

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Active
Core Processor	dsPIC
Core Size	16-Bit
Speed	60 MIPs
Connectivity	CANbus, I ² C, IrDA, LINbus, QEI, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, I ² S, Motor Control PWM, POR, PWM, WDT
Number of I/O	85
Program Memory Size	512KB (170K x 24)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	48K x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 49x10b/12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	100-TQFP
Supplier Device Package	100-TQFP (14x14)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/dspic33ep512gm710-e-pf

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

4.1.1 PROGRAM MEMORY ORGANIZATION

The program memory space is organized in wordaddressable blocks. Although it is treated as 24 bits wide, it is more appropriate to think of each address of the program memory as a lower and upper word, with the upper byte of the upper word being unimplemented. The lower word always has an even address, while the upper word has an odd address (Figure 4-4).

Program memory addresses are always word-aligned on the lower word and addresses are incremented or decremented by two during code execution. This arrangement provides compatibility with data memory space addressing and makes data in the program memory space accessible.

4.1.2 INTERRUPT AND TRAP VECTORS

All dsPIC33EPXXXGM3XX/6XX/7XX devices reserve the addresses between 0x000000 and 0x000200 for hard-coded program execution vectors. A hardware Reset vector is provided to redirect code execution from the default value of the PC on device Reset to the actual start of code. A GOTO instruction is programmed by the user application at address, 0x000000 of Flash memory, with the actual address for the start of code at address, 0x000002 of Flash memory.

A more detailed discussion of the interrupt vector tables is provided in **Section 7.1** "Interrupt Vector **Table**".

FIGURE 4-4: PROGRAM MEMORY ORGANIZATION

4.2 Data Address Space

The dsPIC33EPXXXGM3XX/6XX/7XX CPU has a separate 16-bit wide data memory space. The Data Space is accessed using separate Address Generation Units (AGUs) for read and write operations. The data memory maps, which are presented by device family and memory size, are shown in Figure 4-5 through Figure 4-7.

All Effective Addresses (EAs) in the data memory space are 16 bits wide and point to bytes within the Data Space. This arrangement gives a Base Data Space address range of 64 Kbytes or 32K words.

The Base Data Space address is used in conjunction with a Data Space Read or Write Page register (DSRPAG or DSWPAG) to form an Extended Data Space, which has a total address range of 16 Mbytes.

dsPIC33EPXXXGM3XX/6XX/7XX devices implement up to 52 Kbytes of data memory (4 Kbytes of data memory for Special Function Registers and up to 48 Kbytes of data memory for RAM). If an EA points to a location outside of this area, an all zero word or byte is returned.

4.2.1 DATA SPACE WIDTH

The data memory space is organized in byteaddressable, 16-bit wide blocks. Data is aligned in data memory and registers as 16-bit words, but all Data Space EAs resolve to bytes. The Least Significant Bytes (LSBs) of each word have even addresses, while the Most Significant Bytes (MSBs) have odd addresses.

4.2.2 DATA MEMORY ORGANIZATION AND ALIGNMENT

To maintain backward compatibility with PIC[®] MCU devices and improve Data Space memory usage efficiency, the dsPIC33EPXXXGM3XX/6XX/7XX instruction set supports both word and byte operations. As a consequence of byte accessibility, all Effective Address calculations are internally scaled to step through word-aligned memory. For example, the core recognizes that Post-Modified Register Indirect Addressing mode [Ws++] results in a value of Ws + 1 for byte operations and Ws + 2 for word operations.

A data byte read, reads the complete word that contains the byte, using the LSb of any EA to determine which byte to select. The selected byte is placed onto the LSB of the data path. That is, data memory and registers are organized as two parallel, byte-wide entities with shared (word) address decode but separate write lines. Data byte writes only write to the corresponding side of the array or register that matches the byte address. All word accesses must be aligned to an even address. Misaligned word data fetches are not supported, so care must be taken when mixing byte and word operations, or translating from 8-bit MCU code. If a misaligned read or write is attempted, an address error trap is generated. If the error occurred on a read, the instruction underway is completed. If the error occurred on a write, the instruction is executed but the write does not occur. In either case, a trap is then executed, allowing the system and/or user application to examine the machine state prior to execution of the address Fault.

All byte loads into any W register are loaded into the LSB; the MSB is not modified.

A Sign-Extend (SE) instruction is provided to allow user applications to translate 8-bit signed data to 16-bit signed values. Alternatively, for 16-bit unsigned data, user applications can clear the MSB of any W register by executing a Zero-Extend (ZE) instruction on the appropriate address.

4.2.3 SFR SPACE

The first 4 Kbytes of the Near Data Space, from 0x0000 to 0x0FFF, is primarily occupied by Special Function Registers (SFRs). These are used by the dsPIC33EPXXXGM3XX/6XX/7XX core and peripheral modules for controlling the operation of the device.

SFRs are distributed among the modules that they control and are generally grouped together by module. Much of the SFR space contains unused addresses; these are read as '0'.

Note: The actual set of peripheral features and interrupts varies by the device. Refer to the corresponding device tables and pinout diagrams for device-specific information.

4.2.4 NEAR DATA SPACE

The 8-Kbyte area, between 0x0000 and 0x1FFF, is referred to as the Near Data Space. Locations in this space are directly addressable through a 13-bit absolute address field within all memory direct instructions. Additionally, the whole Data Space is addressable using MOV instructions, which support Memory Direct Addressing mode with a 16-bit address field, or by using Indirect Addressing mode using a Working register as an Address Pointer.

IADEI																		
SFR Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
IPC11	0856	_	T6IP2	T6IP1	T6IP0	_	-	-	_	_	PMPIP2 ⁽¹⁾	PMPIP1 ⁽¹⁾	PMPIP0 ⁽¹⁾	-	OC8IP2	OC8IP1	OC8IP0	4444
IPC12	0858	_	T8IP2	T8IP1	T8IP0	_	MI2C2IP2	MI2C2IP1	MI2C2IP0	_	SI2C2IP2	SI2C2IP1	SI2C2IP0	_	T7IP2	T7IP1	T7IP0	4444
IPC13	085A	_	C2RXIP2	C2RXIP1	C2RXIP0	_	INT4IP2	INT4IP1	INT4IP0	_	INT3IP2	INT3IP1	INT3IP0	_	T9IP2	T9IP1	T9IP0	4444
IPC14	085C	_	DCIEIP2	DCIEIP1	DCIEIP0	_	QEI1IP2	QEI1IP2	QEI1IP0	_	PCEPIP2	PCEPIP1	PCEPIP0	_	C2IP2	C2IP1	C2IP0	4444
IPC15	085E	_	FLT1IP2	FLT1IP1	FLT1IP0	_	RTCCIP2(2)	RTCCIP1(2)	RTCCIP0(2)	_	_	_	_	_	DCIIP2	DCIIP1	DCIIP0	0404
IPC16	0860	_	CRCIP2	CRCIP1	CRCIP0	_	U2EIP2	U2EIP1	U2EIP0	_	U1EIP2	U1EIP1	U1EIP0	_	FLT2IP2	FLT2IP1	FLT2IP0	4440
IPC17	0862	_	C2TXIP2	C2TXIP1	C2TXIP0	_	C1TXIP2	C1TXIP1	C1TXIP0	_	_	_	_	_	_	_	_	4400
IPC18	0864	_	QEI2IP2	QEI2IP1	QEI2IP0	_	FLT3IP2	FLT3IP1	FLT3IP0	_	PCESIP2	PCESIP1	PCESIP0	_	_	_	_	4040
IPC19	0866	_	_	_	_	_	_	_	_		CTMUIP2	CTMUIP1	CTMUIP0	—	FLT4IP2	FLT4IP1	FLT4IP0	4000
IPC20	0868	_	U3TXIP2	U3TXIP1	U3TXIP0	_	U3RXIP2	U3RXIP1	U3RXIP0	_	U3EIP2	U3EIP1	U3EIP0	_	_	_	_	0000
IPC21	086A	_	U4EIP2	U4EIP1	U4EIP0	_	_	_	_		_	_	_	—	_	_	_	0000
IPC22	086C	_	SPI3IP2	SPI3IP1	SPI3IP0	_	SPI3EIP2	SPI3EIP1	SPI3EIP0		U4TXIP2	U4TXIP1	U4TXIP0	—	U4RXIP2	U4RXIP1	U4RXIP0	0000
IPC23	086E	_	PGC2IP2	PGC2IP1	PGC2IP0	_	PWM1IP2	PWM1IP1	PWM1IP0		_	_	_	—	_	_	_	4400
IPC24	0870	_	PWM6IP2	PWM6IP1	PWM6IP0	_	PWM5IP2	PWM5IP1	PWM5IP0		PWM4IP2	PWM4IP1	PWM4IP0	—	PWM3IP2	PWM3IP1	PWM3IP0	4444
IPC35	0886	_	JTAGIP2	JTAGIP1	JTAGIP0	_	ICDIP2	ICDIP1	ICDIP0		_	_	_	—	_	_	_	4400
IPC36	0888	_	PTG0IP2	PTG0IP1	PTG0IP0	_	PTGWDTIP2	PTGWDTIP1	PTGWDTIP0		PTGSTEPIP2	PTGSTEPIP1	PTGSTEPIP0	—	_	_	_	4440
IPC37	088A	_	-	—	—	_	PTG3IP2	PTG3IP1	PTG3IP0	_	PTG2IP2	PTG2IP1	PTG2IP0	—	PTG1IP2	PTG1IP1	PTG1IP0	0445
INTTREG	08C8	_	-	_	_	ILR3	ILR2	ILR1	ILR0	VECNUM7	VECNUM6	VECNUM5	VECNUM4	VECNUM3	VECNUM2	VECNUM1	VECNUM0	0000

TABLE 4-2: INTERRUPT CONTROLLER REGISTER MAP FOR dsPIC33EPXXXGM6XX/7XX DEVICES (CONTINUED)

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note 1: The PMPIF/PMPIE/PMPIPx flags are not available on 44-pin devices.

2: The RTCCIF/RTCCIE/RTCCIPx flags are not available on 44-pin devices.

TABLE 4-10: PWM GENERATOR 2 REGISTER MAP

SFR Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
PWMCON2	0C40	FLTSTAT	CLSTAT	TRGSTAT	FLTIEN	CLIEN	TRGIEN	ITB	MDCS	DTC1	DTC0	DTCP	-	MTBS	CAM	XPRES	IUE	0000
IOCON2	0C42	PENH	PENL	POLH	POLL	PMOD1	PMOD0	OVRENH	OVRENL	OVRDAT1	OVRDAT0	FLTDAT1	FLTDAT0	CLDAT1	CLDAT0	SWAP	OSYNC	C000
FCLCON2	0C44	IFLTMOD	CLSRC4	CLSRC3	CLSRC2	CLSRC1	CLSRC0	CLPOL	CLMOD	FLTSRC4	FLTSRC3	FLTSRC2	FLTSRC1	FLTSRC0	FLTPOL	FLTMOD1	FLTMOD0	00F8
PDC2	0C46								PDC2	<15:0>								0000
PHASE2	0C48								PHASE	2<15:0>								0000
DTR2	0C4A	_	- DTR2<13:0> 000											0000				
ALTDTR2	0C4C	_	ALTDTR2<13:0> 01												0000			
SDC2	0C4E								SDC2	<15:0>								0000
SPHASE2	0C50								SPHAS	E2<15:0>								0000
TRIG2	0C52								TRGCN	1P<15:0>								0000
TRGCON2	0C54	TRGDIV3	TRGDIV2	TRGDIV1	TRGDIV0	_	_	_	_	_	_	TRGSTRT5	TRGSTRT4	TRGSTRT3	TRGSTRT2	TRGSTRT1	TRGSTRT0	0000
PWMCAP2	0C78								PWMCA	P2<15:0>								0000
LEBCON2	0C5A	PHR	PHF	PLR	PLF	FLTLEBEN	CLLEBEN	_	_	_	_	BCH	BCL	BPHH	BPHL	BPLH	BPLL	0000
LEBDLY2	0C5C	_	LEB<11:0> 0(0000			
AUXCON2	0C5E	_		—	—	BLANKSEL3	BLANKSEL2	BLANKSEL1	BLANKSEL0		_	CHOPSEL3	CHOPSEL2	CHOPSEL1	CHOPSEL0	CHOPHEN	CHOPLEN	0000

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-11: PWM GENERATOR 3 REGISTER MAP

SFR Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
PWMCON3	0C60	FLTSTAT	CLSTAT	TRGSTAT	FLTIEN	CLIEN	TRGIEN	ITB	MDCS	DTC1	DTC0	DTCP		MTBS	CAM	XPRES	IUE	0000
IOCON3	0C62	PENH	PENL	POLH	POLL	PMOD1	PMOD0	OVRENH	OVRENL	OVRDAT1	OVRDAT0	FLTDAT1	FLTDAT0	CLDAT1	CLDAT0	SWAP	OSYNC	C000
FCLCON3	0C64	IFLTMOD	CLSRC4	CLSRC3	CLSRC2	CLSRC1	CLSRC0	CLPOL	CLMOD	FLTSRC4	FLTSRC3	FLTSRC2	FLTSRC1	FLTSRC0	FLTPOL	FLTMOD1	FLTMOD0	00F8
PDC3	0C66								PDC3	<15:0>								0000
PHASE3	0C68				PHASE3<15:0> 0000									0000				
DTR3	0C6A	_	DTR3<13:0> 00											0000				
ALTDTR3	0C6C	ALTDTR3<13:0>													0000			
SDC3	0C6E	SDC3<15:0>												0000				
SPHASE3	0C70								SPHASE	E3<15:0>								0000
TRIG3	0C72								TRGCM	IP<15:0>								0000
TRGCON3	0C74	TRGDIV3	TRGDIV2	TRGDIV1	TRGDIV0			_	_	_		TRGSTRT5	TRGSTRT4	TRGSTRT3	TRGSTRT2	TRGSTRT1	TRGSTRT0	0000
PWMCAP3	0C78								PWMCA	P3<15:0>								0000
LEBCON3	0C7A	PHR	PHF	PLR	PLF	FLTLEBEN CLLEBEN BCH BCL BPHH BPHL BPLH BPLL 000									0000			
LEBDLY3	0C7C	, LEB<11:0>												0000				
AUXCON3	0C7E	_	_	_	_	BLANKSEL3 BLANKSEL2 BLANKSEL1 BLANKSEL0 — CHOPSEL3 CHOPSEL2 CHOPSEL1 CHOPSEL0 CHOPHEN CHOPLEN 000								0000				

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-40: PMD REGISTER MAP FOR dsPIC33EPXXXGM3XX DEVICES

SFR Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets	
PMD1	0760	T5MD	T4MD	T3MD	T2MD	T1MD	QEI1MD	PWMMD	DCIMD	I2C1MD	U2MD	U1MD	SPI2MD	SPI1MD	—	—	AD1MD	0000	
PMD2	0762	IC8MD	IC7MD	IC6MD	IC5MD	IC4MD	IC3MD	IC2MD	IC1MD	OC8MD	OC7MD	OC6MD	OC5MD	OC4MD	OC3MD	OC2MD	OC1MD	0000	
PMD3	0764	T9MD	T8MD	T7MD	T6MD	_	CMPMD	RTCCMD ⁽¹⁾	PMPMD	CRCMD	_	QEI2MD	_	U3MD	_	I2C2MD	ADC2MD	0000	
PMD4	0766	_	_	_	_	_	_	_	_	_	_	U4MD	_	REFOMD	CTMUMD	_	_	0000	
PMD6	076A	_	_	PWM6MD	PWM5MD	PWM4MD	PWM3MD	PWM2MD	PWM1MD	_	_	_	_	_	_	_	SPI3MD	0000	
													DMA0MD						
	0760												DMA1MD	DTOMD					
PIVID7	PMD7 076C —	_	_		_	_	_	_	_	- -	_	_	DMA2MD	PIGND	_	_	_	0000	
														DMA3MD					

 Legend:
 — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

 Note 1:
 The RTCCMD bit is not available on 44-pin devices.

R/W-0	R/W-0	R/W-1	R/W-1	R/W-0	R/W-0	R/W-0	R/W-0			
ROI	DOZE2 ⁽³⁾	DOZE1 ⁽³⁾	DOZE0 ⁽³⁾	DOZEN ^(1,4)	FRCDIV2	FRCDIV1	FRCDIV0			
bit 15							bit 8			
R/W-0	R/W-1	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
PLLPOST1	PLLPOST0	—	PLLPRE4	PLLPRE3	PLLPRE2	PLLPRE1	PLLPRE0			
bit 7							bit 0			
Legend:										
R = Readable	bit	W = Writable	bit	U = Unimplen	nented bit, read	ted bit, read as '0'				
-n = Value at	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	nown			
bit 15	ROI: Recover 1 = Interrupts 0 = Interrupts	on Interrupt b will clear the E will have no et	it OOZEN bit ffect on the D0	DZEN bit						
bit 14-12	DOZE<2:0>:	Processor Clo	ck Reduction	Select bits ⁽³⁾						
	110 = FCY div 101 = FCY div 100 = FCY div 011 = FCY div 011 = FCY div 010 = FCY div 001 = FCY div 000 = FCY div	vided by 64 vided by 32 vided by 16 vided by 8 (defa vided by 4 vided by 2 vided by 1	ault)							
bit 11	DOZEN: Doz	e Mode Enable	e bit ^(1,4)							
	1 = DOZE<2: 0 = Processo	0> field specifier r clock and per	es the ratio be ipheral clock i	etween the peri ratio are forced	pheral clocks a to 1:1	nd the process	or clocks			
bit 10-8	FRCDIV<2:0:	>: Internal Fast	RC Oscillator	Postscaler bit	5					
	111 = FRC di 110 = FRC di 101 = FRC di 100 = FRC di 011 = FRC di 010 = FRC di 001 = FRC di 000 = FRC di	vided by 256 vided by 64 vided by 32 vided by 16 vided by 8 vided by 4 vided by 2 vided by 1 (der	fault)							
bit 7-6	PLLPOST<1:	:0>: PLL VCO	Output Divide	r Select bits (al	so denoted as '	N2', PLL posts	caler)			
	11 = Output o 10 = Reserve 01 = Output o 00 = Output o	livided by 8 d livided by 4 (de livided by 2	efault)							
bit 5	Unimplemen	ted: Read as '	0'							
Note 1: Th 2: Th 3: Th DC	is bit is cleared is register resets e DOZE<2:0> b DZE<2:0> are ig	when the ROI I s only on a Pov its can only be nored.	bit is set and a ver-on Reset written to whe	an interrupt occ (POR). en the DOZEN	urs. bit is clear. If D [.]	OZEN = 1, any	writes to			

REGISTER 9-2: CLKDIV: CLOCK DIVISOR REGISTER⁽²⁾

4: The DOZEN bit cannot be set if DOZE<2:0> = 000. If DOZE<2:0> = 000, any attempt by user software to set the DOZEN bit is ignored.

Peripheral Pin Select Input Register Value	Input/ Output	Pin Assignment		Peripheral Pin Select Input Register Value	Input/ Output	Pin Assignment
010 1001	I/O	RP41		101 0101	—	_
010 1010	I/O	RP42		101 0110	—	_
010 1011	I/O	RP43		101 0111	—	_
101 1000	_	—		110 1100	—	—
101 1001		—		110 1101	—	—
101 1010	—	—		110 1110	—	_
101 1011				110 1111		—
101 1100		—		111 0000	I	RPI112
101 1101		—		111 0001	I/O	RP113
101 1110	I	RPI94		111 0010	—	—
101 1111	I	RPI95		111 0011	_	—
110 0000	I	RPI96		111 0100	—	—
110 0001	I/O	RP97		111 0101		—
110 0010		—		111 0110	I/O	RP118
110 0011		—		111 0111	I	RPI119
110 0100				111 1000	I/O	RP120
110 0101		—		111 1001	I	RPI121
110 0110		—		111 1010	—	—
110 0111		—		111 1011	—	—
110 1000	_	_] [111 1100	Ι	RPI124
110 1001	—	_]	111 1101	I/O	RP125
110 1010	—			111 1110	I/O	RP126
110 1011	—	_		111 1111	I/O	RP127
Logond: Shaded row	indicato	DDS Input register valu	ioc tha	t are unimplomented		

TABLE 11-2: INPUT PIN SELECTION FOR SELECTABLE INPUT SOURCES (CONTINUED)

Legend: Shaded rows indicate PPS Input register values that are unimplemented.

Note 1: See Section 11.4.4.1 "Virtual Connections" for more information on selecting this pin assignment.

|--|

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0				
—	—	—	—	—	—	—	—				
bit 15							bit 8				
U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0				
				T2CKR<6:0>	>						
bit 7	·						bit 0				
Legend:											
R = Readab	le bit	W = Writable	bit	U = Unimpler	mented bit, read	l as '0'					
-n = Value a	t POR	'1' = Bit is set		'0' = Bit is cleared x = Bit is unknown							
bit 15-7	Unimpleme	nted: Read as '	0'								
bit 6-0	T2CKR<6:0>	-: Assign Timer	2 External Clo	ock (T2CK) to t	he Correspondi	ng RPn pin bits	;				
	(see Table 12	1-2 for input pin	selection num	nbers)							
	1111100 = Input tied to RPI124										
	•										
	•										

0000001 = Input tied to CMP1 0000000 = Input tied to Vss

© 2013-2014 Microchip Technology Inc.

REGISTER 11-9:	RPINR12: PERIPHERAL PIN SELECT INPUT REGISTER 12

U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
				FLT2R<6:0>			
bit 15							bit 8
U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
_				FLT1R<6:0>			
bit 7							bit 0
Legend:							
R = Readable	e bit	W = Writable	bit	U = Unimplen	nented bit, rea	ad as '0'	
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkı	nown
bit 15	Unimplemer	ted: Read as '	0'				
bit 14-8	FLT2R<6:0> (see Table 11	: Assign PWM I -2 for input pin	Fault 2 (FLT2 selection nur) to the Corresp nbers)	onding RPn F	Pin bits	
	1111100 = 	nput tied to RPI	124				
	•						
	•						
	• 000001 = U	nout tied to CM	P1				
	0000000 = 1	nput tied to Vss	;				
bit 7	Unimplemer	ted: Read as '	0'				
bit 6-0	FLT1R<6:0>	: Assign PWM I	Fault 1 (FLT1) to the Corresp	onding RPn F	Pin bits	
	(see Table 11	-2 for input pin	selection nur	nbers)	0		
	1111100 = 	nput tied to RPI	124				
	•						
	•						
	•	oput tied to CM	P1				
	0000000 = 1	nput tied to Vss	;				

-0 R/W-0	R/W-0 HOME1R<6:0	R/W-0	R/W-0	R/W-0
	HOME1R<6.0			
		>		
				bit 8
-0 R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
	INDX1R<6:0>	>		
				bit 0
table bit	U = Unimplen	mented bit, rea	ad as '0'	
is set	'0' = Bit is cle	ared	x = Bit is unki	nown
d as '0'				
n QEI1 HOME (HO ut pin selection nut	OME1) to the Co mbers)	orresponding I	RPn Pin bits	
o RPI124				
o CMP1				
o Vss				
d as '0'				
QEI1 INDEX (IND ut pin selection nu	X1) to the Corre	esponding RP	n Pin bits	
o RPI124	/			
D UMP1 O VSS				
	-0 R/W-0 -0 R/W-0 itable bit is set d as '0' In QEI1 HOME (Ho ut pin selection nu to RPI124 to CMP1 to Vss d as '0' QEI1 INDEX (IND ut pin selection nu to RPI124 to CMP1 to Vss	-0 R/W-0 R/W-0 INDX1R<6:0: itable bit U = Unimpler is set '0' = Bit is cle d as '0' INDELTHOME (HOME1) to the Cou ut pin selection numbers) to RPI124 to CMP1 to VSS d as '0' QEI1 INDEX (INDX1) to the Correct ut pin selection numbers) to RPI124	-0 R/W-0 R/W-0 INDX1R<6:0> itable bit U = Unimplemented bit, reatis set is set '0' = Bit is cleared d as '0' n QEI1 HOME (HOME1) to the Corresponding Fut pin selection numbers) to RPI124 to CMP1 to Vss d as '0' QEI1 INDEX (INDX1) to the Corresponding RP ut pin selection numbers) to RPI124	-0 R/W-0 R/W-0 R/W-0 R/W-0 INDX1R<6:0> itable bit U = Unimplemented bit, read as '0' is set '0' = Bit is cleared x = Bit is unkund d as '0' n QEI1 HOME (HOME1) to the Corresponding RPn Pin bits ut pin selection numbers) to RPI124 to CMP1 to Vss d as '0' QEI1 INDEX (INDX1) to the Corresponding RPn Pin bits ut pin selection numbers) to RPI124

REGISTER 11-11: RPINR15: PERIPHERAL PIN SELECT INPUT REGISTER 15

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	U-0	U-0
PHR	PHF	PLR	PLF	FLTLEBEN	CLLEBEN		
bit 15							bit 8
		DANA	DMU O	D 444 0			DAMA
0-0	0-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
		BCH	BCL	врнн	BPHL	BPLH	BPLL
DIL 7							DILU
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimpler	nented bit, read	as '0'	
-n = Value at P	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	Iown
bit 15	PHR: PWMxH	HRising Edge	Frigger Enabl	e bit			
	1 = Rising ed	ge of PWMxH v	will trigger the	e Leading-Edge	Blanking count	er	
	0 = Leading-E	Edge Blanking i	gnores the ris	sing edge of PV	VMxH		
bit 14	PHF: PWMxH	I Falling Edge	Trigger Enabl	e bit		1	
	\perp = Falling ed 0 = Leading-F	dae Blanking i	will trigger the	e Leading-Eage Illing edge of P\	e Blanking coun MMxH	ter	
bit 13	PLR: PWMxL	. Rising Edge T	rigger Enable	e bit			
	1 = Rising edg	ge of PWMxL v	vill trigger the	Leading-Edge	Blanking count	er	
	0 = Leading-E	Edge Blanking i	gnores the ris	sing edge of PV	VMxL		
bit 12	PLF: PWMxL	Falling Edge T	rigger Enable	e bit			
	1 = Falling ed	lge of PWMxL \ Edge Blanking i	will trigger the	e Leading-Edge	Blanking count	er	
bit 11	FLTLEBEN: F	Fault Input Lea	dina-Edae Bla	anking Enable t	oit		
2	1 = Leading-E	Edge Blanking i	s applied to t	he selected Fai	ult input		
	0 = Leading-E	Edge Blanking i	s not applied	to the selected	Fault input		
bit 10	CLLEBEN: C	urrent-Limit Le	ading-Edge E	Blanking Enable	e bit		
	1 = Leading-E	Edge Blanking i Edge Blanking i	s applied to t s not applied	he selected cur to the selected	rent-limit input	out	
bit 9-6	Unimplemen	ted: Read as ')'				
bit 5	BCH: Blankin	g in Selected E	lanking Sign	al High Enable	bit ⁽¹⁾		
	1 = State blar	hking (of curren	t-limit and/or	Fault input sigr	als) when seled	ted blanking si	ignal is high
	0 = No blanki	ng when select	ed blanking s	signal is high			
bit 4	BCL: Blanking	g in Selected B	lanking Signa	al Low Enable b	Dit ⁽¹⁾		
	1 = State blar 0 = No blanki	ng when select	t-limit and/or ed blanking s	Fault input signal is low	ials) when seled	ted blanking si	ignal is low
bit 3	BPHH: Blank	ing in PWMxH	High Enable	bit			
	1 = State blar 0 = No blanki	nking (of curren ng when PWM	t-limit and/or kH output is h	Fault input sign ìigh	als) when PWN	1xH output is hi	igh
bit 2	BPHL: Blanki	ing in PWMxH	Low Enable b	bit			
	1 = State blan 0 = No blanki	nking (of curren ng when PWM	t-limit and/or kH output is l	Fault input sign ow	als) when PWM	1xH output is lo	W
bit 1	BPLH: Blanki	ing in PWMxL I	High Enable b	pit			
	1 = State blan 0 = No blanki	nking (of curren ng when PWM	t-limit and/or kL output is h	Fault input sigr igh	als) when PWM	1xL output is hi	gh
bit 0	BPLL: Blanki	ng in PWMxL L	ow Enable b	it			
	1 = State blar 0 = No blanki	nking (of curren ng when PWM	t-limit and/or kL output is lo	Fault input sigr	als) when PWM	1xL output is lo	W

REGISTER 16-22: LEBCONX: LEADING-EDGE BLANKING CONTROL REGISTER x

Note 1: The blanking signal is selected via the BLANKSELx bits in the AUXCONx register.

21.3 CAN Control Registers

REGISTER 21-1: CxCTRL1: CANx CONTROL REGISTER 1

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-1	R/W-0	R/W-0
	—	CSIDL	ABAT	CANCKS	REQOP2	REQOP1	REQOP0
bit 15							bit 8
R-1	R-0	R-0	U-0	R/W-0	U-0	U-0	R/W-0
OPMODE2	OPMODE1	OPMODE0	—	CANCAP	—	—	WIN
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable b	bit	U = Unimpler	mented bit, read	as '0'	
-n = Value at P	OR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	iown
bit 15-14	Unimplemen	ted: Read as '0	3				

bit 13	CSIDL: CANx Stop in Idle Mode bit 1 = Discontinues module operation when device enters Idle mode 0 = Continues module operation in Idle mode
bit 12	 ABAT: Abort All Pending Transmissions bit 1 = Signals all transmit buffers to abort transmission 0 = Module will clear this bit when all transmissions are aborted
bit 11	CANCKS: CANx Module Clock (FCAN) Source Select bit 1 = FCAN is equal to 2 * FP 0 = FCAN is equal to FP
bit 10-8	REQOP<2:0>: Request Operation Mode bits 111 = Set Listen All Messages mode 110 = Reserved 101 = Reserved 100 = Set Configuration mode 011 = Set Listen Only mode 010 = Set Loopback mode 001 = Set Disable mode 000 = Set Normal Operation mode
bit 7-5	OPMODE<2:0>: Operation Mode bits 111 = Module is in Listen All Messages mode 110 = Reserved 101 = Reserved 100 = Module is in Configuration mode 011 = Module is in Listen Only mode 010 = Module is in Loopback mode 001 = Module is in Disable mode 000 = Module is in Normal Operation mode
bit 4	Unimplemented: Read as '0'
bit 3	CANCAP: CANx Message Receive Timer Capture Event Enable bit 1 = Enables input capture based on CAN message receive 0 = Disables CAN capture
bit 2-1 bit 0	Unimplemented: Read as '0' WIN: SFR Map Window Select bit 1 = Uses filter window 0 = Uses buffer window

22.1 CTMU Control Registers

REGISTER 22-1: CTMUCON1: CTMU CONTROL REGISTER 1

R/W-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
CTMUEN		CTMUSIDL	TGEN	EDGEN	EDGSEQEN	IDISSEN ⁽¹⁾	CTTRIG
bit 15							bit 8
U-0	U-0 U-0 U-0 U-0 U-0 U-0 U						
_		—	_	_	—	—	
bit 7							bit 0
Legend:							
R = Readab	le bit	W = Writable I	oit	U = Unimplen	nented bit, read	as '0'	
-n = Value at	t POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkn	own
bit 15	CTMUEN: C ⁻ 1 = Module i 0 = Module i	TMU Enable bit s enabled s disabled					
bit 14	Unimplemen	ted: Read as 'o)'				
bit 13	CTMUSIDL:	CTMU Stop in I	dle Mode bit				
	1 = Discontir 0 = Continue	nues module op es module opera	eration when c ition in Idle mo	levice enters lo de	lle mode		
bit 12	TGEN: Time	Generation Ena	ble bit				
	1 = Enables 0 = Disables	edge delay gen edge delay ger	eration neration				
bit 11	EDGEN: Edg	e Enable bit					
	1 = Hardwar 0 = Software	e modules are ι e is used to trigg	ised to trigger er edges (man	edges (TMRx, lual set of EDG	CTEDx, etc.) SxSTAT)		
bit 10	EDGSEQEN	Edge Sequence	e Enable bit				
	1 = Edge 1 e 0 = No edge	event must occu sequence is ne	r before Edge eded	2 event can oc	cur		
bit 9	IDISSEN: An	alog Current Sc	urce Control b	oit ⁽¹⁾			
	 1 = Analog current source output is grounded 0 = Analog current source output is not grounded 						
bit 8	CTTRIG: ADCx Trigger Control bit						
	1 = CTMU tr 0 = CTMU de	iggers ADCx sta oes not trigger A	art of conversio ADCx start of c	on conversion			
bit 7-0	Unimplemen	nted: Read as '0)'				
Note 1: T	 Note 1: The ADCx module Sample-and-Hold (S&H) capacitor is not automatically discharged between sample/conversion cycles. Any software using the ADCx as part of a capacitance measurement must 						

sample/conversion cycles. Any software using the ADCx as part of a capacitance measurement must discharge the ADCx capacitor before conducting the measurement. The IDISSEN bit, when set to '1', performs this function. The ADCx must be sampling while the IDISSEN bit is active to connect the discharge sink to the capacitor array.

REGISTER 27-8: ALRMVAL (WHEN ALRMPTR<1:0> = 10): ALARM MONTH AND DAY VALUE REGISTER⁽¹⁾

U-0	U-0	U-0	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
—	—	—	MTHTEN0	MTHONE3	MTHONE2	MTHONE1	MTHONE0
bit 15							bit 8

U-0	U-0	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
—	—	DAYTEN1	DAYTEN0	DAYONE3	DAYONE2	DAYONE1	DAYONE0
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read a	as 'O'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-13 Unimplemented: Read as '0'

- bit 12 MTHTEN0: Binary Coded Decimal Value of Month's Tens Digit bit Contains a value of 0 or 1.
- bit 11-8 **MTHONE<3:0>:** Binary Coded Decimal Value of Month's Ones Digit bits Contains a value from 0 to 9.
- bit 7-6 Unimplemented: Read as '0'
- bit 5-4 **DAYTEN<1:0>:** Binary Coded Decimal Value of Day's Tens Digit bits Contains a value from 0 to 3.
- bit 3-0 **DAYONE<3:0>:** Binary Coded Decimal Value of Day's Ones Digit bits Contains a value from 0 to 9.
- **Note 1:** A write to this register is only allowed when RTCWREN = 1.

Base Instr #	Assembly Mnemonic		Assembly Syntax	Description	# of Words	# of Cycles	Status Flags Affected
8	BSW	BSW.C	Ws,Wb	Write C bit to Ws <wb></wb>	1	1	None
		BSW.Z	Ws,Wb	Write Z bit to Ws <wb></wb>	1	1	None
9	BTG	BTG	f,#bit4	Bit Toggle f	1	1	None
		BTG	Ws,#bit4	Bit Toggle Ws	1	1	None
10	BTSC	BTSC	f,#bit4	Bit Test f, Skip if Clear	1	1 (2 or 3)	None
		BTSC	Ws,#bit4	Bit Test Ws, Skip if Clear	1	1 (2 or 3)	None
11	BTSS	BTSS	f,#bit4	Bit Test f, Skip if Set	1	1 (2 or 3)	None
		BTSS	Ws,#bit4	Bit Test Ws, Skip if Set	1	1 (2 or 3)	None
12	BTST	BTST	f,#bit4	Bit Test f	1	1	Z
		BTST.C	Ws,#bit4	Bit Test Ws to C	1	1	С
		BTST.Z	Ws,#bit4	Bit Test Ws to Z	1	1	Z
		BTST.C	Ws,Wb	Bit Test Ws <wb> to C</wb>	1	1	С
		BTST.Z	Ws,Wb	Bit Test Ws <wb> to Z</wb>	1	1	Z
13	BTSTS	BTSTS	f,#bit4	Bit Test then Set f	1	1	Z
		BTSTS.C	Ws,#bit4	Bit Test Ws to C, then Set	1	1	С
		BTSTS.Z	Ws,#bit4	Bit Test Ws to Z, then Set	1	1	Z
14	CALL	CALL	lit23	Call subroutine	2	4	SFA
		CALL	Wn	Call indirect subroutine	1	4	SFA
		CALL.L	Wn	Call indirect subroutine (long address)	1	4	SFA
15	CLR	CLR	f	f = 0x0000	1	1	None
		CLR	WREG	WREG = 0x0000	1	1	None
		CLR	Ws	Ws = 0x0000	1	1	None
		CLR	Acc,Wx,Wxd,Wy,Wyd,AWB	Clear Accumulator	1	1	OA,OB,SA, SB
16	CLRWDT	CLRWDT		Clear Watchdog Timer	1	1	WDTO,Sleep
17	COM	COM	f	f = f	1	1	N,Z
		COM	f,WREG	WREG = \overline{f}	1	1	N,Z
		COM	Ws,Wd	$Wd = \overline{Ws}$	1	1	N,Z
18	CP	CP	f	Compare f with WREG	1	1	C,DC,N,OV,Z
		CP	Wb,#lit8	Compare Wb with lit8	1	1	C,DC,N,OV,Z
		CP	Wb,Ws	Compare Wb with Ws (Wb – Ws)	1	1	C,DC,N,OV,Z
19	CP0	CPO	f	Compare f with 0x0000	1	1	C,DC,N,OV,Z
		CPO	Ws	Compare Ws with 0x0000	1	1	C,DC,N,OV,Z
20	CPB	CPB	f	Compare f with WREG, with Borrow	1	1	C,DC,N,OV,Z
		CPB	Wb,#lit8	Compare Wb with lit8, with Borrow	1	1	C,DC,N,OV,Z
		CPB	Wb,Ws	Compare Wb with Ws, with Borrow $(Wb - Ws - \overline{C})$	1	1	C,DC,N,OV,Z
21	CPSEQ	CPSEQ	Wb,Wn	Compare Wb with Wn, skip if =	1	1 (2 or 3)	None
	CPBEQ	CPBEQ	Wb,Wn,Expr	Compare Wb with Wn, branch if =	1	1 (5)	None
22	CPSGT	CPSGT	Wb,Wn	Compare Wb with Wn, skip if >	1	1 (2 or 3)	None
	CPBGT	CPBGT	Wb,Wn,Expr	Compare Wb with Wn, branch if >	1	1 (5)	None
23	CPSLT	CPSLT	Wb,Wn	Compare Wb with Wn, skip if <	1	1 (2 or 3)	None
	CPBLT	CPBLT	Wb,Wn,Expr	Compare Wb with Wn, branch if <	1	1 (5)	None
24	CPSNE	CPSNE	Wb,Wn	Compare Wb with Wn, skip if ≠	1	1 (2 or 3)	None
	CPBNE	CPBNE	Wb,Wn,Expr	Compare Wb with Wn, branch if ≠	1	1 (5)	None

TABLE 31-2: INSTRUCTION SET OVERVIEW (CONTINUED)

Note: Read and Read-Modify-Write (e.g., bit operations and logical operations) on non-CPU SFRs incur an additional instruction cycle.

Base Instr #	Assembly Mnemonic		Assembly Syntax	Description	# of Words	# of Cycles	Status Flags Affected
25	DAW	DAW	Wn	Wn = decimal adjust Wn	1	1	С
26	DEC	DEC	f	f = f - 1	1	1	C,DC,N,OV,Z
		DEC	f,WREG	WREG = f – 1	1	1	C,DC,N,OV,Z
		DEC	Ws,Wd	Wd = Ws - 1	1	1	C,DC,N,OV,Z
27	DEC2	DEC2	f	f = f - 2	1	1	C,DC,N,OV,Z
		DEC2	f,WREG	WREG = f – 2	1	1	C,DC,N,OV,Z
		DEC2	Ws,Wd	Wd = Ws – 2	1	1	C,DC,N,OV,Z
28	DISI	DISI	#lit14	Disable Interrupts for k instruction cycles	1	1	None
29	DIV	DIV.S	Wm,Wn	Signed 16/16-bit Integer Divide	1	18	N,Z,C,OV
		DIV.SD	Wm,Wn	Signed 32/16-bit Integer Divide	1	18	N,Z,C,OV
		DIV.U	Wm,Wn	Unsigned 16/16-bit Integer Divide	1	18	N,Z,C,OV
		DIV.UD	Wm,Wn	Unsigned 32/16-bit Integer Divide	1	18	N,Z,C,OV
30	DIVF	DIVF	Wm,Wn	Signed 16/16-bit Fractional Divide	1	18	N,Z,C,OV
31	DO	DO	#lit15,Expr	Do code to PC + Expr, lit15 + 1 times	2	2	None
		DO	Wn,Expr	Do code to PC + Expr, (Wn) + 1 times	2	2	None
32	ED	ED	Wm*Wm,Acc,Wx,Wy,Wxd	Euclidean Distance (no accumulate)	1	1	OA,OB,OAB, SA,SB,SAB
33	EDAC	EDAC	Wm*Wm,Acc,Wx,Wy,Wxd	Euclidean Distance	1	1	OA,OB,OAB, SA,SB,SAB
34	EXCH	EXCH	Wns,Wnd	Swap Wns with Wnd	1	1	None
35	FBCL	FBCL	Ws,Wnd	Find Bit Change from Left (MSb) Side	1	1	С
36	FF1L	FF1L	Ws,Wnd	Find First One from Left (MSb) Side	1	1	С
37	FF1R	FF1R	Ws,Wnd	Find First One from Right (LSb) Side	1	1	С
38	GOTO	GOTO	Expr	Go to address	2	4	None
		GOTO	Wn	Go to indirect	1	4	None
		GOTO.L	Wn	Go to indirect (long address)	1	4	None
39	INC	INC	f	f = f + 1	1	1	C,DC,N,OV,Z
		INC	f,WREG	WREG = f + 1	1	1	C,DC,N,OV,Z
		INC	Ws,Wd	Wd = Ws + 1	1	1	C,DC,N,OV,Z
40	INC2	INC2	f	f = f + 2	1	1	C,DC,N,OV,Z
		INC2	f,WREG	WREG = f + 2	1	1	C,DC,N,OV,Z
		INC2	Ws,Wd	Wd = Ws + 2	1	1	C,DC,N,OV,Z
41	IOR	IOR	f	f = f .IOR. WREG	1	1	N,Z
		IOR	f,WREG	WREG = f .IOR. WREG	1	1	N,Z
		IOR	#lit10,Wn	Wd = lit10 .IOR. Wd	1	1	N,Z
		IOR	Wb,Ws,Wd	Wd = Wb .IOR. Ws	1	1	N,Z
		IOR	Wb,#lit5,Wd	Wd = Wb .IOR. lit5	1	1	N,Z
42	LAC	LAC	Wso,#Slit4,Acc	Load Accumulator	1	1	OA,OB,OAB, SA,SB,SAB
43	LNK	LNK	#lit14	Link Frame Pointer	1	1	SFA
44	LSR	LSR	f	f = Logical Right Shift f	1	1	C,N,OV,Z
		LSR	f,WREG	WREG = Logical Right Shift f	1	1	C,N,OV,Z
		LSR	Ws,Wd	Wd = Logical Right Shift Ws	1	1	C,N,OV,Z
		LSR	Wb,Wns,Wnd	Wnd = Logical Right Shift Wb by Wns	1	1	N,Z
		LSR	Wb,#lit5,Wnd	Wnd = Logical Right Shift Wb by lit5	1	1	N,Z
45	MAC	MAC	Wm*Wn,Acc,Wx,Wxd,Wy,Wyd,AWB	Multiply and Accumulate	1	1	OA,OB,OAB, SA,SB,SAB
		MAC	Wm*Wm, Acc, Wx, Wxd, Wy, Wyd	Square and Accumulate	1	1	OA,OB,OAB, SA,SB,SAB

TABLE 31-2: INSTRUCTION SET OVERVIEW (CONTINUED)

Note: Read and Read-Modify-Write (e.g., bit operations and logical operations) on non-CPU SFRs incur an additional instruction cycle.

NOTES:

DC CHARACTER	$\begin{tabular}{lllllllllllllllllllllllllllllllllll$						
Parameter No.	Doze Ratio	Units		Conditions			
Doze Current (ID	DZE) ⁽¹⁾						
DC73a	20	53	1:2	mA	40°C	3.3V	70 MIPS
DC73g	8	30	1:128	mA	-40 C		
DC70a	19	53	1:2	mA	±25°C	2 2\/	60 MIPS
DC70g	8	30	1:128	mA	+25 C	3.3V	
DC71a	20	53	1:2	mA	+95°C	2 21/	
DC71g	10	30	1:128	mA	+03 C	3.3V	60 MIPS
DC72a	25	42	1:2	mA	+125°C	2 21/	
DC72g	12	30	1:128	mA	+125 C	3.3V	50 MIPS

TABLE 33-9: DC CHARACTERISTICS: DOZE CURRENT (IDOZE)

Note 1: IDOZE is primarily a function of the operating voltage and frequency. Other factors, such as I/O pin loading and switching rate, oscillator type, internal code execution pattern and temperature, also have an impact on the current consumption. The test conditions for all IDOZE measurements are as follows:

• Oscillator is configured in EC mode and external clock is active, OSC1 is driven with external square wave from rail-to-rail (EC clock overshoot/undershoot < 250 mV required)

- CLKO is configured as an I/O input pin in the Configuration Word
- · All I/O pins are configured as outputs and driving low
- MCLR = VDD, WDT and FSCM are disabled
- CPU, SRAM, program memory and data memory are operational
- No peripheral modules are operating or being clocked (defined PMDx bits are all ones)
- CPU executing

```
while(1)
{
NOP();
}
```

- · JTAG is disabled
- 2: Data in the "Typical" column is at 3.3V, +25°C unless otherwise specified.

АС СНА	AC CHARACTERISTICS			$ \begin{array}{l} \mbox{Standard Operating Conditions (see Note 1): 3.0V to 3.6V \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industrial} \\ & -40^{\circ}C \leq TA \leq +125^{\circ}C \mbox{ for Extended} \\ \end{array} $					
Param No.	Symbol	Characteristic	Min.	Min. Typ. Max. Units			Conditions		
		ADC Ac	curacy (1	2-Bit Mo	ode) – Vr	REF-			
AD20a	Nr	Resolution	1.	2 data bi	ts	bits			
AD21a	INL	Integral Nonlinearity	-3	—	+3	LSb	VINL = AVSS = VREFL = 0V, AVDD = VREFH = 3.6V (Note 2)		
AD22a	DNL	Differential Nonlinearity	≥ 1	_	< 1	LSb	VINL = AVSS = VREFL = 0V, AVDD = VREFH = 3.6V (Note 2)		
AD23a	Gerr	Gain Error	-10	-	10	LSb	VINL = AVSS = VREFL = 0V, AVDD = VREFH = 3.6V (Note 2)		
AD24a	EOFF	Offset Error	-5	-	5	LSb	VINL = AVSS = VREFL = 0V, AVDD = VREFH = 3.6V (Note 2)		
AD25a	—	Monotonicity	—	—	_	_	Guaranteed		
		Dynamic	c Perforn	nance (1	2-Bit Mo	de)			
AD30a	THD	Total Harmonic Distortion	_		-75	dB			
AD31a	SINAD	Signal to Noise and Distortion	68.5	69.5	—	dB			
AD32a	SFDR	Spurious Free Dynamic Range	80	—	—	dB			
AD33a	Fnyq	Input Signal Bandwidth	_		250	kHz			
AD34a	ENOB	Effective Number of Bits	11.09	11.3		bits			

TABLE 33-57: ADCx MODULE SPECIFICATIONS (12-BIT MODE)

Note 1: Device is functional at VBORMIN < VDD < VDDMIN, but will have degraded performance. Device functionality is tested, but not characterized. Analog modules: ADC, op amp/comparator and comparator voltage reference, will have degraded performance. Refer to Parameter BO10 in Table 33-12 for the minimum and maximum BOR values.

2: For all accuracy specifications, VINL = AVSS = VREFL = 0V and AVDD = VREFH = 3.6V.

64-Lead Plastic Quad Flat, No Lead Package (MR) – 9x9x0.9 mm Body [QFN] With 7.15 x 7.15 Exposed Pad

Microchip Technology Drawing C04-149C Sheet 1 of 2