-maskable trap exceptions. These can occur before the SSP is initialized by the user software. You can reprogram the SSP during initialization to any location within Data Space.

The Software Stack Pointer always points to the first available free word and fills the software stack, working from lower toward higher addresses. Figure 4-13 illustrates how it pre-decrements for a stack pop (read) and post-increments for a stack push (writes).

When the PC is pushed onto the stack, PC<15:0> are pushed onto the first available stack word, then PC<22:16> are pushed into the second available stack location. For a PC push during any CALL instruction, the MSB of the PC is zero-extended before the push, as shown in Figure 4-13. During exception processing, the MSB of the PC is concatenated with the lower 8 bits of the CPU STATUS Register, SR. This allows the contents of SRL to be preserved automatically during interrupt processing.

- Note 1: To maintain the Software Stack Pointer (W15) coherency, W15 is never subject to (EDS) paging, and is therefore, restricted to an address range of 0x0000 to 0xFFFF. The same applies to the W14 when used as a Stack Frame Pointer (SFA = 1).
 - 2: As the stack can be placed in, and can access X and Y spaces, care must be taken regarding its use, particularly with regard to local automatic variables in a 'C' development environment

FIGURE 4-13: C.

CALL STACK FRAME

4.4 Instruction Addressing Modes

The addressing modes shown in Table 4-66 form the basis of the addressing modes optimized to support the specific features of the individual instructions. The addressing modes provided in the MAC class of instructions differ from those in the other instruction types.

4.4.1 FILE REGISTER INSTRUCTIONS

Most file register instructions use a 13-bit address field (f) to directly address data present in the first 8192 bytes of data memory (Near Data Space). Most file register instructions employ a Working register, W0, which is denoted as WREG in these instructions. The destination is typically either the same file register or WREG (with the exception of the MUL instruction), which writes the result to a register or register pair. The MOV instruction allows additional flexibility and can access the entire Data Space.

4.4.2 MCU INSTRUCTIONS

The three-operand MCU instructions are of the form:

Operand 3 = Operand 1 <function> Operand 2

where Operand 1 is always a Working register (that is, the addressing mode can only be Register Direct), which is referred to as Wb. Operand 2 can be a W register fetched from data memory or a 5-bit literal. The result location can be either a W register or a data memory location. The following addressing modes are supported by MCU instructions:

- Register Direct
- Register Indirect
- · Register Indirect Post-Modified
- · Register Indirect Pre-Modified
- 5-Bit or 10-Bit Literal

Note: Not all instructions support all of the addressing modes given above. Individual instructions can support different subsets of these addressing modes.

TABLE 11-3:	OUTPUT SELECTION FOR REMAPPABLE PINS (RPn)
IADEE II-J.	

Function	RPnR<5:0>	Output Name
Default Port	000000	RPn tied to Default Pin
U1TX	000001	RPn tied to UART1 Transmit
U2TX	000011	RPn tied to UART2 Transmit
SDO2	001000	RPn tied to SPI2 Data Output
SCK2	001001	RPn tied to SPI2 Clock Output
SS2	001010	RPn tied to SPI2 Slave Select
CSDO	001011	RPn tied to DCI Data Output
CSCK	001100	RPn tied to DCI Clock Output
COFS	001101	RPn tied to DCI Frame Sync
C1TX	001110	RPn tied to CAN1 Transmit
C2TX	001111	RPn tied to CAN2 Transmit
OC1	010000	RPn tied to Output Compare 1 Output
OC2	010001	RPn tied to Output Compare 2 Output
OC3	010010	RPn tied to Output Compare 3 Output
OC4	010011	RPn tied to Output Compare 4 Output
OC5	010100	RPn tied to Output Compare 5 Output
OC6	010101	RPn tied to Output Compare 6 Output
OC7	010110	RPn tied to Output Compare 7 Output
OC8	010111	RPn tied to Output Compare 8 Output
C1OUT	011000	RPn tied to Comparator Output 1
C2OUT	011001	RPn tied to Comparator Output 2
C3OUT	011010	RPn tied to Comparator Output 3
U3TX	011011	RPn tied to UART3 Transmit
U3RTS	011100	RPn tied to UART3 Ready-to-Send
U4TX	011101	RPn tied to UART4 Transmit
U4RTS	011110	RPn tied to UART4 Ready-to-Send
SDO3	011111	RPn tied to SPI3 Slave Output
SCK3	100000	RPn tied to SPI3 Clock Output
SS3	100001	RPn tied to SPI3 Slave Select
SYNCO1	101101	RPn tied to PWM Primary Time Base Sync Output
SYNCO2	101110	RPn tied to PWM Secondary Time Base Sync Output
QEI1CCMP	101111	RPn tied to QEI1 Counter Comparator Output
QEI2CCMP	110000	RPn tied to QEI2 Counter Comparator Output
REFCLKO	110001	RPn tied to Reference Clock Output
C4OUT	110010	RPn tied to Comparator Output 4
C5OUT	110011	RPn tied to Comparator Output 5

REGISTER 11-29: RPINR41: PERIPHERAL PIN SELECT INPUT REGISTER 41

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0		
			—	—					
bit 15							bit 8		
U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
—				DTCMP6R<6:	0>				
bit 7							bit 0		
Legend:									
R = Readable	bit	W = Writable	bit	U = Unimpler	mented bit, read	l as '0'			
-n = Value at I	POR	'1' = Bit is set		'0' = Bit is cleared x = Bit is unknown					
bit 15-7	Unimplemen	ted: Read as '	0'						
bit 6-0	DTCMP6R<6 (see Table 11	: 0>: Assign PV -2 for input pin	VM Dead-Time selection num	e Compensation hbers)	on Input 6 to the	Corresponding	g RPn Pin bits		
	1111100 = I r	put tied to RPI	124						
	•								
	•								
	0000001 = lr	put tied to CMI	P1						

0000000 = Input tied to Vss

REGISTER 11-42: RPOR12: PERIPHERAL PIN SELECT OUTPUT REGISTER 12	REGISTER 11-42:	RPOR12: PERIPHERAL	PIN SELECT	OUTPUT REGISTE	ER 12 ⁽¹⁾
--	-----------------	---------------------------	------------	-----------------------	----------------------

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
_	—			RP127	′R<5:0>		
bit 15							bit 8
U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—			RP126	6R<5:0>		
bit 7							bit 0
Legend:							
R = Readable	e bit	W = Writable	bit	U = Unimplem	nented bit, rea	d as '0'	
-n = Value at	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	nown
bit 15-14	Unimpleme	nted: Read as '	0'				
bit 13-8	RP127R<5:	0>: Peripheral C	Output Functio	on is Assigned to	o RP127 Outp	ut Pin bits	
	(see Table 1	1-3 for periphera	al function nu	mbers)			
bit 7-6	Unimpleme	nted: Read as '	0'				
bit 5-0	RP126R<5: (see Table 1	0>: Peripheral C 1-3 for periphera	Output Function al function nu	on is Assigned to mbers)	o RP126 Outp	ut Pin bits	

Note 1: This register is not available on dsPIC33EPXXXGM30X/604/706 devices.

REGISTER 16-11: PWMCONx: PWMx CONTROL REGISTER (CONTINUED)

bit 7-6	6	DTC<1:0>: Dead-Time Control bits 11 = Dead-Time Compensation mode
		 10 = Dead-time function is disabled 01 = Negative dead time is actively applied for Complementary Output mode 00 = Positive dead time is actively applied for all Output modes
bit 5		DTCP: Dead-Time Compensation Polarity bit ⁽³⁾
		<u>When Set to '1'</u> : If DTCMPx = 0, PWMxL is shortened and PWMxH is lengthened. If DTCMPx = 1, PWMxH is shortened and PWMxL is lengthened.
		<u>When Set to 'o':</u> If DTCMPx = 0, PWMHx is shortened and PWMLx is lengthened. If DTCMPx = 1, PWMLx is shortened and PWMHx is lengthened.
bit 4		Unimplemented: Read as '0'
bit 3		MTBS: Master Time Base Select bit
		 1 = PWMx generator uses the secondary master time base for synchronization and as the clock source for the PWMx generation logic (if secondary time base is available) 0 = PWMx generator uses the primary master time base for synchronization and as the clock source for the DWMx generation logic.
hit 2		CAM: Center Aligned Mode Enable $bit^{(2,4)}$
		1 = Center-Aligned mode is enabled
		0 = Edge-Aligned mode is enabled
bit 1		XPRES: External PWMx Reset Control bit ⁽⁵⁾
		 1 = Current-limit source resets the time base for this PWMx generator if it is in Independent Time Base mode
		0 = External pins do not affect the PWMx time base
bit 0		IUE: Immediate Update Enable bit ⁽²⁾
		 1 = Updates to the active MDC/PDCx/DTRx/ALTDTRx/PHASEx registers are immediate 0 = Updates to the active MDC/PDCx/DTRx/ALTDTRx/PHASEx registers are synchronized to the PWMx period boundary
Note	1:	Software must clear the interrupt status here and in the corresponding IFSx bit in the interrupt controller.
	2:	These bits should not be changed after the PWMx is enabled (PTEN = 1).
	3:	DTC<1:0> = 11 for DTCP to be effective; otherwise, DTCP is ignored.
	4:	The Independent Time Base (ITB = 1) mode must be enabled to use Center-Aligned mode. If ITB = 0, the CAM bit is ignored.

5: To operate in External Period Reset mode, the ITB bit must be '1' and the CLMOD bit in the FCLCONx register must be '0'.

19.0 INTER-INTEGRATED CIRCUIT[™] (I²C[™])

- Note 1: This data sheet summarizes the features of the dsPIC33EPXXXGM3XX/6XX/7XX family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to the "dsPIC33/PIC24 Family Reference Manual", "Inter-Integrated Circuit™ (I²C™)" (DS70000195), which is available from the Microchip web site (www.microchip.com).
 - 2: Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

The dsPIC33EPXXXGM3XX/6XX/7XX family of devices contains two Inter-Integrated Circuit (I^2C) modules: I2C1 and I2C2.

The I^2C module provides complete hardware support for both Slave and Multi-Master modes of the I^2C serial communication standard, with a 16-bit interface. The I²C module has a 2-pin interface:

- The SCLx pin is clock.
- The SDAx pin is data.

The I^2C module offers the following key features:

- I²C Interface Supporting both Master and Slave modes of Operation.
- I²C Slave mode Supports 7 and 10-Bit Addressing.
- I²C Master mode Supports 7 and 10-Bit Addressing.
- I²C Port Allows Bidirectional Transfers Between Master and Slaves.
- Serial Clock Synchronization for I²C Port can be used as a Handshake Mechanism to Suspend and Resume Serial Transfer (SCLREL control).
- I²C Supports Multi-Master Operation, Detects Bus Collision and Arbitrates Accordingly.
- Intelligent Platform Management Interface (IPMI)
 Support
- System Management Bus (SMBus) Support

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			CSS<	<15:8>			
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			CSS	<7:0>			
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable b	oit	U = Unimpler	nented bit, rea	d as '0'	
-n = Value at P	OR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown

REGISTER 23-8: ADxCSSL: ADCx INPUT SCAN SELECT REGISTER LOW^(1,2)

bit 15-0 CSS<15:0>: ADCx Input Scan Selection bits

1 = Selects ANx for input scan

0 = Skips ANx for input scan

Note 1: On devices with less than 16 analog inputs, all bits in this register can be selected by the user application. However, inputs selected for scan without a corresponding input on the device convert VREFL.

2: CSSx = ANx, where 'x' = 0-15.

bit 3-0	Step Command	OPTION<3:0>	Option Description				
	PTGWHI(1)	0000	PWM Special Event Trigger				
	or (1)	0001	PWM master time base synchronization output				
	PTGWLO("	0010	PWM1 interrupt				
		0011	PWM2 interrupt				
		0100	PWM3 interrupt				
		0101	PWM4 interrupt				
		0110	PWM5 interrupt				
		0111	OC1 Trigger Event				
		1000	OC2 Trigger Event				
		1001	IC1 Trigger Event				
		1010	CMP1 Trigger Event CMP2 Trigger Event				
		1011					
		1100	CMP3 Trigger Event				
		1101	CMP4 Trigger Event				
		1110	ADC conversion done interrupt				
		1111	INT2 external interrupt				
	PTGIRQ(1)	0000	Generate PTG Interrupt 0				
		0001	Generate PTG Interrupt 1				
		0010	Generate PTG Interrupt 2				
		0011	Generate PTG Interrupt 3				
		0100	Reserved				
		•	•				
		•	•				
		1111	Reserved				
	PTGTRIG ⁽²⁾	00000	PTGO0				
		00001	PTGO1				
		•	•				
		•	•				
		•					
		11110	PTGO30				
		11111	PTGO31				

TABLE 25-1: PTG STEP COMMAND FORMAT (CONTINUED)

Note 1: All reserved commands or options will execute but have no effect (i.e., execute as a NOP instruction).

2: Refer to Table 25-2 for the trigger output descriptions.

FIGURE 33-7: INPUT CAPTURE x (ICx) TIMING CHARACTERISTICS

TABLE 33-25: INPUT CAPTURE x (ICx) TIMING REQUIREMENTS

АС СНА	RACTERI	STICS	$\begin{array}{l} \mbox{Standard Operating Conditions: 3.0V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industrial} \\ & -40^{\circ}C \leq TA \leq +125^{\circ}C \mbox{ for Extended} \end{array}$						
Param. No.	Symbol	Characteristics ⁽¹⁾	Min.	Max.	Units	Conditions			
IC10	TccL	ICx Input Low Time	Greater of: 12.5 + 25 or (0.5 Tcy/N) + 25	_	ns	Must also meet Parameter IC15			
IC11	ТссН	ICx Input High Time	Greater of: 12.5 + 25 or (0.5 Tcy/N) + 25		ns	Must also meet Parameter IC15	N = Prescale value (1, 4, 16)		
IC15	TccP	ICx Input Period	Greater of: 25 + 50 or (1 Tcy/N) + 50		ns				

Note 1: These parameters are characterized, but not tested in manufacturing.

FIGURE 33-18: SPI2 AND SPI3 MASTER MODE (FULL-DUPLEX, CKE = 0, CKP = x, SMP = 1) TIMING CHARACTERISTICS

TABLE 33-35:SPI2 AND SPI3 MASTER MODE (FULL-DUPLEX, CKE = 0, CKP = x, SMP = 1)TIMING REQUIREMENTS

AC CHARACTERISTICS			Standard Operating Conditions: 3.0V to 3.6V(unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial $-40^{\circ}C \le TA \le +125^{\circ}C$ for Extended					
Param.	Symbol	Characteristic ⁽¹⁾	Min.	Typ. ⁽²⁾	Max.	Units	Conditions	
SP10	FscP	Maximum SCKx Frequency		—	9	MHz	-40°C to +125°C (Note 3)	
SP20	TscF	SCKx Output Fall Time	—	—	_	ns	See Parameter DO32 (Note 4)	
SP21	TscR	SCKx Output Rise Time	—	—	_	ns	See Parameter DO31 (Note 4)	
SP30	TdoF	SDOx Data Output Fall Time	—	—		ns	See Parameter DO32 (Note 4)	
SP31	TdoR	SDOx Data Output Rise Time	—	_		ns	See Parameter DO31 (Note 4)	
SP35	TscH2doV, TscL2doV	SDOx Data Output Valid after SCKx Edge	—	6	20	ns		
SP36	TdoV2scH, TdoV2scL	SDOx Data Output Setup to First SCKx Edge	30	—	_	ns		
SP40	TdiV2scH, TdiV2scL	Setup Time of SDIx Data Input to SCKx Edge	30	—		ns		
SP41	TscH2diL, TscL2diL	Hold Time of SDIx Data Input to SCKx Edge	30			ns		

Note 1: These parameters are characterized, but are not tested in manufacturing.

2: Data in "Typical" column is at 3.3V, +25°C unless otherwise stated.

- **3:** The minimum clock period for SCKx is 111 ns. The clock generated in Master mode must not violate this specification.
- **4:** Assumes 50 pF load on all SPIx pins.

TABLE 33-38:SPI2 AND SPI3 SLAVE MODE (FULL-DUPLEX, CKE = 0, CKP = 1, SMP = 0)TIMING REQUIREMENTS

			Standard Op	perating	Conditi	ons: 3.0)V to 3.6V	
AC CHARACTERISTICS			(unless otherwise stated)					
//0 011/			Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial					
		1			-40°	$C \le TA \le$	+125°C for Extended	
Param.	Symbol	Characteristic ⁽¹⁾	Min.	Тур. ⁽²⁾	Max.	Units	Conditions	
SP70	FscP	Maximum SCKx Input Frequency	—	—	15	MHz	(Note 3)	
SP72	TscF	SCKx Input Fall Time	—			ns	See Parameter DO32 (Note 4)	
SP73	TscR	SCKx Input Rise Time	—	_		ns	See Parameter DO31 (Note 4)	
SP30	TdoF	SDOx Data Output Fall Time	—	_		ns	See Parameter DO32 (Note 4)	
SP31	TdoR	SDOx Data Output Rise Time	—			ns	See Parameter DO31 (Note 4)	
SP35	TscH2doV, TscL2doV	SDOx Data Output Valid after SCKx Edge	—	6	20	ns		
SP36	TdoV2scH, TdoV2scL	SDOx Data Output Setup to First SCKx Edge	30	_	_	ns		
SP40	TdiV2scH, TdiV2scL	Setup Time of SDIx Data Input to SCKx Edge	30	_	_	ns		
SP41	TscH2diL, TscL2diL	Hold Time of SDIx Data Input to SCKx Edge	30	_	_	ns		
SP50	TssL2scH, TssL2scL	SSx ↓ to SCKx ↑ or SCKx ↓ Input	120			ns		
SP51	TssH2doZ	SSx ↑ to SDOx Output High-Impedance	10	—	50	ns	(Note 4)	
SP52	TscH2ssH TscL2ssH	SSx ↑ after SCKx Edge	1.5 Tcy + 40	—	—	ns	(Note 4)	

Note 1: These parameters are characterized, but are not tested in manufacturing.

2: Data in "Typical" column is at 3.3V, +25°C unless otherwise stated.

3: The minimum clock period for SCKx is 66.7 ns. Therefore, the SCKx clock generated by the master must not violate this specification.

4: Assumes 50 pF load on all SPIx pins.

TABLE 33-39:SPI2 AND SPI3 SLAVE MODE (FULL-DUPLEX, CKE = 0, CKP = 0, SMP = 0)TIMING REQUIREMENTS

			Standard Op	perating	Conditi	ons: 3.0)V to 3.6V	
AC CHARACTERISTICS			(unless otherwise stated)					
			Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial					
	1	1			-40°	$C \le IA \le$	+125°C for Extended	
Param.	Symbol	Characteristic ⁽¹⁾	Min.	Тур. ⁽²⁾	Max.	Units	Conditions	
SP70	FscP	Maximum SCKx Input Frequency	—	—	11	MHz	(Note 3)	
SP72	TscF	SCKx Input Fall Time	—			ns	See Parameter DO32 (Note 4)	
SP73	TscR	SCKx Input Rise Time	—	_		ns	See Parameter DO31 (Note 4)	
SP30	TdoF	SDOx Data Output Fall Time	—	_		ns	See Parameter DO32 (Note 4)	
SP31	TdoR	SDOx Data Output Rise Time	—			ns	See Parameter DO31 (Note 4)	
SP35	TscH2doV, TscL2doV	SDOx Data Output Valid after SCKx Edge	—	6	20	ns		
SP36	TdoV2scH, TdoV2scL	SDOx Data Output Setup to First SCKx Edge	30	_	_	ns		
SP40	TdiV2scH, TdiV2scL	Setup Time of SDIx Data Input to SCKx Edge	30	_	_	ns		
SP41	TscH2diL, TscL2diL	Hold Time of SDIx Data Input to SCKx Edge	30	_	_	ns		
SP50	TssL2scH, TssL2scL	$\frac{SSx}{Input} \downarrow \text{ to SCKx} \uparrow \text{ or SCKx} \downarrow$	120	_	—	ns		
SP51	TssH2doZ	SSx ↑ to SDOx Output High-Impedance	10	—	50	ns	(Note 4)	
SP52	TscH2ssH TscL2ssH	SSx ↑ after SCKx Edge	1.5 Tcy + 40	_	_	ns	(Note 4)	

Note 1: These parameters are characterized, but are not tested in manufacturing.

2: Data in "Typical" column is at 3.3V, +25°C unless otherwise stated.

3: The minimum clock period for SCKx is 91 ns. Therefore, the SCKx clock generated by the master must not violate this specification.

4: Assumes 50 pF load on all SPIx pins.

TABLE 33-46:SPI1 SLAVE MODE (FULL-DUPLEX, CKE = 0, CKP = 1, SMP = 0)TIMING REQUIREMENTS

AC CHARACTERISTICS			Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated)					
			Operating ter	mperatur	e -40° -40°	$C \le TA \le C \le $	+85°C for Industrial +125°C for Extended	
Param.	Symbol	Characteristic ⁽¹⁾	Min.	Typ. ⁽²⁾	Max.	Units	Conditions	
SP70	FscP	Maximum SCK1 Input Frequency	—	—	25	MHz	(Note 3)	
SP72	TscF	SCK1 Input Fall Time	—		_	ns	See Parameter DO32 (Note 4)	
SP73	TscR	SCK1 Input Rise Time	—	—	—	ns	See Parameter DO31 (Note 4)	
SP30	TdoF	SDO1 Data Output Fall Time	—	-	_	ns	See Parameter DO32 (Note 4)	
SP31	TdoR	SDO1 Data Output Rise Time	—	-	_	ns	See Parameter DO31 (Note 4)	
SP35	TscH2doV, TscL2doV	SDO1 Data Output Valid after SCK1 Edge	—	6	20	ns		
SP36	TdoV2scH, TdoV2scL	SDO1 Data Output Setup to First SCK1 Edge	20	_	_	ns		
SP40	TdiV2scH, TdiV2scL	Setup Time of SDI1 Data Input to SCK1 Edge	20	_	_	ns		
SP41	TscH2diL, TscL2diL	Hold Time of SDI1 Data Input to SCK1 Edge	15	_	_	ns		
SP50	TssL2scH, TssL2scL	$\overline{SS1}$ ↓ to SCK1 ↑ or SCK1 ↓ Input	120		—	ns		
SP51	TssH2doZ	SS1 ↑ to SDO1 Output High-Impedance	10	—	50	ns	(Note 4)	
SP52	TscH2ssH, TscL2ssH	SS1 ↑ after SCK1 Edge	1.5 TCY + 40	—	_	ns	(Note 4)	

Note 1: These parameters are characterized, but are not tested in manufacturing.

2: Data in "Typical" column is at 3.3V, +25°C unless otherwise stated.

3: The minimum clock period for SCK1 is 66.7 ns. Therefore, the SCK1 clock generated by the master must not violate this specification.

4: Assumes 50 pF load on all SPI1 pins.

TABLE 33-47:SPI1 SLAVE MODE (FULL-DUPLEX, CKE = 0, CKP = 0, SMP = 0)TIMING REQUIREMENTS

AC CHARACTERISTICS			$\begin{array}{l} \mbox{Standard Operating Conditions: 3.0V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industrial} \\ & -40^{\circ}C \leq TA \leq +125^{\circ}C \mbox{ for Extended} \end{array}$				
Param.	Symbol	Characteristic ⁽¹⁾	Min.	Typ. ⁽²⁾	Max.	Units	Conditions
SP70	FscP	Maximum SCK1 Input Frequency	—	—	25	MHz	(Note 3)
SP72	TscF	SCK1 Input Fall Time	—		_	ns	See Parameter DO32 (Note 4)
SP73	TscR	SCK1 Input Rise Time	—	_	_	ns	See Parameter DO31 (Note 4)
SP30	TdoF	SDO1 Data Output Fall Time	—	-	_	ns	See Parameter DO32 (Note 4)
SP31	TdoR	SDO1 Data Output Rise Time	—	-	_	ns	See Parameter DO31 (Note 4)
SP35	TscH2doV, TscL2doV	SDO1 Data Output Valid after SCK1 Edge	—	6	20	ns	
SP36	TdoV2scH, TdoV2scL	SDO1 Data Output Setup to First SCK1 Edge	20	_	_	ns	
SP40	TdiV2scH, TdiV2scL	Setup Time of SDI1 Data Input to SCK1 Edge	20	_	_	ns	
SP41	TscH2diL, TscL2diL	Hold Time of SDI1 Data Input to SCK1 Edge	15	_	_	ns	
SP50	TssL2scH, TssL2scL	$\overline{SS1}$ ↓ to SCK1 ↑ or SCK1 ↓ Input	120	—	—	ns	
SP51	TssH2doZ	SS1 ↑ to SDO1 Output High-Impedance	10	—	50	ns	(Note 4)
SP52	TscH2ssH, TscL2ssH	SS1 ↑ after SCK1 Edge	1.5 TCY + 40	—	_	ns	(Note 4)

Note 1: These parameters are characterized, but are not tested in manufacturing.

2: Data in "Typical" column is at 3.3V, +25°C unless otherwise stated.

3: The minimum clock period for SCK1 is 91 ns. Therefore, the SCK1 clock generated by the master must not violate this specification.

4: Assumes 50 pF load on all SPI1 pins.

DC CHARACTERISTICS			Standard Operating Conditions: 3.0V to 3.6V(unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +150^{\circ}C$					
Param.	Symbol	Characteristic	Min.	Тур.	Max.	Conditions		
HDO10	Vol	Output Low Voltage 4x Sink Driver Pins ⁽²⁾		—	0.4	V	IOL ≤ 5 mA, VDD = 3.3V (Note 1)	
		Output Low Voltage 8x Sink Driver Pins ⁽³⁾	—	-	0.4	V	IOL ≤ 8 mA, VDD = 3.3V (Note 1)	
HDO20	Vон	Output High Voltage 4x Source Driver Pins ⁽²⁾	2.4	-	-	V	IOH ≥ -10 mA, VDD = 3.3V (Note 1)	
		Output High Voltage 8x Source Driver Pins ⁽³⁾	2.4	-	-	V	ІОн ≥ 15 mA, VDD = 3.3V (Note 1)	
HDO20A	Voн1	A Voн1 Output H 4x Source	Output High Voltage 4x Source Driver Pins ⁽²⁾	1.5	—	—	V	IOH ≥ -3.9 mA, VDD = 3.3V (Note 1)
			2.0	-	-		IOH ≥ -3.7 mA, VDD = 3.3V (Note 1)	
			3.0	_	_		IOH ≥ -2 mA, VDD = 3.3V (Note 1)	
		Output High Voltage 8x Source Driver Pins ⁽³⁾	1.5	_	_	V	IOH ≥ -7.5 mA, VDD = 3.3V (Note 1)	
			2.0	—			IOH ≥ -6.8 mA, VDD = 3.3V (Note 1)	
			3.0				IOH ≥ -3 mA, VDD = 3.3V (Note 1)	

TABLE 34-8: DC CHARACTERISTICS: I/O PIN OUTPUT SPECIFICATIONS

Note 1: Parameters are characterized, but not tested.

2: Includes all I/O pins that are not 8x Sink Driver pins (see below).

3: Includes the following pins:

For 44-pin devices: RA3, RA4, RA7, RA9, RA10, RB7, RB<15:9>, RC1 and RC<9:3> **For 64-pin devices:** RA4, RA7, RA<10:9>, RB7, RB<15:9>, RC1, RC<9:3>, RC15 and RG<8:7> **For 100-pin devices:** RA4, RA7, RA9, RA10, RB7, RB<15:9>, RC1, RC<9:3>, RC15, RD<3:1> and RG<8:6>

TABLE 34-9: DC CHARACTERISTICS: PROGRAM MEMORY

DC CHAI	RACTERIS	Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated) Operating temperature $-40^{\circ}C \le TA \le +150^{\circ}C$					
Param.	Symbol	Characteristic ⁽¹⁾	Min. Typ. Max. Units Conditions				
		Program Flash Memory					
HD130	Eр	Cell Endurance	10,000	_	_	E/W	-40°C to +150°C ⁽²⁾
HD134	Tretd	Characteristic Retention	20	_	_	Year	1000 E/W cycles or less and no other specifications are violated

Note 1: These parameters are assured by design, but are not characterized or tested in manufacturing.

2: Programming of the Flash memory is allowed up to +150°C.

64-Lead Plastic Quad Flat, No Lead Package (MR) – 9x9x0.9 mm Body [QFN] With 7.15 x 7.15 Exposed Pad

Microchip Technology Drawing C04-149C Sheet 1 of 2

PRODUCT IDENTIFICATION SYSTEM

To order or obtain information, e.g., on pricing or delivery, refer to the factory or the listed sales office.

Microchip Trade Architecture — Core Family — Program Memo Product Group Pin Count — Tape and Reel F Temperature Ra Package — Pattern —	dsPIC 33 EP 512 GM7 10 T - I / PT XXX emark	Example: dsPIC33EP512GM710-I/PT: dsPIC33, Enhanced Performance, 512-Kbyte program memory, 100-pin, Industrial temperature, TQFP package.
Architecture:	33 = 16-Bit Digital Signal Controller	
Family:	EP = Enhanced Performance	
Product Group:	GM7 = General Purpose plus Motor Control Family	
Pin Count:	04 = 44-pin 06 = 64-pin 10 = 100/124-pin	
Temperature Range:	$ \begin{array}{rcl} & = & -40^{\circ}\text{C to } +85^{\circ}\text{C (Industrial)} \\ \text{E} & = & -40^{\circ}\text{C to } +125^{\circ}\text{C (Extended)} \end{array} $	
Package:	BG= Plastic Thin Profile Ball Grid Array - (121-pin) 10x10 mm body (TFBGA)ML= Plastic Quad, No Lead Package - (44-pin) 8x8 mm body (QFN)MR= Plastic Quad, No Lead Package - (64-pin) 9x9 mm body (QFN)PT= Plastic Thin Quad Flatpack - (44-pin) 10x10 mm body (TQFP)PT= Plastic Thin Quad Flatpack - (64-pin) 10x10 mm body (TQFP)PT= Thin Quad Flatpack - (100-pin) 12x12x1 mm body (TQFP)PF= Thin Quad Flatpack - (100-pin) 14x14x1 mm body (TQFP)	