

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFl

Details	
Product Status	Active
Core Processor	dsPIC
Core Size	16-Bit
Speed	70 MIPs
Connectivity	CANbus, I ² C, IrDA, LINbus, QEI, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, I ² S, Motor Control PWM, POR, PWM, WDT
Number of I/O	53
Program Memory Size	512KB (170K x 24)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	48K x 8
Voltage - Supply (Vcc/Vdd)	-
Data Converters	A/D 30x10b/12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	64-VFQFN Exposed Pad
Supplier Device Package	64-VQFN (9x9)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/dspic33ep512gm706t-i-mr

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

3.0 CPU

- Note 1: This data sheet summarizes the features of the dsPIC33EPXXXGM3XX/6XX/7XX family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to the "dsPIC33/PIC24 Family Reference Manual", "CPU" (DS70359), which is available from the Microchip web site (www.microchip.com).
 - Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

The CPU has a 16-bit (data) modified Harvard architecture with an enhanced instruction set, including significant support for digital signal processing. The CPU has a 24-bit instruction word, with a variable length opcode field. The Program Counter (PC) is 23 bits wide and addresses up to 4M x 24 bits of user program memory space.

An instruction prefetch mechanism helps maintain throughput and provides predictable execution. Most instructions execute in a single-cycle, effective execution rate, with the exception of instructions that change the program flow, the double-word move (MOV.D) instruction, PSV accesses and the table instructions. Overhead-free program loop constructs are supported using the DO and REPEAT instructions, both of which are interruptible at any point.

3.1 Registers

The dsPIC33EPXXXGM3XX/6XX/7XX devices have sixteen 16-bit Working registers in the programmer's model. Each of the Working registers can act as a data, address or address offset register. The 16th Working register (W15) operates as a Software Stack Pointer for interrupts and calls.

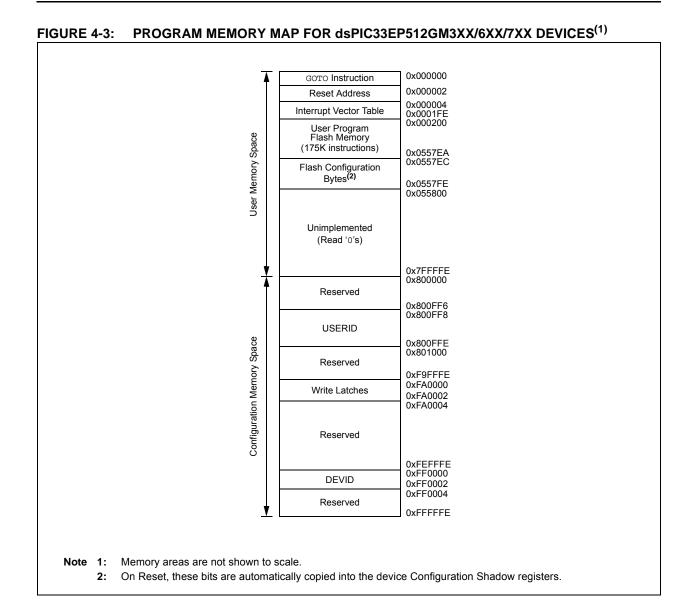
3.2 Instruction Set

The device instruction set has two classes of instructions: the MCU class of instructions and the DSP class of instructions. These two instruction classes are seamlessly integrated into the architecture and execute from a single execution unit. The instruction set includes many addressing modes and was designed for optimum C compiler efficiency.

3.3 Data Space Addressing

The Base Data Space can be addressed as 4K words or 8 Kbytes and is split into two blocks, referred to as X and Y data memory. Each memory block has its own independent Address Generation Unit (AGU). The MCU class of instructions operate solely through the X memory AGU, which accesses the entire memory map as one linear Data Space. On dsPIC33EP devices, certain DSP instructions operate through the X and Y AGUs to support dual operand reads, which splits the data address space into two parts. The X and Y Data Space boundary is device-specific.

The upper 32 Kbytes of the Data Space memory map can optionally be mapped into Program Space at any 16K program word boundary. The program-to-Data Space mapping feature, known as Program Space Visibility (PSV), lets any instruction access Program Space as if it were Data Space. Moreover, the Base Data Space address is used in conjunction with a Data Space Read or Write Page register (DSRPAG or DSWPAG) to form an Extended Data Space (EDS) address. The EDS can be addressed as 8M words or 16 Mbytes. Refer to "Data Memory" (DS70595) and "Program Memory" (DS70613) in the "dsPIC33/ PIC24 Family Reference Manual" for more details on EDS, PSV and table accesses.


On dsPIC33EP devices, overhead-free circular buffers (Modulo Addressing) are supported in both X and Y address spaces. The Modulo Addressing removes the software boundary checking overhead for DSP algorithms. The X AGU circular addressing can be used with any of the MCU class of instructions. The X AGU also supports Bit-Reversed Addressing to greatly simplify input or output data reordering for radix-2 FFT algorithms.

3.4 Addressing Modes

The CPU supports these addressing modes:

- · Inherent (no operand)
- Relative
- Literal
- Memory Direct
- Register Direct
- Register Indirect

Each instruction is associated with a predefined addressing mode group, depending upon its functional requirements. As many as six addressing modes are supported for each instruction.

TABLE 4-14: PWM GENERATOR 6 REGISTER MAP

															-			1
SFR Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
PWMCON6	0CC0	FLTSTAT	CLSTAT	TRGSTAT	FLTIEN	CLIEN	TRGIEN	ITB	MDCS	DTC1	DTC0	DTCP	-	MTBS	CAM	XPRES	IUE	0000
IOCON6	0CC2	PENH	PENL	POLH	POLL	PMOD1	PMOD0	OVRENH	OVRENL	OVRDAT1	OVRDAT0	FLTDAT1	FLTDAT0	CLDAT1	CLDAT0	SWAP	OSYNC	C000
FCLCON6	0CC4	IFLTMOD	CLSRC4	CLSRC3	CLSRC2	CLSRC1	CLSRC0	CLPOL	CLMOD	FLTSRC4	FLTSRC3	FLTSRC2	FLTSRC1	FLTSRC0	FLTPOL	FLTMOD1	FLTMOD0	00F8
PDC6	0CC6		PDC6<15:0> 00							0000								
PHASE6	0CC8		PHASE6<15:0> 000						0000									
DTR6	0CCA	_	_		DTR6<13:0>						0000							
ALTDTR6	00000	_	_		ALTDTR6<13:0>						0000							
SDC6	0CCE								SDC6	<15:0>								0000
SPHASE6	0CD0								SPHASE	6<15:0>								0000
TRIG6	0CD2								TRGCM	P<15:0>								0000
TRGCON6	0CD4	TRGDIV3	TRGDIV2	TRGDIV1	TRGDIV0	_	—	—	_	_	—	TRGSTRT5	TRGSTRT4	TRGSTRT3	TRGSTRT2	TRGSTRT1	TRGSTRT0	0000
PWMCAP6	0CD8								PWMCAF	P6<15:0>				•				0000
LEBCON6	0CDA	PHR	PHF	PLR	PLF	FLTLEBEN	CLLEBEN	—	—	—	_	BCH	BCL	BPHH	BPHL	BPLH	BPLL	0000
LEBDLY6	0CDC	_	-	_	_				•	•	LEB<	11:0>		•	•			0000
AUXCON6	0CDE	_	_	_	_	BLANKSEL3	BLANKSEL2	BLANKSEL1	BLANKSEL0	_	_	CHOPSEL3	CHOPSEL2	CHOPSEL1	CHOPSEL0	CHOPHEN	CHOPLEN	0000
Logondi			1			wn in hovede												

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

SFR Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
QEI2CON	05C0	QEIEN	_	QEISIDL	PIMOD2	PIMOD1	PIMOD0	IMV1	IMV0	—	INTDIV2	INTDIV1	INTDIV0	CNTPOL	GATEN	CCM1	CCM0	0000
QEI2IOC	05C2	QCAPEN	FLTREN	QFDIV2	QFDIV1	QFDIV0	OUTFNC1	OUTFNC0	SWPAB	HOMPOL	IDXPOL	QEBPOL	QEAPOL	HOME	INDEX	QEB	QEA	000x
QEI2STAT	05C4	—		PCHEQIRQ	PCHEQIEN	PCLEQIRQ	PCLEQIEN	POSOVIRQ	POSOVIEN	PCIIRQ	PCIIEN	VELOVIRQ	VELOVIEN	HOMIRQ	HOMIEN	IDXIRQ	IDXIEN	0000
POS2CNTL	05C6							F	POSCNT<15:)>								0000
POS2CNTH	05C8							P	OSCNT<31:1	6>								0000
POS2HLD	05CA							ł	POSHLD<15:()>								0000
VEL2CNT	05CC							,	VELCNT<15:0)>								0000
INT2TMRL	05CE								INTTMR<15:0)>								0000
INT2TMRH	05D0							I	NTTMR<31:1	6>								0000
INT2HLDL	05D2								INTHLD<15:0	>								0000
INT2HLDH	05D4							I	NTHLD<31:10	6>								0000
INDX2CNTL	05D6							I	NDXCNT<15:	0>								0000
INDX2CNTH	05D8							II	NDXCNT<31:1	6>								0000
INDX2HLD	05DA							I	NDXHLD<15:	0>								0000
QEI2GECL	05DC								QEIGEC<15:0)>								0000
QEI2ICL	05DC								QEIIC<15:0>	•								0000
QEI2GECH	05DE							(QEIGEC<31:1	6>								0000
QEI2ICH	05DE		QEIIC<31:16> 0						0000									
QEI2LECL	05E0		QEILEC<15:0> 00						0000									
QEI2LECH	05E2							(QEILEC<31:10	6>								0000

Legend: x = unknown value on Reset; - = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-41: OP AMP/COMPARATOR REGISTER MAP

SFR Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
CMSTAT	0A80	PSIDL	_	—	C5EVT	C4EVT	C3EVT	C2EVT	C1EVT	—	_	_	C5OUT	C4OUT	C3OUT	C2OUT	C1OUT	0000
CVR1CON	0A82	_		_	_	CVRR1	VREFSEL	—	_	CVREN	CVROE	CVRR0	CVRSS	CVR3	CVR2	CVR1	CVR0	0000
CM1CON	0A84	CON	COE	CPOL	_	_	OPMODE	CEVT	COUT	EVPOL1	EVPOL0	—	CREF	_	—	CCH1	CCH0	0000
CM1MSKSRC	0A86	-	-	_		SELSRCC3	SELSRCC2	SELSRCC1	SELSRCC0	SELSRCB3	SELSRCB2	SELSRCB1	SELSRCB0	SELSRCA3	SELSRCA2	SELSRCA1	SELSRCA0	0000
CM1MSKCON	0A88	HLMS		OCEN	OCNEN	OBEN	OBNEN	OAEN	OANEN	NAGS	PAGS	ACEN	ACNEN	ABEN	ABNEN	AAEN	AANEN	0000
CM1FLTR	0A8A	_	_	_	_	_	_	—	—	—	CFSEL2	CFSEL1	CFSEL0	CFLTREN	CFDIV2	CFDIV1	CFDIV0	0000
CM2CON	0A8C	CON	COE	CPOL	_	_	OPMODE	CEVT	COUT	EVPOL1	EVPOL0	—	CREF	_	—	CCH1	CCH0	0000
CM2MSKSRC	0A8E	_	_	_	_	SELSRCC3	SELSRCC2	SELSRCC1	SELSRCC0	SELSRCB3	SELSRCB2	SELSRCB1	SELSRCB0	SELSRCA3	SELSRCA2	SELSRCA1	SELSRCA0	0000
CM2MSKCON	0A90	HLMS	-	OCEN	OCNEN	OBEN	OBNEN	OAEN	OANEN	NAGS	PAGS	ACEN	ACNEN	ABEN	ABNEN	AAEN	AANEN	0000
CM2FLTR	0A92	-	-	_		_	_	_	_	_	CFSEL2	CFSEL1	CFSEL0	CFLTREN	CFDIV2	CFDIV1	CFDIV0	0000
CM3CON	0A94	CON	COE	CPOL		_	OPMODE	CEVT	COUT	EVPOL1	EVPOL0	_	CREF	_	_	CCH1	CCH0	0000
CM3MSKSRC	0A96	-	-	_		SELSRCC3	SELSRCC2	SELSRCC1	SELSRCC0	SELSRCB3	SELSRCB2	SELSRCB1	SELSRCB0	SELSRCA3	SELSRCA2	SELSRCA1	SELSRCA0	0000
CM3MSKCON	0A98	HLMS	-	OCEN	OCNEN	OBEN	OBNEN	OAEN	OANEN	NAGS	PAGS	ACEN	ACNEN	ABEN	ABNEN	AAEN	AANEN	0000
CM3FLTR	0A9A	_		_	_	_	_	_	_	—	CFSEL2	CFSEL1	CFSEL0	CFLTREN	CFDIV2	CFDIV1	CFDIV0	0000
CM4CON	0A9C	CON	COE	CPOL	_	_	-	CEVT	COUT	EVPOL1	EVPOL0	_	CREF	_	_	CCH1	CCH0	0000
CM4MSKSRC	0A9E	_	_	_	_	SELSRCC3	SELSRCC2	SELSRCC1	SELSRCC0	SELSRCB3	SELSRCB2	SELSRCB1	SELSRCB0	SELSRCA3	SELSRCA2	SELSRCA1	SELSRCA0	0000
CM4MSKCON	0AA0	HLMS	_	OCEN	OCNEN	OBEN	OBNEN	OAEN	OANEN	NAGS	PAGS	ACEN	ACNEN	ABEN	ABNEN	AAEN	AANEN	0000
CM4FLTR	0AA2	_	_	_	_	_	_	_	_	—	CFSEL2	CFSEL1	CFSEL0	CFLTREN	CFDIV2	CFDIV1	CFDIV0	0000
CM5CON	0AA4	CON	COE	CPOL	_	_	OPMODE	CEVT	COUT	EVPOL1	EVPOL0	_	CREF	_	_	CCH1	CCH0	0000
CM5MSKSRC	0AA6	_	_	_	_	SELSRCC3	SELSRCC2	SELSRCC1	SELSRCC0	SELSRCB3	SELSRCB2	SELSRCB1	SELSRCB0	SELSRCA3	SELSRCA2	SELSRCA1	SELSRCA0	0000
CM5MSKCON	0AA8	HLMS		OCEN	OCNEN	OBEN	OBNEN	OAEN	OANEN	NAGS	PAGS	ACEN	ACNEN	ABEN	ABNEN	AAEN	AANEN	0000
CM5FLTR	0AAA	—		_	_	_		—	_	—	CFSEL2	CFSEL1	CFSEL0	CFLTREN	CFDIV2	CFDIV1	CFDIV0	0000
CVR2CON	0AB4	—	_	_	_	CVRR1	VREFSEL	_	_	CVREN	CVROE	CVRR0	CVRSS	CVR3	CVR2	CVR1	CVR0	0000

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

dsPIC33EPXXXGM3XX/6XX/7XX

REGISTER 7-1: SI	R: CPU STATUS REGISTER ⁽¹⁾
------------------	---------------------------------------

R/W-0	R/W-0	R/W-0	R/W-0	R/C-0	R/C-0	R-0	R/W-0
OA	OB	SA	SB	OAB	SAB	DA	DC
bit 15							bit 8
R/W-0 ⁽³⁾	R/W-0 ⁽³⁾	R/W-0 ⁽³⁾	R-0	R/W-0	R/W-0	R/W-0	R/W-0
IPL2 ⁽²⁾	IPL1 ⁽²⁾	IPL0 ⁽²⁾	RA	N	OV	Z	С
bit 7							bit 0

Legend:	C = Clearable bit		
R = Readable bit	W = Writable bit	U = Unimplemented bi	t, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 7-5	IPL<2:0>: CPU Interrupt Priority Level Status bits ^(2,3)
	 111 = CPU Interrupt Priority Level is 7 (15); user interrupts are disabled 110 = CPU Interrupt Priority Level is 6 (14) 101 = CPU Interrupt Priority Level is 5 (13) 100 = CPU Interrupt Priority Level is 4 (12) 011 = CPU Interrupt Priority Level is 3 (11)
	010 = CPU Interrupt Priority Level is 2 (10) 001 = CPU Interrupt Priority Level is 1 (9) 000 = CPU Interrupt Priority Level is 0 (8)

Note 1: For complete register details, see Register 3-1.

2: The IPL<2:0> bits are concatenated with the IPL<3> bit (CORCON<3>) to form the CPU Interrupt Priority Level. The value in parentheses indicates the IPL if IPL<3> = 1. User interrupts are disabled when IPL<3> = 1.

3: The IPL<2:0> Status bits are read-only when the NSTDIS bit (INTCON1<15>) = 1.

8.1 DMA Controller Registers

Each DMA Controller Channel x (where x = 0 through 3) contains the following registers:

- 16-bit DMA Channel x Control Register (DMAxCON)
- 16-bit DMA Channel x IRQ Select Register (DMAxREQ)
- 32-bit DMA Channel x Start Address Register A (DMAxSTAL/H)
- 32-bit DMA Channel x Start Address Register B (DMAxSTBL/H)
- 16-bit DMA Channel x Peripheral Address Register (DMAxPAD)
- 14-bit DMA Channel x Transfer Count Register (DMAxCNT)

Additional status registers (DMAPWC, DMARQC, DMAPPS, DMALCA and DSADRL/H) are common to all DMA Controller channels. These status registers provide information on write and request collisions, as well as on last address and channel access information.

The interrupt flags (DMAxIF) are located in an IFSx register in the interrupt controller. The corresponding interrupt enable control bits (DMAxIE) are located in an IECx register in the interrupt controller and the corresponding interrupt priority control bits (DMAxIP) are located in an IPCx register in the interrupt controller.

REGISTER 8-1: DMAXCON: DMA CHANNEL X CONTROL REGISTER

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	U-0	U-0	U-0
CHEN	SIZE	DIR	HALF	NULLW	—	—	—
bit 15							bit 8

U-0	U-0	R/W-0	R/W-0	U-0	U-0	R/W-0	R/W-0
—	—	AMODE1	AMODE0	—	_	MODE1	MODE0
bit 7							bit 0

Legend:R = Readable bitW = Writable bitU = Unimplemented bit, read as '0'-n = Value at POR'1' = Bit is set'0' = Bit is clearedx = Bit is unknown

bit 15	CHEN: Channel Enable bit
bit 15	1 = Channel is enabled
	0 = Channel is disabled
bit 14	SIZE: Data Transfer Size bit
DIL 14	1 = Byte
	0 = Word
bit 13	DIR: Transfer Direction bit (source/destination bus select)
DIC 15	1 = Reads from RAM address, writes to peripheral address
	0 = Reads from peripheral address, writes to RAM address
bit 12	HALF: Block Transfer Interrupt Select bit
DIL 12	· · · · · · · · · · · · · · · · · · ·
	 1 = Initiates interrupt when half of the data has been moved 0 = Initiates interrupt when all of the data has been moved
bit 11	NULLW: Null Data Peripheral Write Mode Select bit
	•
	 1 = Null data write to peripheral in addition to RAM write (DIR bit must also be clear) 0 = Normal operation
bit 10-6	Unimplemented: Read as '0'
	•
bit 5-4	AMODE<1:0>: DMA Channel Addressing Mode Select bits
	11 = Reserved 10 = Peripheral Indirect mode
	01 = Register Indirect without Post-Increment mode
	00 = Register Indirect with Post-Increment mode
bit 3-2	Unimplemented: Read as '0'
bit 1-0	MODE<1:0>: DMA Channel Operating Mode Select bits
bit 1-0	11 = One-Shot, Ping-Pong modes are enabled (one block transfer from/to each DMA buffer)
	10 = Continuous, Ping-Pong modes are enabled
	01 = One-Shot, Ping-Pong modes are disabled
	00 = Continuous, Ping-Pong modes are disabled

R/W-0	R/W-0	R/W-1	R/W-1	R/W-0	R/W-0	R/W-0	R/W-0
ROI	DOZE2 ⁽³⁾	DOZE1 ⁽³⁾	DOZE0 ⁽³⁾	DOZEN ^(1,4)	FRCDIV2	FRCDIV1	FRCDIV0
bit 15							bit 8
R/W-0	R/W-1	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
PLLPOST	1 PLLPOST0		PLLPRE4	PLLPRE3	PLLPRE2	PLLPRE1	PLLPRE0
bit 7							bit (
							
Legend:	la hit		L:4	II — Ilucius da un	antad bit waar	L == (0'	
R = Readab		W = Writable		•	nented bit, read		
-n = Value a	IL POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	IOWI
bit 15	ROI: Recover	on Interrupt b	it				
		will clear the D					
		will have no ef		OZEN bit			
bit 14-12	DOZE<2:0>:	Processor Clo	ck Reduction	Select bits ⁽³⁾			
	111 = Fcy div						
	110 = Fcy div	•					
	101 = FCY div						
	100 = FCY div 011 = FCY div	/ided by 16 /ided by 8 (defa	ault)				
	010 = FCY div						
	001 = Fcy div						
	000 = FCY div	•					
bit 11		e Mode Enable					
				etween the perip		nd the processo	or clocks
hit 10 0		•	•	ratio are forced r Postscaler bits			
bit 10-8			RC Oscillator	Posiscaler bits	5		
	111 = FRC di 110 = FRC di						
	101 = FRC di	•					
	100 = FRC di						
	011 = FRC di						
	010 = FRC di 001 = FRC di	•					
		ivided by 1 (de	fault)				
bit 7-6		•		r Select bits (als	so denoted as	N2', PLL posts	caler)
	11 = Output o	livided by 8	-			-	·
	10 = Reserve						
	01 = Output c 00 = Output c	livided by 4 (de	efault)				
bit 5	-	ted: Read as '	0'				
	-			n interment a			
	This bit is cleared				uis.		
	This register resets The DOZE<2:0> b	-			hit is clear. If D		writes to
	OZE<2:0> b OZE<2:0> are ig	-			on is oreal. If D	∪∠∟iv – ⊥, ally	
							-

REGISTER 9-2: CLKDIV: CLOCK DIVISOR REGISTER⁽²⁾

4: The DOZEN bit cannot be set if DOZE<2:0> = 000. If DOZE<2:0> = 000, any attempt by user software to set the DOZEN bit is ignored.

REGISTER 10-4:	PMD4: PERIPHERAL	MODULE DISABLE	CONTROL REGISTER 4
----------------	-------------------------	----------------	--------------------

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
_	—	—	—	—	—	—	—
bit 15							bit 8
U-0	U-0	R/W-0	U-0	R/W-0	R/W-0	U-0	U-0
—	—	U4MD	—	REFOMD	CTMUMD	—	_
bit 7							bit 0
Logondi							
Legend:	bla bit	M - Mritabla	hit	LI – Unimplon	contod hit rook	1 00 '0'	
R = Readable bit W = Writable bit			U = Unimplemented bit, read as '0' '0' = Bit is cleared x = Bit is unknown				
-n = Value a	alpur	'1' = Bit is set			areu		IOWII
bit 15-6	Unimplemen	ted: Read as 'd)'				
bit 5	-	4 Module Disa					
	1 = UART4 m	odule is disable	ed				
	0 = UART4 m	odule is enable	ed				
bit 4	Unimplemen	ted: Read as 'd)'				
bit 3	REFOMD: Re	eference Clock	Module Disabl	le bit			
	1 = Reference clock module is disabled						
	0 = Reference	e clock module	is enabled				
bit 2	CTMUMD: C	TMU Module Di	isable bit				
		odule is disable					
	0 = CTMU mo	odule is enable	d				
11110			- 1				

bit 1-0 Unimplemented: Read as '0'

REGISTER 10-5: PMD6: PERIPHERAL MODULE DISABLE CONTROL REGISTER 6

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	PWM6MD	PWM5MD	PWM4MD	PWM3MD	PWM2MD	PWM1MD
bit 15							bit 8
U-0	U-0	U-0	U-0	U-0	U-0	U-0	R/W-0
—	—	—	—	—	—	—	SPI3MD
bit 7							bit 0
Legend:							
R = Readable	e bit	W = Writable	bit	U = Unimplem	nented bit, read	l as '0'	
-n = Value at	POR	'1' = Bit is set	'1' = Bit is set '0' = Bit is cleared x = Bit is unknown			iown	

bit 15-14	Unimplemented: Read as '0'
bit 13-8	PWM6MD:PWM1MD: PWMx (x = 1-6) Module Disable bit
	1 = PWMx module is disabled
	0 = PWMx module is enabled
bit 7-1	Unimplemented: Read as '0'
bit 0	SPI3MD: SPI3 Module Disable bit
	1 = SPI3 module is disabled
	0 = SPI3 module is enabled

© 2013-2014 Microchip Technology Inc.

U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
				DTCMP3R<6:0)>		
bit 15							bit 8
U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—				DTCMP2R<6:0)>		
bit 7							bit 0
Legend:							
R = Readab	le bit	W = Writable	bit	U = Unimplem	nented bit, rea	id as '0'	
-n = Value a	t POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	nown
	DTCMP3R<6 (see Table 11	nted: Read as ' 6:0>: Assign PV I-2 for input pin nput tied to RPI	VM Dead-Tim selection nun		n Input 3 to th	e Correspondin	g RPn Pin bits
bit 15 bit 14-8	DTCMP3R<6 (see Table 11 1111100 = H • • • 0000001 = H	6:0>: Assign PV I-2 for input pin nput tied to RPI nput tied to CM	VM Dead-Tim selection nun 124 P1		n Input 3 to th	e Corresponding	g RPn Pin bits
bit 14-8	DTCMP3R<6 (see Table 11 1111100 = H • • • • • • • • • • • • • • • • • • •	5:0>: Assign PV I-2 for input pin nput tied to RPI nput tied to CM nput tied to Vss	VM Dead-Tim selection nun 124 P1		n Input 3 to th	e Correspondin	g RPn Pin bits
	DTCMP3R<6 (see Table 11 1111100 = H • • • • • • • • • • • • • • • • • • •	5:0>: Assign PV I-2 for input pin nput tied to RPI nput tied to CM nput tied to Vss nted: Read as '	VM Dead-Tim selection nun 124 P1 3 0'	nbers)		e Corresponding	-

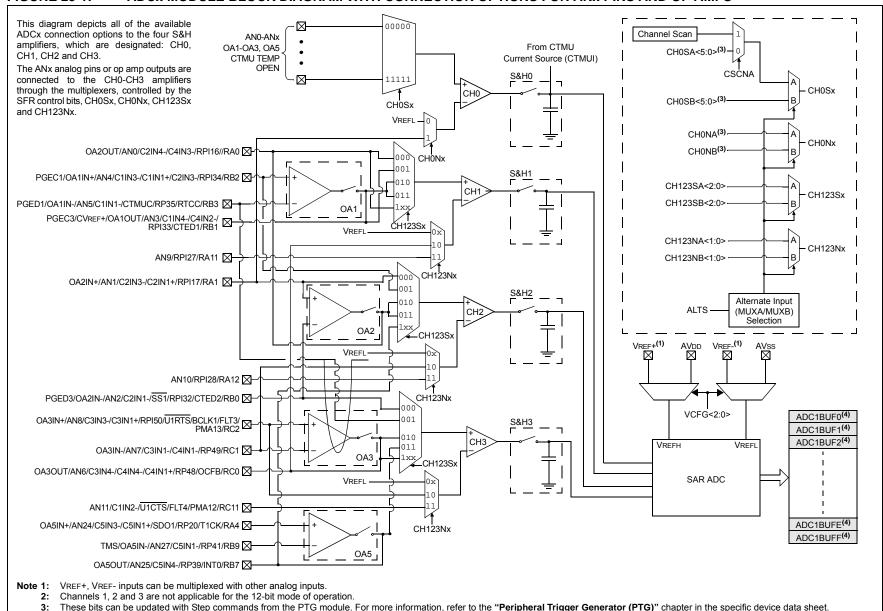
REGISTER 11-27: RPINR39: PERIPHERAL PIN SELECT INPUT REGISTER 39

REGISTER 17-2: QEIXIOC: QEIX I/O CONTROL REGISTER (CONTINUED)

- bit 2 INDEX: Status of INDXx Input Pin After Polarity Control bit
 - 1 = Pin is at logic '1'
 - 0 = Pin is at logic '0'
- bit 1 QEB: Status of QEBx Input Pin After Polarity Control and SWPAB Pin Swapping bit
 - 1 = Pin is at logic '1'
 - 0 = Pin is at logic '0'
- bit 0 QEA: Status of QEAx Input Pin After Polarity Control and SWPAB Pin Swapping bit
 - 1 = Pin is at logic '1'
 - 0 = Pin is at logic '0'

21.0 CONTROLLER AREA NETWORK (CAN) MODULE (dsPIC33EPXXXGM6XX/7XX DEVICES ONLY)

- Note 1: This data sheet summarizes the features of the dsPIC33EPXXXGM3XX/6XX/7XX family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to the *"dsPIC33/PIC24 Family Reference Manual"*, **"Enhanced Controller Area Network (ECAN™)"** (DS70353), which is available from the Microchip web site (www.microchip.com).
 - 2: Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.


21.1 Overview

The Controller Area Network (CAN) module is a serial interface, useful for communicating with other CAN modules or microcontroller devices. This interface/ protocol was designed to allow communications within noisy environments. The dsPIC33EPXXXGM6XX/7XX devices contain two CAN modules.

The CAN module is a communication controller, implementing the CAN 2.0 A/B protocol, as defined in the BOSCH CAN specification. The module supports CAN 1.2, CAN 2.0A, CAN 2.0B Passive and CAN 2.0B Active versions of the protocol. The module implementation is a full CAN system. The CAN specification is not covered within this data sheet. The reader can refer to the BOSCH CAN specification for further details. The CAN module features are as follows:

- Implementation of the CAN protocol, CAN 1.2, CAN 2.0A and CAN 2.0B
- · Standard and Extended Data Frames
- 0-8 Bytes of Data Length
- Programmable Bit Rate, up to 1 Mbit/sec
- Automatic Response to Remote Transmission Requests
- Up to 8 Transmit Buffers with Application Specified Prioritization and Abort Capability (each buffer can contain up to 8 bytes of data)
- Up to 32 Receive Buffers (each buffer can contain up to 8 bytes of data)
- Up to 16 Full (Standard/Extended Identifier) Acceptance Filters
- Three Full Acceptance Filter Masks
- DeviceNet[™] Addressing Support
- Programmable Wake-up Functionality with Integrated Low-Pass Filter
- Programmable Loopback mode supports Self-Test Operation
- Signaling via Interrupt Capabilities for all CAN Receiver and Transmitter Error States
- · Programmable Clock Source
- Programmable Link to Input Capture 2 (IC2) module for Timestamping and Network Synchronization
- · Low-Power Sleep and Idle modes

The CAN bus module consists of a protocol engine and message buffering/control. The CAN protocol engine handles all functions for receiving and transmitting messages on the CAN bus. Messages are transmitted by first loading the appropriate data registers. Status and errors can be checked by reading the appropriate registers. Any message detected on the CAN bus is checked for errors and then matched against filters to see if it should be received and stored in one of the receive registers.

33EPXXXGM3XX/6XX

0

4: When ADDMAEN (ADxCON4<8>) = 1, enabling DMA, only ADCxBUF0 is used.

ADCX MODULE BLOCK DIAGRAM WITH CONNECTION OPTIONS FOR ANX PINS AND OP AMPS

x = Bit is unknown

REGISTER 25-10: PTGADJ: PTG ADJUST REGISTER⁽¹⁾

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			PTGA	DJ<15:8>			
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			PTGA	DJ<7:0>			
bit 7							bit 0
Legend:							
R = Readable I	bit	W = Writable bi	t	U = Unimpler	mented bit, reac	l as '0'	

'0' = Bit is cleared

REGISTER 25-11: PTGL0: PTG LITERAL 0 REGISTER⁽¹⁾

'1' = Bit is set

-n = Value at POR

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			PTGL0	<15:8>			
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			PTGL	0<7:0>			
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	l as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-0 **PTGL0<15:0>:** PTG Literal 0 Register bits

This register holds the 16-bit value to be written to the AD1CHS0 register with the ${\tt PTGCTRL}$ Step command.

Note 1: This register is read-only when the PTG module is executing Step commands (PTGEN = 1 and PTGSTRT = 1).

bit 15-0 **PTGADJ<15:0>:** PTG Adjust Register bits This register holds user-supplied data to be added to the PTGTxLIM, PTGCxLIM, PTGSDLIM or PTGL0 register with the PTGADD command.

Note 1: This register is read-only when the PTG module is executing Step commands (PTGEN = 1 and PTGSTRT = 1).

REGISTER 25-12: PTGQPTR: PTG STEP QUEUE POINTER REGISTER⁽¹⁾

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—		—	_	—	—	—	—
bit 15							bit 8
U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	—			PTGQPTR<4:0	>	
bit 7							bit 0
Legend:							
R = Readable b	bit	W = Writable	bit	U = Unimplemented bit, read as '0'			
-n = Value at P	OR	'1' = Bit is set	t '0' = Bit is cleared x = Bit is unknown			nown	

bit 15-5 Unimplemented: Read as '0'

bit 4-0 **PTGQPTR<4:0>:** PTG Step Queue Pointer Register bits This register points to the currently active Step command in the step queue.

Note 1: This register is read-only when the PTG module is executing Step commands (PTGEN = 1 and PTGSTRT = 1).

REGISTER 25-13: PTGQUEX: PTG STEP QUEUE REGISTER x (x = 0-15)^(1,3)

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			STEP(2x +	· 1)<7:0> (2)			
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
	STEP(2x)<7:0> ⁽²⁾						
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit,	read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-8STEP(2x + 1)<7:0>: PTG Step Queue Pointer Register bits⁽²⁾
A queue location for storage of the STEP(2x +1) command byte.bit 7-0STEP(2x)<7:0>: PTG Step Queue Pointer Register bits⁽²⁾

A queue location for storage of the STEP(2x) command byte.

- **Note 1:** This register is read-only when the PTG module is executing Step commands (PTGEN = 1 and PTGSTRT = 1).
 - 2: Refer to Table 25-1 for the Step command encoding.
 - 3: The Step registers maintain their values on any type of Reset.

30.5 Watchdog Timer (WDT)

For dsPIC33EPXXXGM3XX/6XX/7XX devices, the WDT is driven by the LPRC oscillator. When the WDT is enabled, the clock source is also enabled.

30.5.1 PRESCALER/POSTSCALER

The nominal WDT clock source from LPRC is 32 kHz. This feeds a prescaler that can be configured for either 5-bit (divide-by-32) or 7-bit (divide-by-128) operation. The prescaler is set by the WDTPRE Configuration bit. With a 32 kHz input, the prescaler yields a WDT time-out period (TwDT), as shown in Parameter SY12 in Table 33-21.

A variable postscaler divides down the WDT prescaler output and allows for a wide range of time-out periods. The postscaler is controlled by the WDTPOST<3:0> Configuration bits (FWDT<3:0>), which allow the selection of 16 settings, from 1:1 to 1:32,768. Using the prescaler and postscaler, time-out periods ranging from 1 ms to 131 seconds can be achieved.

The WDT, prescaler and postscaler are reset:

- · On any device Reset
- On the completion of a clock switch, whether invoked by software (i.e., setting the OSWEN bit after changing the NOSCx bits) or by hardware (i.e., Fail-Safe Clock Monitor)
- When a PWRSAV instruction is executed (i.e., Sleep or Idle mode is entered)
- When the device exits Sleep or Idle mode to resume normal operation
- By a CLRWDT instruction during normal execution

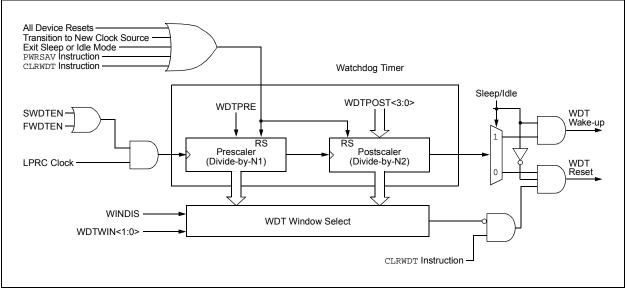
Note: The CLRWDT and PWRSAV instructions clear the prescaler and postscaler counts when executed.

FIGURE 30-2: WDT BLOCK DIAGRAM

30.5.2 SLEEP AND IDLE MODES

If the WDT is enabled, it continues to run during Sleep or Idle modes. When the WDT time-out occurs, the device wakes the device and code execution continues from where the PWRSAV instruction was executed. The corresponding SLEEP or IDLE bit (RCON<3,2>) needs to be cleared in software after the device wakes up.

30.5.3 ENABLING WDT


The WDT is enabled or disabled by the FWDTEN Configuration bit in the FWDT Configuration register. When the FWDTEN Configuration bit is set, the WDT is always enabled.

The WDT can be optionally controlled in software when the FWDTEN Configuration bit has been programmed to '0'. The WDT is enabled in software by setting the SWDTEN control bit (RCON<5>). The SWDTEN control bit is cleared on any device Reset. The software WDT option allows the user application to enable the WDT for critical code segments and disable the WDT during non-critical segments for maximum power savings.

The WDT flag bit, WDTO (RCON<4>), is not automatically cleared following a WDT time-out. To detect subsequent WDT events, the flag must be cleared in software.

30.5.4 WDT WINDOW

The Watchdog Timer has an optional Windowed mode enabled by programming the WINDIS bit in the WDT Configuration register (FWDT<6>). In the Windowed mode (WINDIS = 0), the WDT should be cleared based on the settings in the programmable Watchdog Timer Window select bits (WDTWIN<1:0>).

© 2013-2014 Microchip Technology Inc.

32.0 DEVELOPMENT SUPPORT

The PIC[®] microcontrollers (MCU) and dsPIC[®] digital signal controllers (DSC) are supported with a full range of software and hardware development tools:

- · Integrated Development Environment
- MPLAB[®] X IDE Software
- · Compilers/Assemblers/Linkers
 - MPLAB XC Compiler
 - MPASM[™] Assembler
 - MPLINK[™] Object Linker/ MPLIB[™] Object Librarian
 - MPLAB Assembler/Linker/Librarian for Various Device Families
- · Simulators
 - MPLAB X SIM Software Simulator
- · Emulators
 - MPLAB REAL ICE™ In-Circuit Emulator
- In-Circuit Debuggers/Programmers
 - MPLAB ICD 3
 - PICkit™ 3
- Device Programmers
 - MPLAB PM3 Device Programmer
- Low-Cost Demonstration/Development Boards, Evaluation Kits and Starter Kits
- Third-party development tools

32.1 MPLAB X Integrated Development Environment Software

The MPLAB X IDE is a single, unified graphical user interface for Microchip and third-party software, and hardware development tool that runs on Windows[®], Linux and Mac $OS^{®}$ X. Based on the NetBeans IDE, MPLAB X IDE is an entirely new IDE with a host of free software components and plug-ins for high-performance application development and debugging. Moving between tools and upgrading from software simulators to hardware debugging and programming tools is simple with the seamless user interface.

With complete project management, visual call graphs, a configurable watch window and a feature-rich editor that includes code completion and context menus, MPLAB X IDE is flexible and friendly enough for new users. With the ability to support multiple tools on multiple projects with simultaneous debugging, MPLAB X IDE is also suitable for the needs of experienced users.

Feature-Rich Editor:

- Color syntax highlighting
- Smart code completion makes suggestions and provides hints as you type
- Automatic code formatting based on user-defined rules
- · Live parsing

User-Friendly, Customizable Interface:

- Fully customizable interface: toolbars, toolbar buttons, windows, window placement, etc.
- · Call graph window
- Project-Based Workspaces:
- Multiple projects
- Multiple tools
- · Multiple configurations
- · Simultaneous debugging sessions

File History and Bug Tracking:

- · Local file history feature
- Built-in support for Bugzilla issue tracker

DC CHARACTERISTICS			$\begin{tabular}{lllllllllllllllllllllllllllllllllll$					
Parameter No.	Тур. ⁽²⁾	Max.	Doze Ratio	Units	Conditions			
Doze Current (IDC	DZE) ⁽¹⁾							
DC73a	20	53	1:2	mA	40%0	3.3V	70 MIPS	
DC73g	8	30	1:128	mA	-40°C			
DC70a	19	53	1:2	mA	+25°C	3.3V	60 MIPS	
DC70g	8	30	1:128	mA	+25 C			
DC71a	20	53	1:2	mA	+85°C	3.3V	60 MIPS	
DC71g	10	30	1:128	mA	+00 C			
DC72a	25	42	1:2	mA	+125°C	3.3V	50 MIPS	
DC72g	12	30	1:128	mA	+125 C			

TABLE 33-9: DC CHARACTERISTICS: DOZE CURRENT (IDOZE)

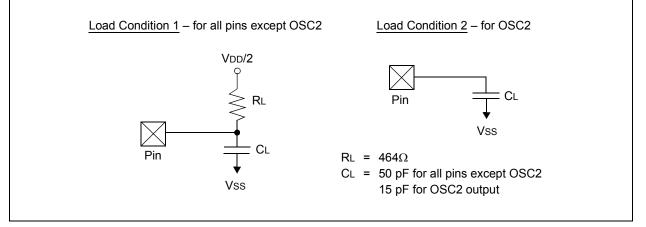
Note 1: IDOZE is primarily a function of the operating voltage and frequency. Other factors, such as I/O pin loading and switching rate, oscillator type, internal code execution pattern and temperature, also have an impact on the current consumption. The test conditions for all IDOZE measurements are as follows:

• Oscillator is configured in EC mode and external clock is active, OSC1 is driven with external square wave from rail-to-rail (EC clock overshoot/undershoot < 250 mV required)

- CLKO is configured as an I/O input pin in the Configuration Word
- · All I/O pins are configured as outputs and driving low
- MCLR = VDD, WDT and FSCM are disabled
- CPU, SRAM, program memory and data memory are operational
- No peripheral modules are operating or being clocked (defined PMDx bits are all ones)
- CPU executing

```
while(1)
{
NOP();
}
```

- · JTAG is disabled
- 2: Data in the "Typical" column is at 3.3V, +25°C unless otherwise specified.


33.2 AC Characteristics and Timing Parameters

This section defines the dsPIC33EPXXXGM3XX/6XX/ 7XX AC characteristics and timing parameters.

TABLE 33-14: TEMPERATURE AND VOLTAGE SPECIFICATIONS - AC

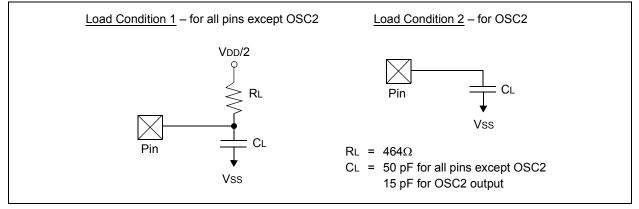
	Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated)			
AC CHARACTERISTICS	Operating temperature -40°C ≤ TA ≤ +85°C for Industrial -40°C ≤ TA ≤ +125°C for Extended Operating voltage VDD range as described in Section 33.1 "DC Characteristics ".			

FIGURE 33-1: LOAD CONDITIONS FOR DEVICE TIMING SPECIFICATIONS

TABLE 33-15: CAPACITIVE LOADING REQUIREMENTS ON OUTPUT PINS

Param No.	Symbol	Characteristic	Min.	Тур.	Max.	Units	Conditions
DO50	Cosco	OSC2 Pin	_	—	15	pF	In XT and HS modes, when external clock is used to drive OSC1
DO56	Cio	All I/O Pins and OSC2	—	—	50	pF	EC mode
DO58	Св	SCLx, SDAx	_	—	400	pF	In l ² C™ mode

34.2 AC Characteristics and Timing Parameters


The information contained in this section defines dsPIC33EPXXXGM3XX/6XX/7XX AC characteristics and timing parameters for high-temperature devices. However, all AC timing specifications in this section are the same as those in **Section 33.2 "AC Characteristics and Timing Parameters"**, with the exception of the parameters listed in this section.

Parameters in this section begin with an H, which denotes High temperature. For example, Parameter OS53 in Section 33.2 "AC Characteristics and Timing Parameters" is the Industrial and Extended temperature equivalent of HOS53.

TABLE 34-10: TEMPERATURE AND VOLTAGE SPECIFICATIONS - AC

AC CHARACTERISTICS	Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +150^{\circ}C$ Operating voltage VDD range as described in Table 34-1.	
--------------------	--	--

FIGURE 34-1: LOAD CONDITIONS FOR DEVICE TIMING SPECIFICATIONS

