

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XE

Product Status	Active
Core Processor	dsPIC
Core Size	16-Bit
Speed	-
Connectivity	CANbus, I ² C, IrDA, LINbus, QEI, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, I ² S, Motor Control PWM, POR, PWM, WDT
Number of I/O	85
Program Memory Size	512KB (170K x 24)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	48K x 8
Voltage - Supply (Vcc/Vdd)	-
Data Converters	A/D 49x10b/12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 150°C (TA)
Mounting Type	Surface Mount
Package / Case	100-TQFP
Supplier Device Package	100-TQFP (12x12)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/dspic33ep512gm710-h-pt

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

2.5 ICSP Pins

The PGECx and PGEDx pins are used for ICSP and debugging purposes. It is recommended to keep the trace length between the ICSP connector and the ICSP pins on the device as short as possible. If the ICSP connector is expected to experience an ESD event, a series resistor is recommended, with the value in the range of a few tens of Ohms, not to exceed 100 Ohms.

Pull-up resistors, series diodes and capacitors on the PGECx and PGEDx pins are not recommended as they will interfere with the programmer/debugger communications to the device. If such discrete components are an application requirement, they should be removed from the circuit during programming and debugging. Alternatively, refer to the AC/DC characteristics and timing requirements information in the respective device Flash programming specification for information on capacitive loading limits and pin Voltage Input High (VIH) and Voltage Input Low (VIL) requirements.

Ensure that the "Communication Channel Select" (i.e., PGECx/PGEDx pins) programmed into the device matches the physical connections for the ICSP to MPLAB[®] PICkit[™] 3, MPLAB ICD 3, or MPLAB REAL ICE[™].

For more information on MPLAB ICD 2, ICD 3 and REAL ICE connection requirements, refer to the following documents that are available on the Microchip web site:

- "Using MPLAB[®] ICD 3" (poster) DS51765
- "MPLAB[®] ICD 3 Design Advisory" DS51764
- "MPLAB[®] REAL ICE[™] In-Circuit Emulator User's Guide" DS51616
- "Using MPLAB[®] REAL ICE™ In-Circuit Emulator" (poster) DS51749

2.6 External Oscillator Pins

Many DSCs have options for at least two oscillators: a high-frequency primary oscillator and a low-frequency secondary oscillator. For details, see **Section 9.0 "Oscillator Configuration"** for details.

The oscillator circuit should be placed on the same side of the board as the device. Also, place the oscillator circuit close to the respective oscillator pins, not exceeding one-half inch (12 mm) distance between them. The load capacitors should be placed next to the oscillator itself, on the same side of the board. Use a grounded copper pour around the oscillator circuit to isolate them from surrounding circuits. The grounded copper pour should be routed directly to the MCU ground. Do not run any signal traces or power traces inside the ground pour. Also, if using a two-sided board, avoid any traces on the other side of the board where the crystal is placed. A suggested layout is shown in Figure 2-3.

SUGGESTED PLACEMENT OF THE OSCILLATOR CIRCUIT

FIGURE 3-1: dsPIC33EPXXXGM3XX/6XX/7XX CPU BLOCK DIAGRAM

3.6 CPU Control Registers

REGISTER 3-1: SR: CPU STATUS REGISTER

) R/W-0	R/W-0	R/W-0	R/C-0	R/C-0	R-0	R/W-0
OA	OB	SA ⁽³⁾	SB ⁽³⁾	OAB	SAB	DA	DC
bit 15							bit 8
R/W-0(²⁾ R/W-0 ⁽²⁾	R/W-0 ⁽²⁾	R-0	R/W-0	R/W-0	R/W-0	R/W-0
IPL2 ⁽¹) IPL1 ⁽¹⁾	IPL0 ⁽¹⁾	RA	N	OV	Z	С
bit 7							bit 0
Legend:		C = Clearable	e bit				
R = Read	able bit	W = Writable	bit	U = Unimplem	nented bit, read	l as '0'	
-n = Value	e at POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	iown
bit 15	OA: Accumu	lator A Overflow	v Status bit				
	1 = Accumul 0 = Accumul	ator A has over ator A has not c	flowed overflowed				
bit 14	OB: Accumu	lator B Overflov	v Status bit				
	1 = Accumul 0 = Accumul	ator B has over	flowed				
bit 13	SA: Accumu	lator A Saturatio	on 'Sticky' Sta	tus bit ⁽³⁾			
	1 = Accumul 0 = Accumul	ator A is satura ator A is not sat	ted or has bee	en saturated at	some time		
bit 12	SB: Accumu	lator B Saturatio	on 'Sticky' Sta	tus bit ⁽³⁾			
	1 = Accumul	ator B is satura	ted or has bee	en saturated at	some time		
	0 = Accumul	ator B is not sat	turated				
bit 11	OAB: OA (OB Combined A	ccumulator O	verflow Status	bit		
	1 = Accumul	ator A or B has	overflowed				
	0 = Neither A	Accumulator A c	or B has overfl	owed			
bit 10	SAB: SA S	B Combined A	ccumulator 'Si	icky Status bit	1		
	1 = Accumul 0 = Neither A	ator A or B is sa Accumulator A c	or B is saturated	s been saturate ed	ed at some time	•	
bit 9	DA: DO Loop	Active bit					
	1 = DO loop i	n progress					
	0 = DO loop i	not in progress					
bit 8	DC: MCU AL	U Half Carry/B	orrow bit				
	1 = A carry-	out from the 4th	low-order bit (for byte-sized d	ata) or 8th low-	order bit (for wo	rd-sized data)
	0 = No carry data) of	-out from the 4 the result occur	th low-order b red	oit (for byte-size	ed data) or 8th	low-order bit (1	or word-sized
Note 1:	The IPL<2:0> bits Level. The value i IPL<3> = 1.	are concatena n parentheses i	ted with the IF ndicates the I	PL<3> bit (COR PL, if IPL<3> =	CON<3>) to fo 1. User interru	rm the CPU Inte pts are disable	errupt Priority d when

3: A data write to the SR register can modify the SA and SB bits by either a data write to SA and SB or by clearing the SAB bit. To avoid a possible SA or SB bit write race condition, the SA and SB bits should not be modified using bit operations.

REGISTER 3-1: SR: CPU STATUS REGISTER (CONTINUED)

bit 7-5	IPL<2:0>: CPU Interrupt Priority Level Status bits ^(1,2)
	111 = CPU Interrupt Priority Level is 7 (15); user interrupts are disabled 110 = CPU Interrupt Priority Level is 6 (14) 101 = CPU Interrupt Priority Level is 5 (13) 100 = CPU Interrupt Priority Level is 4 (12) 011 = CPU Interrupt Priority Level is 3 (11) 010 = CPU Interrupt Priority Level is 2 (10) 001 = CPU Interrupt Priority Level is 1 (9) 000 = CPU Interrupt Priority Level is 0 (8)
bit 4	RA: REPEAT Loop Active bit
	1 = REPEAT loop is in progress 0 = REPEAT loop is not in progress
bit 3	N: MCU ALU Negative bit
	1 = Result was negative0 = Result was non-negative (zero or positive)
bit 2	OV: MCU ALU Overflow bit
	This bit is used for signed arithmetic (2's complement). It indicates an overflow of the magnitude that causes the sign bit to change state. 1 = Overflow occurred for signed arithmetic (in this arithmetic operation) 0 = No overflow occurred
bit 1	Z: MCU ALU Zero bit
	 1 = An operation that affects the Z bit has set it at some time in the past 0 = The most recent operation that affects the Z bit has cleared it (i.e., a non-zero result)
bit 0	C: MCU ALU Carry/Borrow bit
	 1 = A carry-out from the Most Significant bit (MSb) of the result occurred 0 = No carry-out from the Most Significant bit of the result occurred

- **Note 1:** The IPL<2:0> bits are concatenated with the IPL<3> bit (CORCON<3>) to form the CPU Interrupt Priority Level. The value in parentheses indicates the IPL, if IPL<3> = 1. User interrupts are disabled when IPL<3> = 1.
 - **2:** The IPL<2:0> Status bits are read-only when the NSTDIS bit (INTCON1<15>) = 1.
 - **3:** A data write to the SR register can modify the SA and SB bits by either a data write to SA and SB or by clearing the SAB bit. To avoid a possible SA or SB bit write race condition, the SA and SB bits should not be modified using bit operations.

TABLE 4-58: PORTE REGISTER MAP FOR dsPIC33EPXXXGM306/706 DEVICES

SFR Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
TRISE	0E40		TRISE	<15:12>		—	—	_	—	—	—	—	_	_	_	—	—	F000
PORTE	0E42		RE<1	5:12>		_	_	_	_	—	_	_	_	_	_	_	_	xxxx
LATE	0E44	LATE<15:12>				_	_	_	_	—	_	_	_	_	_	_	_	xxxx
ODCE	0E46	ODCE<15:12>				_	_	_	_	—	_	_	_	_	_	_	_	0000
CNENE	0E48		CNIEE	<15:12>		_	_	_	_	—	_	_	_	_	_	_	_	0000
CNPUE	0E4A		CNPUE	<15:12>		_	_	_	_	—	_	_	_	_	_	_	_	0000
CNPDE	0E4C		CNPDE	<15:12>		_	_	_	_	—	_	_	_	_	_	_	_	0000
ANSELE	0E4E		ANSE	<15:12>		_	_	_	_	_	—	—	_	_	_	_	_	0000

dsPIC33EPXXXGM3XX/6XX/7XX

Legend: x = unknown value on Reset; - = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-59: PORTF REGISTER MAP FOR dsPIC33EPXXXGM310/710 DEVICES

SFR Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
TRISF	0E50	_	—	TRISF	<13:12>	_	TRISF	<10:9>	_		TRISF	<7:4>		—	_	TRISF	<1:0>	F303
PORTF	0E52	_	—	RF<1	3:12>		— RF<10:9>		— RF<7:4>		—	_	RF<	1:0>	xxxx			
LATF	0E54		—	LATF<	13:12>		LATF<	:10:9>	_	— LATF<7:4>		—	_	LATF	<1:0>	xxxx		
ODCF	0E56		—	ODCF<	<13:12>		ODCF<	<10:9>	_		ODCF	<7:4>		—	_	ODCF	<1:0>	0000
CNENF	0E58		—	CNIEF	<13:12>		CNIEF	<10:9>	_		CNIEF	-<7:4>		—	_	CNIEF	<1:0>	0000
CNPUF	0E5A		—	CNPUF	<13:12>		CNPUF	<10:9>	_		CNPU	F<7:4>		—	_	CNPU	=<1:0>	0000
CNPDF	0E5C	_	_	CNPDF	<13:12>	_	CNPDF	<10:9>	_	CNPDF<7:4>		_	_	CNPD	<1:0>	0000		
ANSELF	0E4E	_	_	ANSF<	:13:12>	_	ANSF<	<10:9>	_	_	_	ANSF	<5:4>	_	_	_	_	0000

Legend: x = unknown value on Reset, - = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-60: PORTF REGISTER MAP FOR dsPIC33EPXXXGM306/706 DEVICES

SFR Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
TRISF	0E50	_	_	—	_	_	—	_	_	_	_	_	—	_	—	TRISF	<1:0>	0003
PORTF	0E52	_	_	_	_	_	_	_	_	_	_	_	_	_	_	RF<	1:0>	xxxx
LATF	0E54	_	_	_	_	_	_	_	_	_	_	_	_	_	_	LATE	<1:0>	xxxx
ODCF	0E56	_	_	_	_	_	_	_	_	_	_	_	_	_	_	ODCF	<1:0>	0000
CNENF	0E58	_	_	_	_	_	_	_	_	_	_	_	_	_	_	CNIEF	<1:0>	0000
CNPUF	0E5A	_	_	_	_	_	_	_	_	_	_	_	_	_	_	CNPU	=<1:0>	0000
CNPDF	0E5C		_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	0000

Legend: x = unknown value on Reset; - = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Oscillator Mode	Oscillator Source	POSCMD<1:0>	FNOSC<2:0>	See Notes
Fast RC Oscillator with Divide-by-N (FRCDIVN)	Internal	xx	111	1, 2
Fast RC Oscillator with Divide-by-16 (FRCDIV16)	Internal	xx	110	1
Low-Power RC Oscillator (LPRC)	Internal	xx	101	1
Secondary (Timer1) Oscillator (SOSC)	Secondary	xx	100	1
Primary Oscillator (HS) with PLL (HSPLL)	Primary	10	011	
Primary Oscillator (XT) with PLL (XTPLL)	Primary	01	011	
Primary Oscillator (EC) with PLL (ECPLL)	Primary	00	011	1
Primary Oscillator (HS)	Primary	10	010	
Primary Oscillator (XT)	Primary	01	010	
Primary Oscillator (EC)	Primary	00	010	1
Fast RC Oscillator (FRC) with Divide-by-N and PLL (FRCPLL)	Internal	xx	001	1
Fast RC Oscillator (FRC)	Internal	xx	000	1

TABLE 9-1: CONFIGURATION BIT VALUES FOR CLOCK SELECTION

Note 1: OSC2 pin function is determined by the OSCIOFNC Configuration bit.

2: This is the default oscillator mode for an unprogrammed (erased) device.

R/W-0	R/W-0	R/W-1	R/W-1	R/W-0	R/W-0	R/W-0	R/W-0
ROI	DOZE2 ⁽³⁾	DOZE1 ⁽³⁾	DOZE0 ⁽³⁾	DOZEN ^(1,4)	FRCDIV2	FRCDIV1	FRCDIV0
bit 15							bit 8
R/W-0	R/W-1	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
PLLPOST1	PLLPOST0	—	PLLPRE4	PLLPRE3	PLLPRE2	PLLPRE1	PLLPRE0
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimplen	nented bit, read	as '0'	
-n = Value at	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	nown
bit 15	ROI: Recover 1 = Interrupts 0 = Interrupts	on Interrupt b will clear the E will have no et	it OOZEN bit ffect on the D0	DZEN bit			
bit 14-12	DOZE<2:0>:	Processor Clo	ck Reduction	Select bits ⁽³⁾			
	110 = FCY div 101 = FCY div 100 = FCY div 011 = FCY div 011 = FCY div 010 = FCY div 001 = FCY div 000 = FCY div	vided by 64 vided by 32 vided by 16 vided by 8 (defa vided by 4 vided by 2 vided by 1	ault)				
bit 11	DOZEN: Doz	e Mode Enable	e bit ^(1,4)				
	1 = DOZE<2: 0 = Processo	0> field specifier r clock and per	es the ratio be ipheral clock i	etween the peri ratio are forced	pheral clocks a to 1:1	nd the process	or clocks
bit 10-8	FRCDIV<2:0:	>: Internal Fast	RC Oscillator	Postscaler bit	5		
	111 = FRC di 110 = FRC di 101 = FRC di 100 = FRC di 011 = FRC di 010 = FRC di 001 = FRC di 000 = FRC di	vided by 256 vided by 64 vided by 32 vided by 16 vided by 8 vided by 4 vided by 2 vided by 1 (der	fault)				
bit 7-6	PLLPOST<1:	:0>: PLL VCO	Output Divide	r Select bits (al	so denoted as '	N2', PLL posts	caler)
	11 = Output o 10 = Reserve 01 = Output o 00 = Output o	livided by 8 d livided by 4 (de livided by 2	efault)				
bit 5	Unimplemen	ted: Read as '	0'				
Note 1: Th 2: Th 3: Th DC	is bit is cleared is register resets e DOZE<2:0> b DZE<2:0> are ig	when the ROI I s only on a Pov its can only be nored.	bit is set and a ver-on Reset written to whe	an interrupt occ (POR). en the DOZEN	urs. bit is clear. If D ⁱ	OZEN = 1, any	writes to

REGISTER 9-2: CLKDIV: CLOCK DIVISOR REGISTER⁽²⁾

4: The DOZEN bit cannot be set if DOZE<2:0> = 000. If DOZE<2:0> = 000, any attempt by user software to set the DOZEN bit is ignored.

Input Name ⁽¹⁾	Function Name	Register	Configuration Bits
External Interrupt 1	INT1	RPINR0	INT1R<6:0>
External Interrupt 2	INT2	RPINR1	INT2R<6:0>
Timer2 External Clock	T2CK	RPINR3	T2CKR<6:0>
Input Capture 1	IC1	RPINR7	IC1R<6:0>
Input Capture 2	IC2	RPINR7	IC2R<6:0>
Input Capture 3	IC3	RPINR8	IC3R<6:0>
Input Capture 4	IC4	RPINR8	IC4R<6:0>
Input Capture 5	IC5	RPINR9	IC5R<6:0>
Input Capture 6	IC6	RPINR9	IC6R<6:0>
Input Capture 7	IC7	RPINR10	IC7R<6:0>
Input Capture 8	IC8	RPINR10	IC8R<6:0>
Output Compare Fault A	OCFA	RPINR11	OCFAR<6:0>
PWM Fault 1	FLT1	RPINR12	FLT1R<6:0>
PWM Fault 2	FLT2	RPINR12	FLT2R<6:0>
QEI1 Phase A	QEA1	RPINR14	QEA1R<6:0>
QEI1 Phase B	QEB1	RPINR14	QEB1R<6:0>
QEI1 Index	INDX1	RPINR 15	INDX1R<6:0>
QEI1 Home	HOME1	RPINR15	HOM1R<6:0>
QEI2 Phase A	QEA2	RPINR16	QEA2R<6:0>
QEI2 Phase B	QEB2	RPINR16	QEB2R<6:0>
QEI2 Index	INDX2	RPINR17	INDX2R<6:0>
QEI2 Home	HOME2	RPINR17	HOM2R<6:0>
UART1 Receive	U1RX	RPINR18	U1RXR<6:0>
UART2 Receive	U2RX	RPINR19	U2RXR<6:0>
SPI2 Data Input	SDI2	RPINR22	SDI2R<6:0>
SPI2 Clock Input	SCK2	RPINR22	SCK2R<6:0>
SPI2 Slave Select	SS2	RPINR23	SS2R<6:0>
DCI Data Input	CSDI	RPINR24	CSDIR>6:0>
DCI Clock Input	CSCK	RPINR24	CSCKR<6:0>
DCI Frame Synchronization Input	COFS	RPINR25	COFSR<6:0>
CAN1 Receive ⁽²⁾	C1RX	RPINR26	C1RXR<6:0>
CAN2 Receive ⁽²⁾	C2RX	RPINR26	C2RXR<6:0>
UART3 Receive	U3RX	RPINR27	U3RXR<6:0>
UART3 Clear-to-Send	U3CTS	RPINR27	U3CTSR<6:0>
UART4 Receive	U4RX	RPINR28	U4RXR<6:0>
UART4 Clear-to-Send	U4CTS	RPINR28	U4CTSR<6:0>
SPI3 Data Input	SDI3	RPINR29	SDI3R<6:0>
SPI3 Clock Input	SCK3	RPINR29	SCK3R<6:0>
SPI3 Slave Select	SS3	RPINR 30	SS3R<6:0>

Note 1: Unless otherwise noted, all inputs use the Schmitt Trigger input buffers.

2: This input is available on dsPIC33EPXXXGM6XX/7XX devices only.

12.0 TIMER1

- Note 1: This data sheet summarizes the features of the dsPIC33EPXXXGM3XX/6XX/7XX family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to the "dsPIC33/PIC24 Family Reference Manual", "Timers" (DS70362), which is available from the Microchip web site (www.microchip.com).
 - Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

The Timer1 module is a 16-bit timer that can operate as a free-running, interval timer/counter.

The Timer1 module has the following unique features over other timers:

- Can be operated in Asynchronous Counter mode from an external clock source
- The external clock input (T1CK) can optionally be synchronized to the internal device clock and the clock synchronization is performed after the prescaler
- A block diagram of Timer1 is shown in Figure 12-1.

The Timer1 module can operate in one of the following modes:

- Timer mode
- Gated Timer mode
- Synchronous Counter mode
- · Asynchronous Counter mode

In Timer and Gated Timer modes, the input clock is derived from the internal instruction cycle clock (FcY). In Synchronous and Asynchronous Counter modes, the input clock is derived from the external clock input at the T1CK pin.

The Timer modes are determined by the following bits:

- Timer Clock Source Control bit (TCS): T1CON<1>
- Timer Synchronization Control bit (TSYNC): T1CON<2>
- Timer Gate Control bit (TGATE): T1CON<6>

Timer control bit settings for different operating modes are given in the Table 12-1.

TABLE 12-1:	TIMER	MODE	SETTINGS
-------------	-------	------	----------

Mode	TCS	TGATE	TSYNC
Timer	0	0	х
Gated Timer	0	1	х
Synchronous Counter	1	x	1
Asynchronous Counter	1	х	0

FIGURE 12-1: 16-BIT TIMER1 MODULE BLOCK DIAGRAM

R/W-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
CH0NB		CH0SB5 ^(1,4,5)	CH0SB4 ^(1,5)	CH0SB3 ^(1,5)	CH0SB2 ^(1,5)	CH0SB1 ^(1,5)	CH0SB0 ^(1,5)			
bit 15							bit 8			
	11.0	DAMA		DAMA	DAMA	DAMA	DAMA			
	0-0	R/VV-U		R/W-U	R/W-U	R/W-U				
bit 7		CHUSAS	CH03A4	CHUSAS	CHUSAZ	CHUSAN	bit 0			
							bit 0			
Legend:										
R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'										
-n = Value	e at POR	'1' = Bit is set		'0' = Bit is clea	red	x = Bit is unkno	own			
bit 15	CHONB: C	hannel 0 Negative	e Input Select	for Sample MU	XB bit					
	1 = Channel 0 =	el 0 negative inpu el 0 negative inpu	It is AN IS							
bit 14	Unimplem	ented: Read as '	0'							
bit 13-8	CH0SB<5:	:0>: Channel 0 Po	ositive Input Se	elect for Sample	MUXB bits ^{(1,4,4}	5)				
	111111 =	Channel 0 positiv	e input is (AN6	63) unconnected	b					
	111110 = 111101 =	Channel 0 positiv Channel 0 positiv	e input is (AN6 e input is (AN6	62) the CTMU te 61) reserved	emperature volta	age				
	•			,						
	•									
	•	Channel 0 positiv	e input is (ANF	50) reserved						
	110010 =	Channel 0 positiv	e input is AN4	9						
	110000 =	Channel 0 positiv	e input is AN4	8						
	101111 =	Channel 0 positiv	e input is AN4	7						
	101110 =	Channel 0 positiv	e input is AN4	6						
	•									
	•									
	011010 =	Channel 0 positiv	e input is AN2	6		`				
	011001 =	Channel 0 positiv	e input is AN2	5 or Op Amp 5	output voltage ⁽²)				
	•	Channel 0 positiv	e input is Anz	4						
	•									
	•									
	000111 =	Channel 0 positiv	e input is AN7							
	000110 =	Channel 0 positiv	e input is AN6	or Op Amp 3 o	utput voltage-					
	000100 =	Channel 0 positiv	e input is AN4							
	000011 =	Channel 0 positiv	e input is AN3	or Op Amp 1 o	utput voltage ⁽²⁾					
	000010 =	Channel 0 positiv	e input is AN2							
	000001 =	Channel 0 positiv	e input is AN1	or On Amn 2 o	utput voltage(2)					
Note 1:	AN0 through And the determine how	AN7 are repurpose w enabling a partic	ed when compa cular op amp o	arator and op an r comparator affe	np functionality a ects selection ch	ire enabled. See ioices for Chann	e ⊢ıgure 23-1 to els 1, 2 and 3.			
2:	If the op amp	is selected (OPM	10DF bit (CMx	(CON<10>) = 1), the OAx input	is used: otherw	ise, the ANx			

REGISTER 23-6: ADxCHS0: ADCx INPUT CHANNEL 0 SELECT REGISTER⁽³⁾

- 2: If the op amp is selected (OPMODE bit (CMxCON<10>) = 1), the OAx input is used; otherwise, the ANx input is used.
- **3:** See the **"Pin Diagrams**" section for the available analog channels for each device.
- 4: Analog input selections for ADC1 are shown here. AN32-AN63 selections are not available for ADC2. The CH0SB5 and CH0SA5 bits are 'Reserved' for ADC2 and should be programmed to '0'.
- **5:** Analog inputs, AN32-AN49, are available only when the ADCx is working in 10-bit mode.

REGISTER 25-1: PTGCST: PTG CONTROL/STATUS REGISTER (CONTINUED)

bit 1-0 PTGITM<1:0>: PTG Input Trigger Command Operating Mode bits⁽¹⁾

- 11 = Single level detect with step delay is not executed on exit of command (regardless of PTGCTRL command)
- 10 = Single level detect with step delay is executed on exit of command
- 01 = Continuous edge detect with step delay is not executed on exit of command (regardless of PTGCTRL command)
- 00 = Continuous edge detect with step delay is executed on exit of command
- Note 1: These bits apply to the PTGWHI and PTGWLO commands only.
 - **2:** This bit is only used with the PTGCTRL Step command software trigger option.

Most instructions are a single word. Certain double-word instructions are designed to provide all the required information in these 48 bits. In the second word, the 8 MSbs are '0's. If this second word is executed as an instruction (by itself), it executes as a NOP.

The double-word instructions execute in two instruction cycles.

Most single-word instructions are executed in a single instruction cycle, unless a conditional test is true, or the Program Counter is changed as a result of the instruction, or a PSV or Table Read is performed. In these cases, the execution takes multiple instruction cycles with the additional instruction cycle(s) executed as a NOP. Certain instructions that involve skipping over the subsequent instruction require either two or three cycles if the skip is performed, depending on whether the instruction being skipped is a single-word or twoword instruction. Moreover, double-word moves require two cycles.

Note:	For more	deta	ils on tl	he inst	ructior	n set,
	refer to	the	"16-bit	MCU	and	DSC
	Programn	ner's	Refe	erence	Ma	anual"
	(DS70157).				

Field	Description
#text	Means literal defined by "text"
(text)	Means "content of text"
[text]	Means "the location addressed by text"
{}	Optional field or operation
$a\in\{b,c,d\}$	a is selected from the set of values b, c, d
<n:m></n:m>	Register bit field
.b	Byte mode selection
.d	Double-Word mode selection
.S	Shadow register select
.W	Word mode selection (default)
Acc	One of two accumulators {A, B}
AWB	Accumulator write back destination address register \in {W13, [W13]+ = 2}
bit4	4-bit bit selection field (used in word addressed instructions) $\in \{015\}$
C, DC, N, OV, Z	MCU Status bits: Carry, Digit Carry, Negative, Overflow, Sticky Zero
Expr	Absolute address, label or expression (resolved by the linker)
f	File register address ∈ {0x00000x1FFF}
lit1	1-bit unsigned literal $\in \{0,1\}$
lit4	4-bit unsigned literal $\in \{015\}$
lit5	5-bit unsigned literal $\in \{031\}$
lit8	8-bit unsigned literal $\in \{0255\}$
lit10	10-bit unsigned literal \in {0255} for Byte mode, {0:1023} for Word mode
lit14	14-bit unsigned literal $\in \{016384\}$
lit16	16-bit unsigned literal $\in \{065535\}$
lit23	23-bit unsigned literal \in {08388608}; LSb must be '0'
None	Field does not require an entry, can be blank
OA, OB, SA, SB	DSP Status bits: ACCA Overflow, ACCB Overflow, ACCA Saturate, ACCB Saturate
PC	Program Counter
Slit10	10-bit signed literal \in {-512511}
Slit16	16-bit signed literal ∈ {-3276832767}
Slit6	6-bit signed literal \in {-1616}
Wb	Base W register $\in \{W0W15\}$
Wd	Destination W register \in { Wd, [Wd], [Wd++], [Wd], [++Wd], [Wd] }
Wdo	Destination W register ∈

{ Wnd, [Wnd], [Wnd++], [Wnd--], [++Wnd], [--Wnd], [Wnd+Wb] }

Dividend, Divisor Working register pair (direct addressing)

TABLE 31-1:	SYMBOLS USED IN OPCODE DESCRIPTIONS

Wm,Wn

DC CHARACTERISTICS			Standard (unless Operating	d Operation otherwise g temper	ting Con se stated rature -	ditions I) 40°C ≤ 40°C ≤	: VBOR (min) V to 3.6V TA ≤ +85°C for Industrial TA ≤ +125°C for Extended
Param No.	Symbol	Characteristic	Min	Typ ⁽¹⁾	Мах	Units	Conditions
-		Program Flash Memory					
D130	Eр	Cell Endurance	10,000	—	—	E/W	-40°C to +125°C
D131	Vpr	VDD for Read	VBORMIN	—	3.6	V	
D132b	VPEW	VDD for Self-Timed Write	3.0	—	3.6	V	
D134	TRETD	Characteristic Retention	20	—	—	Year	Provided no other specifications are violated, -40°C to +125°C
D135	IDDP	Supply Current During Programming	_	10	—	mA	
D138a	Tww	Word Write Cycle Time	46.5	46.9	47.4	μs	Tww = 346 FRC cycles, Ta = +85°C (Note 2)
D138b	Tww	Word Write Cycle Time	46.0	_	47.9	μs	Tww = 346 FRC cycles, Ta = +125°C (Note 2)
D136a	TPE	Row Write Time	0.667	0.673	0.680	ms	Trw = 4965 FRC cycles, Ta = +85°C (Note 2)
D136b	TPE	Row Write Time	0.660	—	0.687	ms	Trw = 4965 FRC cycles, Ta = +125°C (Note 2)
D137a	TPE	Page Erase Time	19.6	20	20.1	ms	TPE = 146893 FRC cycles, TA = +85°C (Note 2)
D137b	TPE	Page Erase Time	19.5	_	20.3	ms	TPE = 146893 FRC cycles, TA = +125°C (Note 2)

TABLE 33-13: DC CHARACTERISTICS: PROGRAM MEMORY

Note 1: Data in "Typ" column is at 3.3V, +25°C unless otherwise stated.

2: Other conditions: FRC = 7.3728 MHz, TUN<5:0> = b'011111 (for Min), TUN<5:0> = b'100000 (for Max). This parameter depends on the FRC accuracy (see Table 33-19) and the value of the FRC Oscillator Tuning register.

FIGURE 33-20: SPI2 AND SPI3 SLAVE MODE (FULL-DUPLEX, CKE = 1, CKP = 1, SMP = 0) TIMING CHARACTERISTICS

DC CHARACTERISTICS			$\begin{array}{l} \mbox{Standard Operating Conditions: 3.0V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^\circ C \leq TA \leq +85^\circ C \mbox{ for Industrial} \\ & -40^\circ C \leq TA \leq +125^\circ C \mbox{ for Extended} \end{array}$						
Param No.	Symbol	Characteristic ⁽¹⁾	Min.	Тур.	Max.	Units	Conditions		
CTMU Curr	CTMU Current Source								
CTMUI1	IOUT1	Base Range	280	550	830	nA	CTMUICON<9:8> = 01		
CTMUI2	IOUT2	10x Range	2.8	5.5	8.3	μA	CTMUICON<9:8> = 10		
CTMUI3	IOUT3	100x Range	28	55	83	μA	CTMUICON<9:8> = 11		
CTMUI4	IOUT4	1000x Range	280	550	830	μA	CTMUICON<9:8> = 00		
CTMUFV1	VF		_	0.77	_	V			
CTMUFV2	VFVR		_	-1.38	_	mV/°C			

Note 1: Nominal value at center point of current trim range (CTMUICON<15:10> = 000000).

FIGURE 33-37: LOAD CONDITIONS FOR DEVICE TIMING SPECIFICATIONS

			Standard C	peratir	ng Condition	is (see	Note 1): 3.0V to 3.6V			
AC CH	ARACTE	RISTICS	Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial							
			$-40^{\circ}C \le TA \le +125^{\circ}C$ for Extended							
Param No.	Symbol	Characteristic	Min.	Тур.	Max.	Units	Conditions			
			Device	Supply	y					
AD01	AVDD	Module VDD Supply	Greater of: VDD – 0.3 or 3.0	-	Lesser of: VDD + 0.3 or 3.6	V				
AD02	AVss	Module Vss Supply	Vss – 0.3	_	Vss + 0.3	V				
	•		Referen	ce Inpu	its					
AD05	Vrefh	Reference Voltage High	AVss + 2.7		AVDD	V	(Note 1) VREFH = VREF+, VREFL = VREF-			
AD05a			3.0	—	3.6	V	VREFH = AVDD, VREFL = AVSS = 0			
AD06	VREFL	Reference Voltage Low	AVss	—	AVDD - 2.7	V	(Note 1)			
AD06a			0	—	0	V	VREFH = AVDD, VREFL = AVSS = 0			
AD07	VREF	Absolute Reference Voltage	2.7	_	3.6	V	VREF = VREFH – VREFL			
AD08	IREF	Current Drain	_	_	10 600	μΑ μΑ	ADC off ADC on			
AD09	IAD	Operating Current		5	_	mA mA	ADC operating in 10-bit mode (Note 1) ADC operating in 12-bit mode			
				2		1100	(Note 1)			
	-	l	Analo	g Input						
AD12	VINH	Input Voltage Range, Vinн	VINL	_	Vrefh	V	This voltage reflects Sample-and-Hold Channels 0, 1, 2 and 3 (CH0-CH3), positive input			
AD13	VINL	Input Voltage Range, VinL	VREFL	_	AVss + 1V	V	This voltage reflects Sample-and-Hold Channels 0, 1, 2 and 3 (CH0-CH3), negative input			
AD17	Rin	Recommended Impedance of Analog Voltage Source	-	_	200	Ω	Impedance to achieve maximum performance of ADC			

TABLE 33-56: ADCx MODULE SPECIFICATIONS

Note 1: Device is functional at VBORMIN < VDD < VDDMIN, but will have degraded performance. Device functionality is tested, but not characterized. Analog modules: ADC, op amp/comparator and comparator voltage reference, will have degraded performance. Refer to Parameter BO10 in Table 33-12 for the minimum and maximum BOR values.

AC CHARACTERISTICS			Standar (unless Operatir	d Opera otherwing tempe	ting Con se stated rature	ditions d) -40°C ≤ -40°C ≤	(see Note 1): 3.0V to 3.6V TA \leq +85°C for Industrial TA \leq +125°C for Extended
Param No.	Symbol	Characteristic	Min.	Тур.	Max.	Units	Conditions
		ADC Ac	curacy (1	2-Bit Mo	ode) – Vr	REF-	
AD20a	Nr	Resolution	1.	2 data bi	ts	bits	
AD21a	INL	Integral Nonlinearity	-3	—	+3	LSb	VINL = AVSS = VREFL = 0V, AVDD = VREFH = 3.6V (Note 2)
AD22a	DNL	Differential Nonlinearity	≥ 1	_	< 1	LSb	VINL = AVSS = VREFL = 0V, AVDD = VREFH = 3.6V (Note 2)
AD23a	Gerr	Gain Error	-10	-	10	LSb	VINL = AVSS = VREFL = 0V, AVDD = VREFH = 3.6V (Note 2)
AD24a	EOFF	Offset Error	-5	-	5	LSb	VINL = AVSS = VREFL = 0V, AVDD = VREFH = 3.6V (Note 2)
AD25a	—	Monotonicity	—	—	_	_	Guaranteed
		Dynamic	c Perforn	nance (1	2-Bit Mo	de)	
AD30a	THD	Total Harmonic Distortion	_		-75	dB	
AD31a	SINAD	Signal to Noise and Distortion	68.5	69.5	—	dB	
AD32a	SFDR	Spurious Free Dynamic Range	80	—	—	dB	
AD33a	Fnyq	Input Signal Bandwidth	_		250	kHz	
AD34a	ENOB	Effective Number of Bits	11.09	11.3		bits	

TABLE 33-57: ADCx MODULE SPECIFICATIONS (12-BIT MODE)

Note 1: Device is functional at VBORMIN < VDD < VDDMIN, but will have degraded performance. Device functionality is tested, but not characterized. Analog modules: ADC, op amp/comparator and comparator voltage reference, will have degraded performance. Refer to Parameter BO10 in Table 33-12 for the minimum and maximum BOR values.

2: For all accuracy specifications, VINL = AVSS = VREFL = 0V and AVDD = VREFH = 3.6V.

44-Lead Plastic Quad Flat, No Lead Package (ML) - 8x8 mm Body [QFN]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	N	MILLIMETERS			
Dimension	Dimension Limits				
Number of Pins	N		44		
Pitch	e		0.65 BSC		
Overall Height	A	0.80	0.90	1.00	
Standoff	A1	0.00	0.02	0.05	
Terminal Thickness	A3	0.20 REF			
Overall Width	E	8.00 BSC			
Exposed Pad Width	E2	6.25	6.45	6.60	
Overall Length	D	8.00 BSC			
Exposed Pad Length	D2	6.25	6.45	6.60	
Terminal Width	b	0.20	0.30	0.35	
Terminal Length	L	0.30	0.40	0.50	
Terminal-to-Exposed-Pad	K	0.20	-	-	

Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

2. Package is saw singulated

3. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

REF: Reference Dimension. usually without tolerance. for information purposes only.

Microchip Technology Drawing C04-103C Sheet 2 of 2

64-Lead Plastic Thin Quad Flatpack (PT)-10x10x1 mm Body, 2.00 mm Footprint [TQFP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

Microchip Technology Drawing C04-085C Sheet 1 of 2

Note the following details of the code protection feature on Microchip devices:

- · Microchip products meet the specification contained in their particular Microchip Data Sheet.
- Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the intended manner and under normal conditions.
- There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip's Data Sheets. Most likely, the person doing so is engaged in theft of intellectual property.
- Microchip is willing to work with the customer who is concerned about the integrity of their code.
- Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not mean that we are guaranteeing the product as "unbreakable."

Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our products. Attempts to break Microchip's code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.

Information contained in this publication regarding device applications and the like is provided only for your convenience and may be superseded by updates. It is your responsibility to ensure that your application meets with your specifications. MICROCHIP MAKES NO REPRESENTATIONS OR WARRANTIES OF ANY KIND WHETHER EXPRESS OR IMPLIED, WRITTEN OR ORAL, STATUTORY OR OTHERWISE, RELATED TO THE INFORMATION, INCLUDING BUT NOT LIMITED TO ITS CONDITION, QUALITY, PERFORMANCE, MERCHANTABILITY OR FITNESS FOR PURPOSE. Microchip disclaims all liability arising from this information and its use. Use of Microchip devices in life support and/or safety applications is entirely at the buyer's risk, and the buyer agrees to defend, indemnify and hold harmless Microchip from any and all damages, claims, suits, or expenses resulting from such use. No licenses are conveyed, implicitly or otherwise, under any Microchip intellectual property rights.

QUALITY MANAGEMENT SYSTEM CERTIFIED BY DNV = ISO/TS 16949=

Trademarks

The Microchip name and logo, the Microchip logo, dsPIC, FlashFlex, flexPWR, JukeBlox, KEELOQ, KEELOQ logo, Kleer, LANCheck, MediaLB, MOST, MOST logo, MPLAB, OptoLyzer, PIC, PICSTART, PIC³² logo, RightTouch, SpyNIC, SST, SST Logo, SuperFlash and UNI/O are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

The Embedded Control Solutions Company and mTouch are registered trademarks of Microchip Technology Incorporated in the U.S.A.

Analog-for-the-Digital Age, BodyCom, chipKIT, chipKIT logo, CodeGuard, dsPICDEM, dsPICDEM.net, ECAN, In-Circuit Serial Programming, ICSP, Inter-Chip Connectivity, KleerNet, KleerNet logo, MiWi, MPASM, MPF, MPLAB Certified logo, MPLIB, MPLINK, MultiTRAK, NetDetach, Omniscient Code Generation, PICDEM, PICDEM.net, PICkit, PICtail, RightTouch logo, REAL ICE, SQI, Serial Quad I/O, Total Endurance, TSHARC, USBCheck, VariSense, ViewSpan, WiperLock, Wireless DNA, and ZENA are trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

SQTP is a service mark of Microchip Technology Incorporated in the U.S.A.

Silicon Storage Technology is a registered trademark of Microchip Technology Inc. in other countries.

GestIC is a registered trademarks of Microchip Technology Germany II GmbH & Co. KG, a subsidiary of Microchip Technology Inc., in other countries.

All other trademarks mentioned herein are property of their respective companies.

© 2013-2014, Microchip Technology Incorporated, Printed in the U.S.A., All Rights Reserved.

ISBN: 978-1-63276-507-9

Microchip received ISO/TS-16949:2009 certification for its worldwide headquarters, design and wafer fabrication facilities in Chandler and Tempe, Arizona; Gresham, Oregon and design centers in California and India. The Company's quality system processes and procedures are for its PIC® MCUs and dsPIC® DSCs, KEELoQ® code hopping devices, Serial EEPROMs, microperipherals, nonvolatile memory and analog products. In addition, Microchip's quality system for the design and mulfacture of development systems is ISO 9001:2000 certified.