

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Active
Core Processor	dsPIC
Core Size	16-Bit
Speed	70 MIPs
Connectivity	CANbus, I ² C, IrDA, LINbus, QEI, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, I ² S, Motor Control PWM, POR, PWM, WDT
Number of I/O	85
Program Memory Size	512KB (170K x 24)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	48K x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 49x10b/12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	100-TQFP
Supplier Device Package	100-TQFP (14x14)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/dspic33ep512gm710-i-pf

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

3.5 **Programmer's Model**

The programmer's model for the dsPIC33EPXXXGM3XX/ 6XX/7XX devices is shown in Figure 3-2. All registers in the programmer's model are memory-mapped and can be manipulated directly by instructions. Table 3-1 lists a description of each register.

In addition to the registers contained in the programmer's model, the dsPIC33EPXXXGM3XX/ 6XX/7XX devices contain control registers for Modulo

Addressing and Bit-Reversed Addressing, and interrupts. These registers are described in subsequent sections of this document.

All registers associated with the programmer's model are memory-mapped, as shown in Table 4-1.

Register(s) Name	Description
W0 through W15	Working Register Array
ACCA, ACCB	40-Bit DSP Accumulators
PC	23-Bit Program Counter
SR	ALU and DSP Engine Status register
SPLIM	Stack Pointer Limit Value register
TBLPAG	Table Memory Page Address register
DSRPAG	Extended Data Space (EDS) Read Page register
DSWPAG	Extended Data Space (EDS) Write Page register
RCOUNT	REPEAT Loop Count register
DCOUNT	DO Loop Count register
DOSTARTH ⁽¹⁾ , DOSTARTL ⁽¹⁾	DO Loop Start Address register (High and Low)
DOENDH, DOENDL	DO Loop End Address register (High and Low)
CORCON	Contains DSP Engine, DO Loop Control and Trap Status bits

TABLE 3-1: PROGRAMMER'S MODEL REGISTER DESCRIPTIONS

Note 1: The DOSTARTH and DOSTARTL registers are read-only.

4.3 Special Function Register Maps

TABLE 4-1: CPU CORE REGISTER MAP

SFR Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
W0	0000								W0 (WF	REG)								xxxx
W1	0002								W1									xxxx
W2	0004								W2									xxxx
W3	0006								W3									xxxx
W4	8000								W4									xxxx
W5	000A								W5									xxxx
W6	000C								W6									xxxx
W7	000E								W7									xxxx
W8	0010								W8									xxxx
W9	0012								W9									xxxx
W10	0014								W10)								xxxx
W11	0016								W11									xxxx
W12	0018								W12	2								xxxx
W13	001A								W13	}								xxxx
W14	001C								W14	ļ								xxxx
W15	001E								W15	5								xxxx
SPLIM	0020								SPLI	М								0000
ACCAL	0022								ACCA	AL.								0000
ACCAH	0024								ACCA	λH								0000
ACCAU	0026			Si	gn Extensio	n of ACCA<	:39>						AC	CAU				0000
ACCBL	0028								ACCE	BL								0000
ACCBH	002A								ACCE	зн								0000
ACCBU	002C			Si	gn Extensio	n of ACCB<	:39>						AC	CBU				0000
PCL	002E		_				Pr	ogram Cour	nter Low Wo	ord Register	_						—	0000
PCH	0030	_	—	—	—	_	_	—	_	_		Pr	ogram Co	unter High V	Vord Regist	er		0000
DSRPAG	0032	_	_	_	_	_	_				Data S	pace Read	l Page Reg	gister				0001
DSWPAG	0034	_	_	_	_	_	_	_			[Data Space	Write Pag	ge Register				0001
RCOUNT	0036	REPEAT Loop Count Register								0000								
DCOUNT	0038	DCOUNT<15:0>							0000									
DOSTARTL	003A	DOSTARTL<15:1> —							0000									
DOSTARTH	003C	—	—	_	_		_	_	_	—	_			DOSTAF	RTH<5:0>			0000
DOENDL	003E							DO	ENDL<15:1	>		-					—	0000
DOENDH	0040			_										DOEND	0H<5:0>			0000

Legend: x = unknown value on Reset; — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

DS70000689D-page 46

TABLE 4-14: PWM GENERATOR 6 REGISTER MAP

SFR Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
PWMCON6	0000	FLTSTAT	CLSTAT	TRGSTAT	FLTIEN	CLIEN	TRGIEN	ITB	MDCS	DTC1	DTC0	DTCP	—	MTBS	CAM	XPRES	IUE	0000
IOCON6	0CC2	PENH	PENL	POLH	POLL	PMOD1	PMOD0	OVRENH	OVRENL	OVRDAT1	OVRDAT0	FLTDAT1	FLTDAT0	CLDAT1	CLDAT0	SWAP	OSYNC	C000
FCLCON6	0CC4	IFLTMOD	CLSRC4	CLSRC3	CLSRC2	CLSRC1	CLSRC0	CLPOL	CLMOD	FLTSRC4	FLTSRC3	FLTSRC2	FLTSRC1	FLTSRC0	FLTPOL	FLTMOD1	FLTMOD0	00F8
PDC6	0CC6		PDC6<15:0> 000/							0000								
PHASE6	0CC8								PHASE	6<15:0>								0000
DTR6	0CCA	_	_		DTR6<13:0> 00						0000							
ALTDTR6	00000	_	_							ALTDTF	6<13:0>							0000
SDC6	0CCE								SDC6	<15:0>								0000
SPHASE6	0CD0								SPHASE	6<15:0>								0000
TRIG6	0CD2								TRGCM	P<15:0>								0000
TRGCON6	0CD4	TRGDIV3	TRGDIV2	TRGDIV1	TRGDIV0	_	_	_	_	_	_	TRGSTRT5	TRGSTRT4	TRGSTRT3	TRGSTRT2	TRGSTRT1	TRGSTRT0	0000
PWMCAP6	0CD8								PWMCA	P6<15:0>								0000
LEBCON6	0CDA	PHR	PHF	PLR	PLF	FLTLEBEN	CLLEBEN	_	_	_	_	BCH	BCL	BPHH	BPHL	BPLH	BPLL	0000
LEBDLY6	0CDC	_	_	_	_						LEB<	11:0>						0000
AUXCON6	0CDE	_	_	—	_	BLANKSEL3	BLANKSEL2	BLANKSEL1	BLANKSEL0	_	_	CHOPSEL3	CHOPSEL2	CHOPSEL1	CHOPSEL0	CHOPHEN	CHOPLEN	0000

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
NSTDIS	OVAERR	OVBERR	COVAERR	COVBERR	OVATE	OVBTE	COVTE
bit 15							bit 8
					=		
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	U-0
SFTACERR	DIV0ERR	DMACERR	MATHERR	ADDRERR	STKERR	OSCFAIL	—
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable	bit	II = I Inimplem	ented bit read	as '0'	
-n = Value at F		'1' = Rit is set	bit	·0' = Bit is clea	red	x = Bit is unk	nown
							nown
bit 15	NSTDIS: Inte	errupt Nesting	Disable bit				
	1 = Interrupt	nesting is disa	bled				
	0 = Interrupt	nesting is ena	bled				
bit 14	OVAERR: A	ccumulator A C	Overflow Trap F	lag bit			
	1 = Trap was	s caused by ov	erflow of Accur	mulator A			
hit 10		s not caused by		Coumulator A			
DIL 13			orflow of Accur	nay bit			
	1 = Trap was 0 = Trap was	s not caused by ov	y overflow of A	ccumulator B			
bit 12	COVAERR:	Accumulator A	Catastrophic (Overflow Trap F	lag bit		
	1 = Trap was	s caused by ca	tastrophic over	flow of Accumu	lator A		
	0 = Trap was	s not caused by	y catastrophic o	overflow of Accu	imulator A		
bit 11	COVBERR:	Accumulator E	Catastrophic	Overflow Trap F	lag bit		
	1 = Irap was 0 = Trap was	s caused by ca s not caused by	tastrophic over	tiow of Accumul	lator B Imulator B		
bit 10	OVATE: Acc	umulator A Ov	erflow Trap En	able bit			
	1 = Trap ove	erflow of Accum	nulator A				
	0 = Trap is d	lisabled					
bit 9	OVBTE: Acc	cumulator B Ov	erflow Trap En	able bit			
	1 = Trap ove	erflow of Accum	nulator B				
1.1.0				. 1 1. 11			
DIT 8	1 - Tran on	astrophic Over	TIOW Trap Enac	DIE DIT mulator A or R i	s onablod		
	1 = Trap of 0 0 = Trap is d	lisabled			senableu		
bit 7	SFTACERR	: Shift Accumu	ator Error Stat	us bit			
	1 = Math err	or trap was cau	used by an inva	alid accumulator	shift		
	0 = Math err	or trap was not	caused by an	invalid accumul	ator shift		
bit 6	DIVOERR: D	ivide-by-Zero I	Error Status bit				
	1 = Math err	or trap was cau	used by a divid	e-by-zero			
bit 5			r Trop Elog bit	iivide-by-zero			
bit 5	1 = DMA Co	ntroller tran ha	s occurred				
	0 = DMA Co	ntroller trap ha	s not occurred				
bit 4	MATHERR:	Math Error Sta	tus bit				
	1 = Math err	or trap has occ	urred				
	0 = Math err	or trap has not	occurred				

REGISTER 7-3: INTCON1: INTERRUPT CONTROL REGISTER 1

U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
_				IC2R<6:0>			
bit 15							bit 8
U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
_				IC1R<6:0>			
bit 7							bit C
Legend:							
R = Readat	ole bit	W = Writable	bit	U = Unimplen	nented bit, rea	ad as '0'	
-n = Value a	at POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkı	nown
bit 15	Unimpleme	ented: Read as '	0'				
bit 14-8	IC2R<6:0>: (see Table 2	Assign Input Ca	apture 2 (IC2 selection nu) to the Correspo mbers)	onding RPn P	in bits	
	1111100 =	Input tied to RPI	1124				
	•						
	•						
	0000001 = 0000000 =	Input tied to CM Input tied to Vss	P1				
bit 7	Unimpleme	ented: Read as '	0'				
bit 6-0	IC1R<6:0>: (see Table ?	Assign Input Ca 11-2 for input pin	apture 1 (IC1) selection nu) to the Correspo mbers)	onding RPn P	in bits	
	1111100 =	Input tied to RP	1124				
	•						
	•						
	0000001 =	Input tied to CM	P1				
	0000000 =	Input tied to Vss	3				

REGISTER 11-4: RPINR7: PERIPHERAL PIN SELECT INPUT REGISTER 7

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
_	_	—		—	—	—	—
bit 15							bit 8
U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—				COFSR<6:02	>		
bit 7							bit 0
Legend:							
R = Readable b	oit	W = Writable	bit	U = Unimpler	nented bit, read	as '0'	
-n = Value at P	OR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown

REGISTER 11-19: RPINR25: PERIPHERAL PIN SELECT INPUT REGISTER 25

bit 15-7 Unimplemented: Read as '0'

bit 6-0 **COFSR<6:0>:** Assign DCI Frame Sync Input (COFS) to the Corresponding RPn Pin bits (see Table 11-2 for input pin selection numbers) 1111100 = Input tied to RPI124

•

0000001 = Input tied to CMP1 0000000 = Input tied to Vss

U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—				DTCMP3R<6:0)>		
bit 15							bit 8
U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
				DTCMP2R<6:0)>		
bit 7							bit 0
Legend:							
R = Readab	ole bit	W = Writable	bit	U = Unimpler	nented bit, rea	ad as '0'	
-n = Value a	at POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown
bit 14-8	DTCMP3R< (see Table 1 1111100 =	6:0>: Assign PW 1-2 for input pin Input tied to RPI Input tied to CMI Input tied to Vss	VM Dead-Tim selection nun 124 P1	e Compensatio nbers)	n Input 3 to th	ie Correspondin	g RPn Pin bits
bit 7	Unimpleme	nted: Read as 'o)'			_	
bit 6-0	DTCMP2R< (see Table 1 1111100 =	6:0>: Assign PW 1-2 for input pin Input tied to RPI Input tied to CMI Input tied to Vss	VM Dead-Tim selection nun 124 P1	e Compensatic nbers)	n Input 2 to th	e Corresponding	g RPn Pin bits

REGISTER 11-27: RPINR39: PERIPHERAL PIN SELECT INPUT REGISTER 39

14.0 INPUT CAPTURE

- Note 1: This data sheet summarizes the features of the dsPIC33EPXXXGM3XX/6XX/7XX family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to the "dsPIC33/PIC24 Family Reference Manual", "Input Capture" (DS70000352), which is available from the Microchip web site (www.microchip.com).
 - Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

The input capture module is useful in applications requiring frequency (period) and pulse measurement. The dsPIC33EPXXXGM3XX/6XX/7XX devices support up to eight input capture channels.

Key features of the input capture module include:

- Hardware configurable for 32-bit operation in all modes by cascading two adjacent modules
- Synchronous and Trigger modes of output compare operation, with up to 31 user-selectable Trigger/Sync sources available
- A 4-level FIFO buffer for capturing and holding timer values for several events
- Configurable interrupt generation
- Up to six clock sources available for each module, driving a separate internal 16-bit counter

FIGURE 14-1: INPUT CAPTURE x MODULE BLOCK DIAGRAM

17.1 QEI Control Registers

REGISTER 17-1: QEIxCON: QEIx CONTROL REGISTER

R/W-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
QEIEN	—	QEISIDL	PIMOD2 ⁽¹⁾	PIMOD1 ⁽¹⁾	PIMOD0 ⁽¹⁾	IMV1 ^(2,4)	IMV0 ^(2,4)
bit 15							bit 8

U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	INTDIV2 ⁽³⁾	INTDIV1 ⁽³⁾	INTDIV0 ⁽³⁾	CNTPOL	GATEN	CCM1	CCM0
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15	QEIEN: QEIx Module Counter Enable bit
	1 = Module counters are enabled
	0 = Module counters are disabled, but SFRs can be read or written to
bit 14	Unimplemented: Read as '0'
bit 13	QEISIDL: QEIx Stop in Idle Mode bit
	 1 = Discontinues module operation when device enters Idle mode 0 = Continues module operation in Idle mode
bit 12-10	PIMOD<2:0>: Position Counter Initialization Mode Select bits ⁽¹⁾
	111 = Reserved
	110 = Modulo Count mode for position counter
	101 = Resets the position counter when the position counter equals the QEIxGEC register
	100 = Second index event after home event initializes the position counter with contents of the QEIxIC register
	011 = First index event after home event initializes the position counter with contents of the QEIxIC register
	010 = Next index input event initializes the position counter with contents of the QEIxIC register
	001 = Every index input event resets the position counter
	000 = Index input event does not affect position counter
bit 9-8	IMV<1:0>: Index Match Value bits ^(2,4)
	 1 = Required state of Phase B input signal for match on index pulse 0 = Required state of Phase A input signal for match on index pulse
bit 7	Unimplemented: Read as '0'
Note 1:	when $CGM<1:0> = 10$ or $CGM<1:0> = 11$, all of the QEI counters operate as timers and the PIMOD<2:0> bits are ignored.

- 2: When CCM<1:0> = 00, and QEAx and QEBx values match the Index Match Value (IMV), the POSCNTH and POSCNTL registers are reset.
- 3: The selected clock rate should be at least twice the expected maximum quadrature count rate.
- 4: The match value applies to the A and B inputs after the swap and polarity bits have been applied.

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
F15BP3	F15BP2	F15BP1	F15BP0	F14BP3	F14BP2	F14BP1	F14BP0
bit 15	-	-					bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
F13BP3	F13BP2	F13BP1	F13BP0	F12BP3	F12BP2	F12BP1	F12BP0
bit 7							bit 0
Legend:							
R = Readable bit W = Writab			bit	U = Unimpler	nented bit, read	l as '0'	
-n = Value at P	OR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown

REGISTER 21-15: CxBUFPNT4: CANx FILTERS 12-15 BUFFER POINTER REGISTER 4

bit 15-12	F15BP<3:0>: RX Buffer Mask for Filter 15 bits 1111 = Filter hits received in RX FIFO buffer 1110 = Filter hits received in RX Buffer 14
	•
	0001 = Filter hits received in RX Buffer 1 0000 = Filter hits received in RX Buffer 0
bit 11-8	F14BP<3:0>: RX Buffer Mask for Filter 14 bits (same values as bits 15-12)
bit 7-4	F13BP<3:0>: RX Buffer Mask for Filter 13 bits (same values as bits 15-12)
bit 3-0	F12BP<3:0>: RX Buffer Mask for Filter 12 bits (same values as bits 15-12)

33EPXXXGM3XX/6XX

0

4: When ADDMAEN (ADxCON4<8>) = 1, enabling DMA, only ADCxBUF0 is used.

ADCX MODULE BLOCK DIAGRAM WITH CONNECTION OPTIONS FOR ANX PINS AND OP AMPS

REGISTER 24-2. DCICON2. DCI CONTROL REGISTER 2
--

r-0	r-0	r-0	r-0	R/W-0	R/W-0	r-0	R/W-0		
r	r	r	r	BLEN1	BLEN0	r	COFSG3		
pit 15		•				•	bit		
R/W-0	R/W-0	R/W-0	r-0	R/W-0	R/W-0	R/W-0	R/W-0		
COFSG2	COFSG1	COFSG0	r	WS3	WS2	WS1	WS0		
pit 7							bit		
Legend:		r = Reserved b	it						
R = Readabl	le bit	W = Writable b	it	U = Unimpler	nented bit, rea	d as '0'			
-n = Value at	t POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unk	nown		
oit 15-12	Reserved: R	ead as '0'							
oit 11-10	BLEN<1:0>:	Buffer Length C	ontrol bits						
	11 = Four data words will be buffered between interrupts								
	10 = Three d	hree data words will be buffered between interrupts							
	01 = Two dat	a words will be b	uffered betw	een interrupts					
	00 = One dat	a word will be bu	uffered betwe	en interrupts					
oit 9	Reserved: R	ead as '0'							
oit 8-5	COFSG<3:0>	Frame Sync G	enerator Cor	ntrol bits					
	1111 = Data	frame has 16 wo	ords						
	•								
	•								
	0010 = Data frame has 3 words								
	0001 = Data	frame has 2 wor	ds						
	0000 = Data	frame has 1 wor	d						
oit 4	Reserved: R	ead as '0'							
oit 3-0	WS<3:0>: DO	CI Data Word Siz	ze bits						
	1111 = Data	word size is 16 l	oits						
	•								
	•								
	• 0100 - Data	word size is 5 bi	te						
	0011 = Data	word size is 3 bi	ts						
	0010 = Inval	id Selection. Do	not use. Un	expected resul	ts may occur.				
	0001 = Inval	id Selection. Do	not use. Un	expected resul	ts may occur.				

0000 = Invalid Selection. Do not use. Unexpected results may occur.

25.3 Step Commands and Format

TABLE 25-1: PTG STEP COMMAND FORMAT

Step Command Byte:						
		STEPx<7:0>				
	CMD<3:0>		OPTION<3:0>			
bit 7		bit 4 bit 3		bit 0		

bit 7-4	CMD<3:0>	Step Command	Command Description
	0000	PTGCTRL	Execute control command as described by OPTION<3:0>
	0001	PTGADD	Add contents of PTGADJ register to target register as described by OPTION<3:0>
		PTGCOPY	Copy contents of PTGHOLD register to target register as described by OPTION<3:0>
	001x	PTGSTRB	Copy the value contained in CMD0:OPTION<3:0> to the CH0SA<4:0> bits (AD1CHS0<4:0>)
	0100	PTGWHI	Wait for a low-to-high edge input from selected PTG trigger input as described by OPTION<3:0>
	0101	PTGWLO	Wait for a high-to-low edge input from selected PTG trigger input as described by OPTION<3:0>
	0110	Reserved	Reserved
	0111	PTGIRQ	Generate individual interrupt request as described by OPTION<3:0>
	100x	PTGTRIG	Generate individual trigger output as described by < <cmd0>:OPTION<3:0>></cmd0>
	101x	PTGJMP	Copy the value indicated in < <cmd0>:OPTION<3:0>> to the Queue Pointer (PTGQPTR) and jump to that step queue</cmd0>
	110x	PTGJMPC0	PTGC0 = PTGC0LIM: Increment the Queue Pointer (PTGQPTR)
			$PTGC0 \neq PTGC0LIM$: Increment Counter 0 (PTGC0) and copy the value indicated in < <cmd0>:OPTION<3:0>> to the Queue Pointer (PTGQPTR) and jump to that step queue</cmd0>
	111x	PTGJMPC1	PTGC1 = PTGC1LIM: Increment the Queue Pointer (PTGQPTR)
			$PTGC1 \neq PTGC1LIM$: Increment Counter 1 (PTGC1) and copy the value indicated in < <cmd0>:OPTION<3:0>> to the Queue Pointer (PTGQPTR) and jump to that step queue</cmd0>

Note 1: All reserved commands or options will execute but have no effect (i.e., execute as a NOP instruction).

2: Refer to Table 25-2 for the trigger output descriptions.

REGISTER 27-8: ALRMVAL (WHEN ALRMPTR<1:0> = 10): ALARM MONTH AND DAY VALUE REGISTER⁽¹⁾

U-0	U-0	U-0	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
—	—	_	MTHTEN0	MTHONE3	MTHONE2	MTHONE1	MTHONE0
bit 15							bit 8

U-0	U-0	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
—	—	DAYTEN1	DAYTEN0	DAYONE3	DAYONE2	DAYONE1	DAYONE0
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read a	as 'O'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-13 Unimplemented: Read as '0'

- bit 12 MTHTEN0: Binary Coded Decimal Value of Month's Tens Digit bit Contains a value of 0 or 1.
- bit 11-8 **MTHONE<3:0>:** Binary Coded Decimal Value of Month's Ones Digit bits Contains a value from 0 to 9.
- bit 7-6 Unimplemented: Read as '0'
- bit 5-4 **DAYTEN<1:0>:** Binary Coded Decimal Value of Day's Tens Digit bits Contains a value from 0 to 3.
- bit 3-0 **DAYONE<3:0>:** Binary Coded Decimal Value of Day's Ones Digit bits Contains a value from 0 to 9.
- **Note 1:** A write to this register is only allowed when RTCWREN = 1.

NOTES:

TABLE 31-1:	SYMBOLS USED IN OPCODE DESCRIPTIONS (CONTINUED)
-------------	---

Field	Description
Wm*Wm	Multiplicand and Multiplier Working register pair for Square instructions \in {W4 * W4,W5 * W5,W6 * W6,W7 * W7}
Wm*Wn	Multiplicand and Multiplier Working register pair for DSP instructions ∈ {W4 * W5,W4 * W6,W4 * W7,W5 * W6,W5 * W7,W6 * W7}
Wn	One of 16 Working registers ∈ {W0W15}
Wnd	One of 16 Destination Working registers ∈ {W0W15}
Wns	One of 16 Source Working registers ∈ {W0W15}
WREG	W0 (Working register used in File register instructions)
Ws	Source W register ∈ { Ws, [Ws], [Ws++], [Ws], [++Ws], [Ws] }
Wso	Source W register ∈ { Wns, [Wns], [Wns++], [Wns], [++Wns], [Wns], [Wns+Wb] }
Wx	X Data Space Prefetch Address register for DSP instructions ∈ {[W8] + = 6, [W8] + = 4, [W8] + = 2, [W8], [W8] - = 6, [W8] - = 4, [W8] - = 2, [W9] + = 6, [W9] + = 4, [W9] + = 2, [W9], [W9] - = 6, [W9] - = 4, [W9] - = 2, [W9 + W12], none}
Wxd	X Data Space Prefetch Destination register for DSP instructions ∈ {W4W7}
Wy	Y Data Space Prefetch Address register for DSP instructions ∈ {[W10] + = 6, [W10] + = 4, [W10] + = 2, [W10], [W10] - = 6, [W10] - = 4, [W10] - = 2, [W11] + = 6, [W11] + = 4, [W11] + = 2, [W11], [W11] - = 6, [W11] - = 4, [W11] - = 2, [W11 + W12], none}
Wyd	Y Data Space Prefetch Destination register for DSP instructions ∈ {W4W7}

TABLE 33-21:RESET, WATCHDOG TIMER, OSCILLATOR START-UP TIMER AND POWER-UP
TIMER TIMING REQUIREMENTS

AC CHARACTERISTICS			$\begin{array}{llllllllllllllllllllllllllllllllllll$					
Param No.	Symbol	Characteristic ⁽¹⁾	Min.	Тур. ⁽²⁾	Max.	Units	Conditions	
SY00	Τρυ	Power-up Period	_	400	600	μs		
SY10	Tost	Oscillator Start-up Time		1024 Tosc	_	_	Tosc = OSC1 period	
SY12	Twdt	Watchdog Timer Time-out Period		—	1.15	ms	WDTPRE = 0, WDTPOST<3:0> = 0000, Using LPRC tolerances indicated in F21 (see Table 33-19) at +85°C	
			3.4		4.6	ms	WDTPRE = 1, WDTPOST<3:0> = 0000, Using LPRC tolerances indicated in F21 (see Table 33-19) at +85°C	
SY13	Tioz	I/O H <u>igh-Im</u> pedance from MCLR Low or Watchdog Timer Reset	0.68	0.72	1.2	μs		
SY20	TMCLR	MCLR Pulse Width (low)	2	—	_	μs		
SY30	TBOR	BOR Pulse Width (low)	1	—	_	μs		
SY35	TFSCM	Fail-Safe Clock Monitor Delay		500	900	μs	-40°C to +85°C	
SY36	TVREG	Voltage Regulator Standby-to-Active Mode Transition Time		—	30	μs		
SY37	TOSCDFRC	FRC Oscillator Start-up Delay	_	—	29	μs		
SY38	TOSCDLPRC	LPRC Oscillator Start-up Delay	—	—	70	μs		

Note 1: These parameters are characterized but not tested in manufacturing.

2: Data in "Typical" column is at 3.3V, +25°C unless otherwise stated.

TABLE 33-40: SPI1 MAXIMUM DATA/CLOCK RATE SUMMARY	TABLE 33-40:	SPI1 MAXIMUM DATA/CLOCK RATE SUMMARY
---	--------------	--------------------------------------

AC CHARACTERISTICS			$\begin{array}{l} \mbox{Standard Operating Conditions: 3.0V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^\circ C \leq TA \leq +85^\circ C \mbox{ for Industrial} \\ & -40^\circ C \leq TA \leq +125^\circ C \mbox{ for Extended} \end{array}$				
Maximum Data Rate	Master Transmit Only (Half-Duplex)	Master Transmit/Receive (Full-Duplex)	Slave Transmit/Receive (Full-Duplex)	CKE	СКР	SMP	
25 MHz	Table 33-41	—	_	0,1	0,1	0,1	
25 MHz	—	Table 33-42	_	1	0,1	1	
25 MHz	—	Table 33-43		0	0,1	1	
25 MHz	—	—	Table 33-44	1	0	0	
25 MHz	—	—	Table 33-45	1	1	0	
25 MHz	_	_	Table 33-46	0	1	0	
25 MHz	_	_	Table 33-47	0	0	0	

FIGURE 33-23: SPI1 MASTER MODE (HALF-DUPLEX, TRANSMIT ONLY, CKE = 0) TIMING CHARACTERISTICS

64-Lead Plastic Quad Flat, No Lead Package (MR) – 9x9x0.9 mm Body [QFN] With 0.40 mm Contact Length

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	MILLIMETERS			
Dimension Limits		MIN	NOM	MAX
Contact Pitch	E	0.50 BSC		
Optional Center Pad Width	W2			7.35
Optional Center Pad Length	T2			7.35
Contact Pad Spacing	C1		8.90	
Contact Pad Spacing	C2		8.90	
Contact Pad Width (X64)	X1			0.30
Contact Pad Length (X64)	Y1			0.85
Distance Between Pads	G	0.20		

Notes:

1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing No. C04-2149A