

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XEI

Details	
Product Status	Active
Core Processor	dsPIC
Core Size	16-Bit
Speed	70 MIPs
Connectivity	CANbus, I ² C, IrDA, LINbus, QEI, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, I ² S, Motor Control PWM, POR, PWM, WDT
Number of I/O	53
Program Memory Size	512KB (170K x 24)
Program Memory Type	FLASH
EEPROM Size	
RAM Size	48K x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 30x10b/12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	64-TQFP
Supplier Device Package	64-TQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/dspic33ep512gm706-i-pt

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

|--|

SFR Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
OC7CON1	093C	_	—	OCSIDL	OCTSEL2	OCTSEL1	OCTSEL0	_	ENFLTB	ENFLTA	_	OCFLTB	OCFLTA	TRIGMODE	OCM2	OCM1	OCM0	0000
OC7CON2	093E	FLTMD	FLTOUT	FLTTRIEN	OCINV		—	—	OC32	OCTRIG	TRIGSTAT	OCTRIS	SYNCSEL4	SYNCSEL3	SYNCSEL2	SYNCSEL1	SYNCSEL0	000C
OC7RS	0940	Output Compare 7 Secondary Register xx								xxxx								
OC7R	0942		Output Compare 7 Register xxx						xxxx									
OC7TMR	0944							Out	put Compa	are 7 Time	r Value Regis	ster						xxxx
OC8CON1	0946	_	—	OCSIDL	OCTSEL2	OCTSEL1	OCTSEL0	—	ENFLTB	ENFLTA	_	OCFLTB	OCFLTA	TRIGMODE	OCM2	OCM1	OCM0	0000
OC8CON2	0948	FLTMD	FLTOUT	FLTTRIEN	OCINV		—	—	OC32	OCTRIG	TRIGSTAT	OCTRIS	SYNCSEL4	SYNCSEL3	SYNCSEL2	SYNCSEL1	SYNCSEL0	000C
OC8RS	094A							Ou	tput Comp	are 8 Seco	ondary Regis	ter						xxxx
OC8R	094C								Output	Compare 8	8 Register							xxxx
OC8TMR	094E		Output Compare 8 Timer Value Register xxx						xxxx									

Legend: x = unknown value on Reset; — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-40: PMD REGISTER MAP FOR dsPIC33EPXXXGM3XX DEVICES

SFR Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
PMD1	0760	T5MD	T4MD	T3MD	T2MD	T1MD	QEI1MD	PWMMD	DCIMD	I2C1MD	U2MD	U1MD	SPI2MD	SPI1MD	—	—	AD1MD	0000
PMD2	0762	IC8MD	IC7MD	IC6MD	IC5MD	IC4MD	IC3MD	IC2MD	IC1MD	OC8MD	OC7MD	OC6MD	OC5MD	OC4MD	OC3MD	OC2MD	OC1MD	0000
PMD3	0764	T9MD	T8MD	T7MD	T6MD	_	CMPMD	RTCCMD ⁽¹⁾	PMPMD	CRCMD	_	QEI2MD	_	U3MD	_	I2C2MD	ADC2MD	0000
PMD4	0766	_	_	_	_	_	_	_	_	_	_	U4MD	_	REFOMD	CTMUMD	_	_	0000
PMD6	076A	_	_	PWM6MD	PWM5MD	PWM4MD	PWM3MD	PWM2MD	PWM1MD	_	_	_	_	_	_	_	SPI3MD	0000
													DMA0MD					
PMD7	076C												DMA1MD	PTGMD				
PMD7	0760	_	_	_	_	_	_	_	_	_	_	_	DMA2MD	PIGMD	_	_	_	0000
													DMA3MD					

 Legend:
 — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

 Note 1:
 The RTCCMD bit is not available on 44-pin devices.

R/W-0	U-0	R/W-0	R/W-0	R/W-0	R-0	R-0	R-0		
VAR	—	US1	US0	EDT	DL2	DL1	DL0		
bit 15							bit 8		
R/W-0	R/W-0	R/W-1	R/W-0	R/C-0	R-0	R/W-0	R/W-0		
SATA	SATB	SATDW	ACCSAT	IPL3 ⁽²⁾	SFA	RND	IF		
bit 7		•					bit 0		
Legend:									
P = Peadable bit $W = Writable bit$			hit	II = II nimplemented bit read as '0'					

REGISTER 7-2: CORCON: CORE CONTROL REGISTER⁽¹⁾

Legena:			
R = Readable bit	W = Writable bit	U = Unimplemented bit,	read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15 VAR: Variable Exception Processing Latency Control bit 1 = Variable exception processing latency is enabled 0 = Fixed exception processing latency is enabled

bit 3 IPL3: CPU Interrupt Priority Level Status bit 3⁽²⁾ 1 = CPU Interrupt Priority Level is greater than 7

0 = CPU Interrupt Priority Level is 7 or less

Note 1: For complete register details, see Register 3-2.

2: The IPL3 bit is concatenated with the IPL<2:0> bits (SR<7:5>) to form the CPU Interrupt Priority Level.

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
NSTDIS	OVAERR	OVBERR	COVAERR	COVBERR	OVATE	OVBTE	COVTE			
bit 15	OWNERRY	OVBENIN	00 WILLIN	OOVBENIN	OWNE	OVDIE	bit 8			
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	U-0			
SFTACERR	DIV0ERR	DMACERR	MATHERR	ADDRERR	STKERR	OSCFAIL				
bit 7							bit (
Legend:										
R = Readable	bit	W = Writable	bit	U = Unimplem	ented bit, read	as '0'				
-n = Value at F	POR	'1' = Bit is set		'0' = Bit is clea	ired	x = Bit is unk	nown			
bit 15		errupt Nesting								
		nesting is disa								
L:1 4 4	-	nesting is ena		-1						
bit 14			Overflow Trap F erflow of Accur	•						
	•	•	y overflow of A							
bit 13	-		Overflow Trap F							
	1 = Trap was	s caused by ov	erflow of Accur	mulator B						
	0 = Trap was	s not caused by	y overflow of A	ccumulator B						
bit 12	COVAERR: Accumulator A Catastrophic Overflow Trap Flag bit									
 1 = Trap was caused by catastrophic overflow of Accumulator A 0 = Trap was not caused by catastrophic overflow of Accumulator A 										
bit 11			-	Overflow Trap F						
				flow of Accumu						
	•	•	•	overflow of Accu						
bit 10	OVATE: Acc	umulator A Ov	erflow Trap En	able bit						
	1 = Trap ove 0 = Trap is d	erflow of Accun lisabled	nulator A							
bit 9	OVBTE: Acc	cumulator B Ov	verflow Trap En	able bit						
	1 = Trap ove 0 = Trap is d	erflow of Accun lisabled	ulator B							
bit 8	COVTE: Cat	tastrophic Ove	flow Trap Enal	ole bit						
	1 = Trap on 0 = Trap is d		verflow of Accu	mulator A or B i	s enabled					
bit 7	SFTACERR	: Shift Accumu	lator Error Stat	us bit						
		•	•	alid accumulator invalid accumul						
bit 6 DIV0ERR: Divide-by-Zero Error Status bit										
	1 = Math error trap was caused by a divide-by-zero 0 = Math error trap was not caused by a divide-by-zero									
bit 5	DMACERR:	DMA Controlle	er Trap Flag bit							
	1 = DMA Controller trap has occurred									
		ntroller trap ha								
bit 4		Math Error Sta								
		or trap has occ or trap has not								

REGISTER 7-3: INTCON1: INTERRUPT CONTROL REGISTER 1

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0			
_	—	_	_	—	—	—	_			
bit 15				•			bit 8			
U-0	U-0	R/W-0	R/W-0	U-0	U-0	U-0	U-0			
—	_	DAE	DOOVR		—	—	—			
bit 7	•			•			bit 0			
Legend:										
R = Readab	ole bit	W = Writable	bit	U = Unimplemented bit, read as '0'						
-n = Value a	at POR	'1' = Bit is set	t	'0' = Bit is cle	eared	x = Bit is unknown				
bit 15-6	Unimplemen	ted: Read as	'0'							
bit 5	DAE: DMA A	ddress Error S	Soft Trap Statu	s bit						
	1 = DMA address error soft trap has occurred									
	0 = DMA add	ress error soft	trap has not o	ccurred						
bit 4	DOOVR: DO	Stack Overflow	v Soft Trap Sta	itus bit						
	1 = DO stack	overflow soft ti	rap has occurr	ed						

REGISTER 7-5: INTCON3: INTERRUPT CONTROL REGISTER 3

	0 = DO stack overflow soft trap has not occurred
bit 3-0	Unimplemented: Read as '0'

REGISTER 7-6: INTCON4: INTERRUPT CONTROL REGISTER 4

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	—	—	_	—	—	—
bit 15	•		•		•		bit 8
U-0	U-0	U-0	U-0	U-0	U-0	U-0	R/W-0
—	—	—	—	_	—	—	SGHT
bit 7			•		•		bit 0
Legend:							

Legena.			
R = Readable bit	W = Writable bit	U = Unimplemented bit	, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-1	Unimplemented: Read as '0'
----------	----------------------------

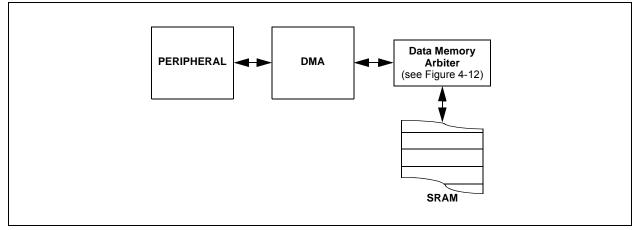
bit 0 SGHT: Software Generated Hard Trap Status bit

- 1 = Software generated hard trap has occurred
- 0 = Software generated hard trap has not occurred

8.0 DIRECT MEMORY ACCESS (DMA)

- Note 1: This data sheet summarizes the features of the dsPIC33EPXXXGM3XX/6XX/7XX family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to the "dsPIC33/PIC24 Family Reference Manual", "Direct Memory Access (DMA)" (DS70348), which is available from the Microchip web site (www.microchip.com).
 - 2: Some registers and associated bits described in this section may not be available on all devices. Refer to **Section 4.0 "Memory Organization"** in this data sheet for device-specific register and bit information.

The DMA Controller transfers data between Peripheral Data registers and Data Space SRAM


In addition, DMA can access the entire data memory space. The data memory bus arbiter is utilized when either the CPU or DMA attempts to access SRAM, resulting in potential DMA or CPU stalls.

The DMA Controller supports 4 independent channels. Each channel can be configured for transfers to or from selected peripherals. The peripherals supported by the DMA Controller include:

- CAN
- Analog-to-Digital Converter (ADC)
- Serial Peripheral Interface (SPI)
- UART
- Input Capture
- Output Compare
- DCI
- PMP
- Timers

Refer to Table 8-1 for a complete list of supported peripherals.

FIGURE 8-1: PERIPHERAL TO DMA CONTROLLER

REGISTER 14-2: ICxCON2: INPUT CAPTURE x CONTROL REGISTER 2

U-0	U-0	U-0	U-0	U-0	U-0	U-0	R/W-0
—	—	—	—	—	—	—	IC32 ⁽¹⁾
bit 15							bit 8

R/W-0	R/W/HS-0	U-0	R/W-0	R/W-1	R/W-1	R/W-0	R/W-1
ICTRIG ⁽²⁾	TRIGSTAT ⁽³⁾		SYNCSEL4(4)	SYNCSEL3(4)	SYNCSEL2(4)	SYNCSEL1(4)	SYNCSEL0(4)
bit 7							bit 0

Legend:	HS = Hardware Settable bit		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-9	Unimplemented: Read as '0'
----------	----------------------------

- bit 8 IC32: Input Capture x 32-Bit Timer Mode Select bit (Cascade mode)⁽¹⁾
 - 1 = Odd ICx and Even ICx form a single 32-bit input capture module
 0 = Cascade module operation is disabled
- bit 7 ICTRIG: Input Capture x Trigger Operation Select bit⁽²⁾
 - 1 = Input source is used to trigger the input capture timer (Trigger mode)
 - Input source is used to synchronize the input capture timer to the timer of another module (Synchronization mode)

bit 6 TRIGSTAT: Timer Trigger Status bit⁽³⁾

- 1 = ICxTMR has been triggered and is running
- 0 = ICxTMR has not been triggered and is being held clear
- bit 5 Unimplemented: Read as '0'
- **Note 1:** The IC32 bit in both the Odd and Even ICx must be set to enable Cascade mode.
 - 2: The input source is selected by the SYNCSEL<4:0> bits of the ICxCON2 register.
 - **3:** This bit is set by the selected input source (selected by SYNCSEL<4:0> bits); it can be read, set and cleared in software.
 - **4:** Do not use the ICx module as its own Sync or Trigger source.
 - 5: This option should only be selected as a trigger source and not as a synchronization source.
 - 6: Each Input Capture x module (ICx) has one PTG input source. See Section 25.0 "Peripheral Trigger Generator (PTG) Module" for more information.
 PTGO8 = IC1, IC5
 PTGO9 = IC2, IC6
 PTGO10 = IC3, IC7

PTGO10 = IC3, IC7PTGO11 = IC4, IC8

REGISTER 16-5: STCON: PWMx SECONDARY TIME BASE CONTROL REGISTER (CONTINUED)

- **Note 1:** These bits should be changed only when PTEN = 0. In addition, when using the SYNCI1 feature, the user application must program the Period register with a value that is slightly larger than the expected period of the external synchronization input signal.
 - 2: See Section 25.0 "Peripheral Trigger Generator (PTG) Module" for information on this selection.

REGISTER 16-6: STCON2: PWMx SECONDARY MASTER CLOCK DIVIDER SELECT REGISTER 2

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	—	—	—	—	—	_
bit 15							bit 8
U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0
—	—	—	—	—	PCLKDIV<2:0> ⁽¹⁾		
bit 7					bit		
Legend:							
R = Readable I	bit	W = Writable	bit	U = Unimplemented bit, read as '0'			

R – Reauable bit		0 – Unimplemented bit, read	
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-3 Unimplemented: Read as '0'

bit 2-0 PCLKDIV<2:0>: PWMx Input Clock Prescaler (Divider) Select bits⁽¹⁾

- 111 = Reserved
- 110 = Divide-by-64
- 101 = Divide-by-32
- 100 = Divide-by-16
- 011 = Divide-by-8
- 010 = Divide-by-4
- 001 = Divide-by-2
- 000 = Divide-by-1, maximum PWMx timing resolution (power-on default)
- **Note 1:** These bits should be changed only when PTEN = 0. Changing the clock selection during operation will yield unpredictable results.

REGISTER 16-16: DTRx: PWMx DEAD-TIME REGISTER

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
	—			DTR	<13:8>		
bit 15	•						bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			DTR	x<7:0>			
bit 7							bit 0
Legend:							
R = Readable bit W = Writable bit		bit	U = Unimplemented bit, read as '0'				
-n = Value at POR		'1' = Bit is set		'0' = Bit is cleared		x = Bit is unknown	

bit 15-14 Unimplemented: Read as '0'

bit 13-0 DTRx<13:0>: Unsigned 14-Bit Dead-Time Value for PWMx Dead-Time Unit bits

REGISTER 16-17: ALTDTRx: PWMx ALTERNATE DEAD-TIME REGISTER

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	_			ALTDT	Rx<13:8>		
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			ALTD	TRx<7:0>			
bit 7							bit C
Legend:							
R = Readable bit W = Writable		oit	U = Unimplemented bit, read as '0'				
-n = Value at POR		'1' = Bit is set		'0' = Bit is cleared		x = Bit is unknown	

bit 15-14 Unimplemented: Read as '0'

bit 13-0 ALTDTRx<13:0>: Unsigned 14-Bit Dead-Time Value for PWMx Dead-Time Unit bits

21.3 CAN Control Registers

REGISTER 21-1: CxCTRL1: CANx CONTROL REGISTER 1

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-1	R/W-0	R/W-0	
—	—	CSIDL	ABAT	CANCKS	REQOP2	REQOP1	REQOP0	
bit 15							bit 8	
R-1	R-0	R-0	U-0	R/W-0	U-0	U-0	R/W-0	
OPMODE2	OPMODE1	OPMODE0	_	CANCAP	—		WIN	
bit 7	•			•			bit 0	
Legend:								
R = Readable I	bit	W = Writable b	pit	U = Unimplemented bit, read as '0'				
-n = Value at POR '1' = Bit is s		'1' = Bit is set	'0' = Bit is cleared		ared	x = Bit is unknown		
bit 15-14	Unimplemen	ted: Read as '0)'					

	1
bit 13	CSIDL: CANx Stop in Idle Mode bit
	1 = Discontinues module operation when device enters Idle mode
	0 = Continues module operation in Idle mode
bit 12	ABAT: Abort All Pending Transmissions bit
	1 = Signals all transmit buffers to abort transmission
	0 = Module will clear this bit when all transmissions are aborted
bit 11	CANCKS: CANx Module Clock (FCAN) Source Select bit
	1 = FCAN is equal to 2 * FP
	0 = FCAN is equal to FP
bit 10-8	REQOP<2:0>: Request Operation Mode bits
	111 = Set Listen All Messages mode
	110 = Reserved 101 = Reserved
	100 = Set Configuration mode
	011 = Set Listen Only mode
	010 = Set Loopback mode
	001 = Set Disable mode
	000 = Set Normal Operation mode
bit 7-5	OPMODE<2:0>: Operation Mode bits
	111 = Module is in Listen All Messages mode
	110 = Reserved 101 = Reserved
	100 = Module is in Configuration mode
	011 = Module is in Listen Only mode
	010 = Module is in Loopback mode
	001 = Module is in Disable mode
	000 = Module is in Normal Operation mode
bit 4	Unimplemented: Read as '0'
bit 3	CANCAP: CANx Message Receive Timer Capture Event Enable bit
	1 = Enables input capture based on CAN message receive
	0 = Disables CAN capture
bit 2-1	Unimplemented: Read as '0'
bit 0	WIN: SFR Map Window Select bit
	1 = Uses filter window
	0 = Uses buffer window

REGISTER 21-6: CxINTF: CANx INTERRUPT FLAG REGISTER (CONTINUED)

bit 1	RBIF: RX Buffer Interrupt Flag bit
	 Interrupt request has occurred
	0 = Interrupt request has not occurred
bit 0	TBIF: TX Buffer Interrupt Flag bit
	 I = Interrupt request has occurred
	O = Interrupt request has not accurred.

0 = Interrupt request has not occurred

REGISTER 21-7: CxINTE: CANx INTERRUPT ENABLE REGISTER

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	—	—	—	—	—	—
bit 15							bit 8

R/W-0	R/W-0	R/W-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0
IVRIE	WAKIE	ERRIE	—	FIFOIE	RBOVIE	RBIE	TBIE
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	d as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-8	Unimplemented: Read as '0'
bit 7	IVRIE: Invalid Message Interrupt Enable bit
	 1 = Interrupt request is enabled 0 = Interrupt request is not enabled
bit 6	WAKIE: Bus Wake-up Activity Interrupt Enable bit
	1 = Interrupt request is enabled0 = Interrupt request is not enabled
bit 5	ERRIE: Error Interrupt Enable bit
	1 = Interrupt request is enabled0 = Interrupt request is not enabled
bit 4	Unimplemented: Read as '0'
bit 3	FIFOIE: FIFO Almost Full Interrupt Enable bit
	1 = Interrupt request is enabled0 = Interrupt request is not enabled
bit 2	RBOVIE: RX Buffer Overflow Interrupt Enable bit
	1 = Interrupt request is enabled0 = Interrupt request is not enabled
bit 1	RBIE: RX Buffer Interrupt Enable bit
	1 = Interrupt request is enabled0 = Interrupt request is not enabled
bit 0	TBIE: TX Buffer Interrupt Enable bit
	1 = Interrupt request is enabled0 = Interrupt request is not enabled

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
F7BP3	F7BP2	F7BP1	F7BP0	F6BP3	F6BP2	F6BP1	F6BP0			
bit 15							bit 8			
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
F5BP3	F5BP2	F5BP1	F5BP0	F4BP3	F4BP2	F4BP1	F4BP0			
bit 7							bit 0			
[
Legend:										
R = Readable	e bit	W = Writable bit		U = Unimplemented bit, read as '0'						
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cleared		x = Bit is unknown				
bit 15-12		RX Buffer Masl								
		hits received in		-						
	1110 = Filter	hits received ir	NRX Buffer 14	4						
	•									
	•									
	0001 = Filter	hits received in	NRX Buffer 1							
	0000 = Filter	hits received in	n RX Buffer 0							
bit 11-8	F6BP<3:0>:	RX Buffer Masl	k for Filter 6 b	oits (same value	es as bits 15-12					
bit 7-4	F5BP<3:0>:	F5BP<3:0>: RX Buffer Mask for Filter 5 bits (same values as bits 15-12)								

REGISTER 21-13: CxBUFPNT2: CANx FILTERS 4-7 BUFFER POINTER REGISTER 2

REGISTER 21-14: CxBUFPNT3: CANx FILTERS 8-11 BUFFER POINTER REGISTER 3

F4BP<3:0>: RX Buffer Mask for Filter 4 bits (same values as bits 15-12)

| R/W-0 |
|--------|--------|--------|--------|--------|--------|--------|--------|
| F11BP3 | F11BP2 | F11BP1 | F11BP0 | F10BP3 | F10BP2 | F10BP1 | F10BP0 |
| bit 15 | | | | | | | bit 8 |
| | | | | | | | |
| R/W-0 |
F9BP3	F9BP2	F9BP1	F9BP0	F8BP3	F8BP2	F8BP1	F8BP0
bit 7							bit 0
Logond							

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit,	, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-12	F11BP<3:0>: RX Buffer Mask for Filter 11 bits 1111 = Filter hits received in RX FIFO buffer 1110 = Filter hits received in RX Buffer 14 •
	0001 = Filter hits received in RX Buffer 1 0000 = Filter hits received in RX Buffer 0
bit 11-8	F10BP<3:0>: RX Buffer Mask for Filter 10 bits (same values as bits 15-12)
bit 7-4	F9BP<3:0>: RX Buffer Mask for Filter 9 bits (same values as bits 15-12)
bit 3-0	F8BP<3:0>: RX Buffer Mask for Filter 8 bits (same values as bits 15-12)

© 2013-2014 Microchip Technology Inc.

bit 3-0

REGISTER 23-1: ADxCON1: ADCx CONTROL REGISTER 1 (CONTINUED)

bit 7-5	SSRC<2:0>: Sample Clock Source Select bits <u>If SSRCG = 1:</u> 111 = Reserved 110 = PTGO15 primary trigger compare ends sampling and starts conversion ⁽¹⁾ 101 = PTGO14 primary trigger compare ends sampling and starts conversion ⁽¹⁾ 100 = PTGO13 primary trigger compare ends sampling and starts conversion ⁽¹⁾ 011 = PTGO12 primary trigger compare ends sampling and starts conversion ⁽¹⁾ 010 = PWM Generator 3 primary trigger compare ends sampling and starts conversion 001 = PWM Generator 2 primary trigger compare ends sampling and starts conversion 000 = PWM Generator 1 primary trigger compare ends sampling and starts conversion <u>If SSRCG = 0:</u> 111 = Internal counter ends sampling and starts conversion (auto-convert) 110 = CTMU ends sampling and starts conversion
	101 = PWM secondary Special Event Trigger ends sampling and starts conversion
	100 = Timer5 compare ends sampling and starts conversion 011 = PWM primary Special Event Trigger ends sampling and starts conversion
	010 = Timer3 compare ends sampling and starts conversion
	001 = Active transition on the INTO pin ends sampling and starts conversion000 = Clearing the Sample bit (SAMP) ends sampling and starts conversion (Manual mode)
bit 4	SSRCG: Sample Trigger Source Group bit
	See SSRC<2:0> for details.
bit 3	SIMSAM: Simultaneous Sample Select bit (only applicable when CHPS<1:0> = $01 \text{ or } 1x$)
	 In 12-Bit Mode (AD12B = 1), SIMSAM is Unimplemented and is Read as '0': 1 = Samples CH0, CH1, CH2, CH3 simultaneously (when CHPS<1:0> = 1x), or samples CH0 and CH1 simultaneously (when CHPS<1:0> = 01) 0 = Samples multiple channels individually in sequence
bit 2	ASAM: ADCx Sample Auto-Start bit
	 1 = Sampling begins immediately after last conversion; SAMP bit is auto-set 0 = Sampling begins when SAMP bit is set
bit 1	SAMP: ADCx Sample Enable bit
	 1 = ADCx Sample-and-Hold amplifiers are sampling 0 = ADCx Sample-and-Hold amplifiers are holding If ASAM = 0, software can write '1' to begin sampling. Automatically set by hardware if ASAM = 1. If SSRC<2:0> = 000, software can write '0' to end sampling and start conversion. If SSRC<2:0> ≠ 000, automatically cleared by hardware to end sampling and start conversion.
bit 0	DONE: ADCx Conversion Status bit ⁽²⁾
	 1 = ADCx conversion cycle is completed. 0 = ADCx conversion has not started or is in progress Automatically set by hardware when A/D conversion is complete. Software can write '0' to clear DONE status (software not allowed to write '1'). Clearing this bit does NOT affect any operation in progress. Automatically cleared by hardware at the start of a new conversion.
Note 1:	See Section 25.0 "Peripheral Trigger Generator (PTG) Module" for information on this selection.

2: Do not clear the DONE bit in software if ADCx Sample Auto-Start bit is enabled (ASAM = 1).

U-0	U-0	U-0	U-0	U-0	U-0	U-0	R/W-0	
_	—	—	_	_	—	—	ADDMAEN	
bit 15						·	bit 8	
U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	
—	—	—	—	—	DMABL2	DMABL1	DMABL0	
bit 7							bit 0	
Legend:								
R = Readal	ble bit	W = Writable b	V = Writable bit U = Unimplemented bit, read as '0'					
-n = Value a	at POR	'1' = Bit is set		'0' = Bit is cleared		x = Bit is unknown		
bit 15-9	Unimplemen	ted: Read as '0)'					
bit 8	ADDMAEN:	ADCx DMA Ena	able bit					
					ster for transfer h ADC1BUFF re			
bit 7-3	Unimplemen	ted: Read as '0)'					
bit 2-0	DMABL<2:0	-: Selects Numb	per of DMA Bu	Iffer Locations	per Analog Inp	ut bits		
		es 128 words o			:			
		es 64 words of						
		es 32 words of		• .				
100 = Allocates 16 words of buffer to each analog input								

REGISTER 23-4: ADxCON4: ADCx CONTROL REGISTER 4

- 011 =Allocates 8 words of buffer to each analog input
- 010 =Allocates 0 words of bullet to each analog input 010 = Allocates 4 words of buffer to each analog input
- 001 =Allocates 2 words of buffer to each analog input
- 000 = Allocates 1 word of buffer to each analog input

REGISTER 25-8: PTGC1LIM: PTG COUNTER 1 LIMIT REGISTER⁽¹⁾

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			PTGC1	LIM<15:8>			
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			PTGC'	LIM<7:0>			
bit 7							bit 0
Legend:							
R = Readable bit W = Writable bit			t	U = Unimplemented bit, read as '0'			
-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown				nown			

bit 15-0 **PTGC1LIM<15:0>:** PTG Counter 1 Limit Register bits May be used to specify the loop count for the PTGJMPC1 Step command, or as a limit register for the General Purpose Counter 1.

Note 1: This register is read-only when the PTG module is executing Step commands (PTGEN = 1 and PTGSTRT = 1).

REGISTER 25-9: PTGHOLD: PTG HOLD REGISTER⁽¹⁾

'1' = Bit is set

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
			PTGHO	LD<15:8>				
bit 15							bit 8	
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
			PTGHC)LD<7:0>				
bit 7							bit 0	
Legend:								
R = Readable b	bit	W = Writable bit	U = Unimplemented bit, read as '0'					

bit 15-0 **PTGHOLD<15:0>:** PTG General Purpose Hold Register bits Holds user-supplied data to be copied to the PTGTxLIM, PTGCxLIM, PTGSDLIM or PTGL0 register with the PTGCOPY command.

'0' = Bit is cleared

Note 1: This register is read-only when the PTG module is executing Step commands (PTGEN = 1 and PTGSTRT = 1).

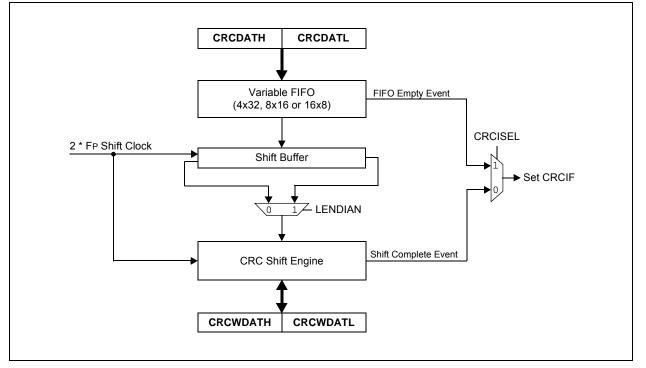
n = Value at POR

x = Bit is unknown

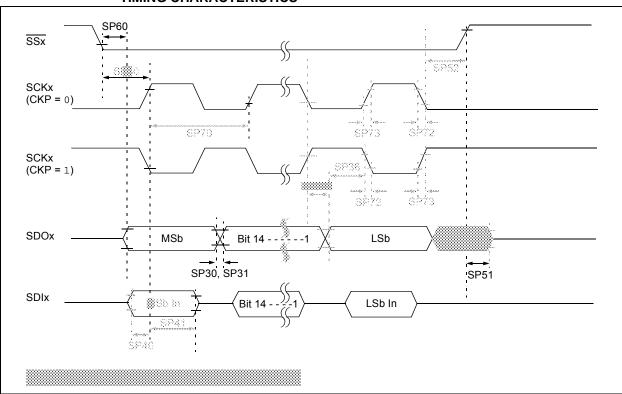
NOTES:

29.0 PROGRAMMABLE CYCLIC REDUNDANCY CHECK (CRC) GENERATOR

- Note 1: This data sheet summarizes the features of the dsPIC33EPXXXGM3XX/6XX/7XX family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to the "dsPIC33/PIC24 Family Reference Manual", "32-Bit Programmable Cyclic Redundancy Check (CRC)" (DS70346), which is available from the Microchip web site (www.microchip.com).
 - 2: Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.


The programmable CRC generator offers the following features:

- User-Programmable (up to 32nd order) polynomial CRC equation
- Interrupt Output
- Data FIFO


The programmable CRC generator provides a hardware-implemented method of quickly generating checksums for various networking and security applications. It offers the following features:

- User-programmable CRC polynomial equation, up to 32 bits
- Programmable shift direction (little or big-endian)
- · Independent data and polynomial lengths
- Configurable interrupt output
- Data FIFO

A simplified block diagram of the CRC generator is shown in Figure 29-1. A simple version of the CRC shift engine is shown in Figure 29-2.

FIGURE 29-1: CRC BLOCK DIAGRAM

FIGURE 33-20: SPI2 AND SPI3 SLAVE MODE (FULL-DUPLEX, CKE = 1, CKP = 1, SMP = 0) TIMING CHARACTERISTICS

NOTES: