

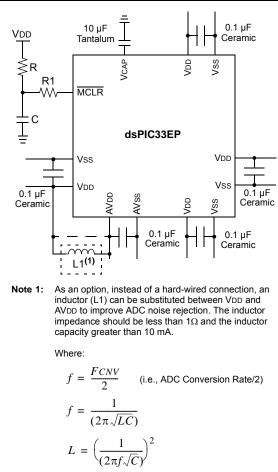
Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details


E·XFI

Details	
Product Status	Active
Core Processor	dsPIC
Core Size	16-Bit
Speed	70 MIPs
Connectivity	CANbus, I ² C, IrDA, LINbus, QEI, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, I ² S, Motor Control PWM, POR, PWM, WDT
Number of I/O	85
Program Memory Size	512KB (170K x 24)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	48K x 8
Voltage - Supply (Vcc/Vdd)	-
Data Converters	A/D 49x10b/12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	100-TQFP
Supplier Device Package	100-TQFP (14x14)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/dspic33ep512gm710t-i-pf

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

FIGURE 2-1: RECOMMENDED MINIMUM CONNECTION

2.2.1 TANK CAPACITORS

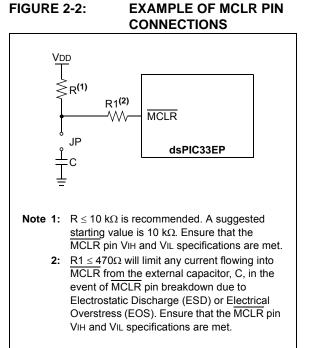
On boards with power traces running longer than six inches in length, it is suggested to use a tank capacitor for integrated circuits including DSCs to supply a local power source. The value of the tank capacitor should be determined based on the trace resistance that connects the power supply source to the device, and the maximum current drawn by the device in the application. In other words, select the tank capacitor so that it meets the acceptable voltage sag at the device. Typical values range from 4.7 μ F to 47 μ F.

2.3 CPU Logic Filter Capacitor Connection (VCAP)

A low-ESR (< 1 Ohms) capacitor is required on the VCAP pin, which is used to stabilize the voltage regulator output voltage. The VCAP pin must not be connected to VDD, and must have a capacitor greater than 4.7 μ F (10 μ F is recommended), 16V connected to ground. The type can be ceramic or tantalum. See **Section 33.0** "Electrical Characteristics" for additional information.

The placement of this capacitor should be close to the VCAP pin. It is recommended that the trace length not exceeds one-quarter inch (6 mm). See **Section 30.3 "On-Chip Voltage Regulator"** for details.

2.4 Master Clear (MCLR) Pin


The MCLR pin provides two specific device functions:

- Device Reset
- Device Programming and Debugging.

During device programming and debugging, the resistance and capacitance that can be added to the pin must be considered. Device programmers and debuggers drive the \overline{MCLR} pin. Consequently, specific voltage levels (VIH and VIL) and fast signal transitions must not be adversely affected. Therefore, specific values of R and C will need to be adjusted based on the application and PCB requirements.

For example, as shown in Figure 2-2, it is recommended that the capacitor, C, be isolated from the MCLR pin during programming and debugging operations.

Place the components as shown in Figure 2-2 within one-quarter inch (6 mm) from the MCLR pin.

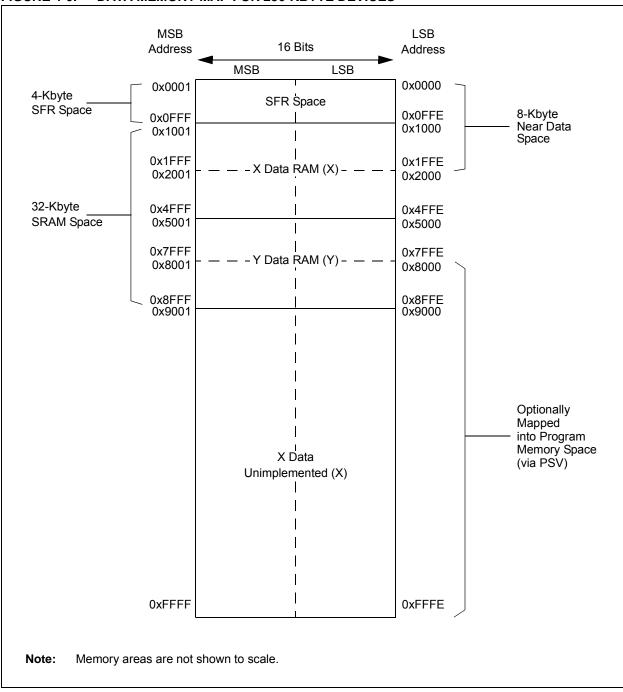


FIGURE 4-6: DATA MEMORY MAP FOR 256-KBYTE DEVICES

IABLE 4	+-/.	FIGK	EGIST															
SFR Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
PTGCST	0AC0	PTGEN	_	PTGSIDL	PTGTOGL	_	PTGSWT	PTGSSEN	PTGIVIS	PTGSTRT	PTGWDTO	_	—	—	—	PTGITM1	PTGITM0	0000
PTGCON	0AC2	PTGCLK2	PTGCLK1	PTGCLK0	PTGDIV4	PTGDIV3	PTGDIV2	PTGDIV1	PTGDIV0	PTGPWD3	PTGPWD2	PTGPWD1	PTGPWD0	_	PTGWDT2	PTGWDT1	PTGWDT0	0000
PTGBTE	0AC4	ADCTS4	ADCTS3	ADCTS2	ADCTS1	IC4TSS	IC3TSS	IC2TSS	IC1TSS	OC4CS	OC3CS	OC2CS	OC1CS	OC4TSS	OC3TSS	OC2TSS	OC1TSS	0000
PTGHOLD	0AC6				•			•	PTGł	HOLD<15:0>		•		•	•			0000
PTGT0LIM	0AC8								PTG	OLIM<15:0>								0000
PTGT1LIM	0ACA								PTG	TLIM<15:0>								0000
PTGSDLIM	0ACC								PTGS	SDLIM<15:0>								0000
PTGC0LIM	0ACE								PTGC	COLIM<15:0>								0000
PTGC1LIM	0AD0								PTGC	C1LIM<15:0>								0000
PTGADJ	0AD2								PTG	ADJ<15:0>								0000
PTGL0	0AD4								PT	GL0<15:0>								0000
PTGQPTR	0AD6		PTGQPTR<4:0> 000								0000							
PTGQUE0	0AD8				STEP1	<7:0>							STEP0	<7:0>				0000
PTGQUE1	0ADA				STEP3	<7:0>							STEP2	<7:0>				0000
PTGQUE2	0ADC				STEP5	<7:0>							STEP4	<7:0>				0000
PTGQUE3	0ADE				STEP7	<7:0>							STEP6	<7:0>				0000
PTGQUE4	0AE0				STEP9	<7:0>							STEP8	<7:0>				0000
PTGQUE5	0AE2				STEP11	<7:0>							STEP10	<7:0>				0000
PTGQUE6	0AE4				STEP13	<7:0>							STEP12	2<7:0>				0000
PTGQUE7	0AE6				STEP15	i<7:0>							STEP14	<7:0>				0000
PTGQUE8	0x0AE8				STEP17	<7:0>							STEP16	6<7:0>				0000
PTGQUE9	0x0AEA				STEP19	<7:0>							STEP18	<7:0>				0000
PTGQUE10	0x0AEC				STEP21	<7:0>							STEP20	<7:0>				0000
PTGQUE11	0x0AEE		STEP23<7:0> STEP22<7:0> 000								0000							
PTGQUE12	0x0AF0				STEP25	<7:0>							STEP24	<7:0>				0000
PTGQUE13	0x0AF2				STEP27	<7:0>							STEP26	6<7:0>				0000
PTGQUE14	0x0AF4				STEP29	<7:0>							STEP28	<7:0>				0000
PTGQUE15	0x0AF6				STEP31	<7:0>							STEP30	<7:0>				0000

TABLE 4-7: PTG REGISTER MAP

Legend: x = unknown value on Reset; — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

5.2 RTSP Operation

RTSP allows the user application to erase a single page of memory, program a row and to program two instruction words at a time. See Table 1 in the "dsPIC33EPXXXGM3XX/6XX/7XX Product Family" section for the page sizes of each device.

The Flash program memory array is organized into rows of 64 instructions or 192 bytes. RTSP allows the user application to erase a page of program memory, which consists of eight rows (512 instructions) at a time, and to program one row or two adjacent words at a time. The 8-row erase pages and single row write rows are edge-aligned, from the beginning of program memory, on boundaries of 1536 bytes and 192 bytes, respectively.

For more information on erasing and programming Flash memory, refer to the *"dsPIC33/PIC24 Family Reference Manual"*, **"Flash Programming"** (DS70609).

5.3 Programming Operations

A complete programming sequence is necessary for programming or erasing the internal Flash in RTSP mode. The processor stalls (waits) until the programming operation is finished.

For erase and program times, refer to Parameters D137a and D137b (Page Erase Time), and D138a and D138b (Word Write Cycle Time), in Table 33-13.

Setting the WR bit (NVMCON<15>) starts the operation and the WR bit is automatically cleared when the operation is finished.

5.3.1 PROGRAMMING ALGORITHM FOR FLASH PROGRAM MEMORY

Programmers can program two adjacent words (24 bits x 2) of program Flash memory at a time on every other word address boundary (0x000002, 0x000006, 0x00000A, etc.). To do this, it is necessary to erase the page that contains the desired address of the location the user wants to change. Programmers can also program a row of data (64 instruction words/ 192 bytes) at a time using the row programming feature present in these devices. For row programming, the source data is fetched directly from the data memory (RAM) on these devices. Two new registers have been provided to point to the RAM location where the source data resides. The page that has the row to be programmed must first be erased before the programming operation.

For protection against accidental operations, the write initiate sequence for NVMKEY must be used to allow any erase or program operation to proceed. After the programming command has been executed, the user application must wait for the programming time until programming is complete. The two instructions following the start of the programming sequence should be NOPS.

Refer to the *"dsPIC33/PIC24 Family Reference Manual"*, **"Flash Programming"** (DS70609) for details and code examples on programming using RTSP.

5.4 Control Registers

Six SFRs are used to read and write the program Flash memory: NVMCON, NVMKEY, NVMADR, NVMADRU, NVMSRCADRL and NVMSRCADRH.

The NVMCON register (Register 5-1) controls which blocks are to be erased, which memory type is to be programmed and the start of the programming cycle.

NVMKEY (Register 5-4) is a write-only register that is used for write protection. To start a programming or erase sequence, the user application must consecutively write 0x55 and 0xAA to the NVMKEY register.

There are two NVM Address registers: NVMADRU and NVMADR. These two registers, when concatenated, form the 24-bit Effective Address (EA) of the selected word for programming operations, or the selected page for erase operations.

The NVMADRU register is used to hold the upper 8 bits of the EA, while the NVMADR register is used to hold the lower 16 bits of the EA.

The NVMSRCADRH and NVMSRCADRL registers are used to hold the source address of the data in the data memory that needs to be written to Flash memory.

REGISTER 8-7: DMAXPAD: DMA CHANNEL X PERIPHERAL ADDRESS REGISTER⁽¹⁾

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			PAD	<15:8>			
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			PAI)<7:0>			
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable I	bit	U = Unimpler	mented bit, rea	ad as '0'	
-n = Value at F	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unki	nown

bit 15-0 PAD<15:0>: DMA Peripheral Address Register bits

Note 1: If the channel is enabled (i.e., active), writes to this register may result in unpredictable behavior of the DMA channel and should be avoided.

REGISTER 8-8: DMAXCNT: DMA CHANNEL x TRANSFER COUNT REGISTER⁽¹⁾

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0				
—	—		CNT<13:8> ⁽²⁾								
bit 15							bit 8				
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0				
			CNT<	<7:0> (2)							
bit 7							bit 0				
Legend:											
R = Readable	bit	W = Writable b	bit	U = Unimplem	nented bit, read	1 as '0'					
-n = Value at P	OR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	nown				

bit 15-14 Unimplemented: Read as '0'

bit 13-0 CNT<13:0>: DMA Transfer Count Register bits⁽²⁾

Note 1: If the channel is enabled (i.e., active), writes to this register may result in unpredictable behavior of the DMA channel and should be avoided.

2: The number of DMA transfers = CNT<13:0> + 1.

U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
_				IC2R<6:0>			
bit 15							bit 8
U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—				IC1R<6:0>			
bit 7							bit 0
Legend:							
R = Readal	ole bit	W = Writable	bit	U = Unimpler	nented bit, rea	ad as '0'	
-n = Value a	at POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown
bit 15	Unimpleme	ented: Read as '	0'				
bit 14-8		Assign Input Ca			onding RPn P	in bits	
	1111100 =	Input tied to RPI	124				
	•						
	•						
	0000001 =	Input tied to CM	P1				
		Input tied to Vss					
bit 7	Unimpleme	ented: Read as '	0'				
bit 6-0		Assign Input Ca 11-2 for input pin			onding RPn P	in bits	
	1111100 =	Input tied to RPI	124				
	•						
	•						
	0000001 =	Input tied to CM	P1				
		Input tied to Vss					

REGISTER 11-4: RPINR7: PERIPHERAL PIN SELECT INPUT REGISTER 7

REGISTER 14-2: ICxCON2: INPUT CAPTURE x CONTROL REGISTER 2 (CONTINUED)

- bit 4-0 SYNCSEL<4:0>: Input Source Select for Synchronization and Trigger Operation bits⁽⁴⁾
 - 11111 = Capture timer is unsynchronized
 - 11110 = Capture timer is unsynchronized
 - 11101 = Capture timer is unsynchronized
 - 11100 = CTMU trigger is the source for the capture timer synchronization
 - 11011 = ADC1 interrupt is the source for the capture timer synchronization⁽⁵⁾
 - 11010 = Analog Comparator 3 is the source for the capture timer synchronization⁽⁵⁾
 - 11001 = Analog Comparator 2 is the source for the capture timer synchronization⁽⁵⁾
 - 11000 = Analog Comparator 1 is the source for the capture timer synchronization⁽⁵⁾
 - 10111 = Input Capture 8 interrupt is the source for the capture timer synchronization
 - 10110 = Input Capture 7 interrupt is the source for the capture timer synchronization 10101 = Input Capture 6 interrupt is the source for the capture timer synchronization
 - 10100 = Input Capture 5 interrupt is the source for the capture timer synchronization
 - 10011 = Input Capture 4 interrupt is the source for the capture timer synchronization
 - 10010 = Input Capture 3 interrupt is the source for the capture timer synchronization
 - 10001 = Input Capture 2 interrupt is the source for the capture timer synchronization
 - 10000 = Input Capture 1 interrupt is the source for the capture timer synchronization
 - 01111 = GP Timer5 is the source for the capture timer synchronization
 - 01110 = GP Timer4 is the source for the capture timer synchronization
 - 01101 = GP Timer3 is the source for the capture timer synchronization 01100 = GP Timer2 is the source for the capture timer synchronization
 - 01100 = GP Timer2 is the source for the capture timer synchronization 01011 = GP Timer1 is the source for the capture timer synchronization
 - 01011 = OF Time is the source for the capture time synchronization (6)
 - 01001 = Capture timer is unsynchronized
 - 01000 = Output Compare 8 is the source for the capture timer synchronization
 - 00111 = Output Compare 7 is the source for the capture timer synchronization
 - 00110 = Output Compare 6 is the source for the capture timer synchronization
 - 00101 = Output Compare 5 is the source for the capture timer synchronization
 - 00100 = Output Compare 4 is the source for the capture timer synchronization
 - 00011 = Output Compare 3 is the source for the capture timer synchronization
 - 00010 = Output Compare 2 is the source for the capture timer synchronization
 - 00001 = Output Compare 1 is the source for the capture timer synchronization
 - 00000 = Capture timer is unsynchronized
- **Note 1:** The IC32 bit in both the Odd and Even ICx must be set to enable Cascade mode.
 - 2: The input source is selected by the SYNCSEL<4:0> bits of the ICxCON2 register.
 - **3:** This bit is set by the selected input source (selected by SYNCSEL<4:0> bits); it can be read, set and cleared in software.
 - 4: Do not use the ICx module as its own Sync or Trigger source.
 - 5: This option should only be selected as a trigger source and not as a synchronization source.
 - 6: Each Input Capture x module (ICx) has one PTG input source. See Section 25.0 "Peripheral Trigger Generator (PTG) Module" for more information.
 PTGO8 = IC1, IC5
 PTGO9 = IC2, IC6
 PTGO10 = IC3, IC7
 PTGO11 = IC4, IC8

16.0 HIGH-SPEED PWM MODULE

- Note 1: This data sheet summarizes the features of the dsPIC33EPXXXGM3XX/6XX/7XX family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to the "dsPIC33/PIC24 Family Reference Manual", "High-Speed PWM" (DS70645), which is available from the Microchip web site (www.microchip.com).
 - Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

The dsPIC33EPXXXGM3XX/6XX/7XX devices support a dedicated Pulse-Width Modulation (PWM) module with up to 12 outputs.

The high-speed PWMx module consists of the following major features:

- · Six PWM generators
- Two PWM outputs per PWM generator
- Individual period and duty cycle for each PWM pair
- Duty cycle, dead time, phase shift and a frequency resolution of 7.14 ns
- Independent Fault and current-limit inputs for six PWM outputs
- · Redundant output
- Center-Aligned PWM mode
- Output override control
- Chop mode (also known as Gated mode)
- Special Event Trigger
- Prescaler for input clock
- PWMxL and PWMxH output pin swapping
- Independent PWM frequency, duty cycle and phase-shift changes for each PWM generator
- Dead-time compensation
- Enhanced Leading-Edge Blanking (LEB) functionality
- Frequency resolution enhancement
- PWM capture functionality

Note: In Edge-Aligned PWM mode, the duty cycle, dead time, phase shift and frequency resolution are 7.14 ns.

The high-speed PWMx module contains up to six PWM generators. Each PWMx generator provides two PWM outputs: PWMxH and PWMxL. The master time base generator provides a synchronous signal as a common time base to synchronize the various PWM outputs. The individual PWM outputs are available on the output pins of the device. The input Fault signals and current-limit signals, when enabled, can monitor and protect the system by placing the PWM outputs into a known "safe" state.

Each PWMx can generate a trigger to the ADCx module to sample the analog signal at a specific instance during the PWM period. In addition, the high-speed PWMx module also generates a Special Event Trigger to the ADCx module, based on either of the two master time bases.

The high-speed PWMx module can synchronize itself with an external signal or can act as a synchronizing source to any external device. The SYNCI1 and SYNCI2 input pins that utilize PPS, can synchronize the high-speed PWMx module with an external signal. The SYNCO1 and SYNCO2 pins are output pins that provides a synchronous signal to an external device.

Figure 16-1 illustrates an architectural overview of the high-speed PWMx module and its interconnection with the CPU and other peripherals.

16.1 PWM Faults

The PWMx module incorporates multiple external Fault inputs, which include FLT1 and FLT2. The inputs are remappable using the PPS feature. FLT3 is available on 44-pin, 64-pin and 100-pin packages; FLT4 through FLT8 are available on specific pins on 64-pin and 100-pin packages, and FLT32, which has been implemented with Class B safety features, and is available on a fixed pin on all devices.

These Faults provide a safe and reliable way to safely shut down the PWM outputs when the Fault input is asserted.

16.1.1 PWM FAULTS AT RESET

During any Reset event, the PWMx module maintains ownership of the Class B Fault, FLT32. At Reset, this Fault is enabled in Latched mode to ensure the fail-safe power-up of the application. The application software must clear the PWM Fault before enabling the highspeed motor control PWMx module. To clear the Fault condition, the FLT32 pin must first be pulled high externally or the internal pull-up resistor in the CNPUx register can be enabled.

Note: The Fault mode may be changed using the FLTMOD<1:0> bits (FCLCONx<1:0>), regardless of the state of FLT32.

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	U-0	U-0
PHR	PHF	PLR	PLF	FLTLEBEN	CLLEBEN		
bit 15							bit
U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
_	_	BCH ⁽¹⁾	BCL ⁽¹⁾	BPHH	BPHL	BPLH	BPLL
bit 7		20					bit
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimpler	nented bit, read	l as '0'	
-n = Value at F	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown
bit 15		H Rising Edge	Triggor Enabl	o hit			
JIL 15					Blanking count	ter	
				sing edge of PV			
bit 14	PHF: PWMxH	H Falling Edge	Trigger Enab	le bit			
					e Blanking coun	ter	
	0	0 0	0	Illing edge of P	WMxH		
bit 13		Rising Edge					
				sing edge of PV	Blanking count	er	
bit 12		_uge blanking			VIVIAE		
					Blanking count	ter	
	Ų	0	00	alling edge of P	Ų		
bit 11		•	• •	anking Enable I			
				he selected Fail to the selected			
bit 10	CLLEBEN: C	Current-Limit Le	ading-Edge E	Blanking Enable	e bit		
				he selected cur to the selected	rrent-limit input I current-limit inj	put	
bit 9-6	Unimplemen	ted: Read as '	0'				
bit 5	BCH: Blankin	ng in Selected I	Blanking Sign	al High Enable	bit ⁽¹⁾		
		nking (of currer			nals) when seled	cted blanking s	ignal is high
bit 4	BCL: Blankin	g in Selected E	Blanking Signa	al Low Enable b	_{Dit} (1)		
		nking (of currer			nals) when seled	cted blanking s	ignal is low
bit 3	BPHH: Blank	ing in PWMxH	High Enable	bit			
		nking (of currer			nals) when PWN	/IxH output is h	igh
bit 2	BPHL: Blanki	ing in PWMxH	Low Enable b	pit			
		nking (of currer			nals) when PWN	/IxH output is lo	W
bit 1	BPLH: Blanki	ing in PWMxL	High Enable I	pit			
		nking (of currer			als) when PWN	/lxL output is hi	gh
	0 = No blanki	ing when PWM	xL output is h	igh			
bit 0			-	-			

REGISTER 16-22: LEBCONX: LEADING-EDGE BLANKING CONTROL REGISTER x

Note 1: The blanking signal is selected via the BLANKSELx bits in the AUXCONx register.

U-0	U-0	HS, R/C-0	R/W-0	HS, R/C-0	R/W-0	HS, R/C-0	R/W-0
_		PCHEQIRQ	PCHEQIEN	PCLEQIRQ	PCLEQIEN	POSOVIRQ	POSOVIEN
bit 15							bit 8
HS, R/C-0	R/W-0	HS, R/C-0	R/W-0	HS, R/C-0	R/W-0	HS, R/C-0	R/W-0
PCIIRQ ⁽¹⁾	PCIIEN	VELOVIRQ	VELOVIEN	HOMIRQ	HOMIEN	IDXIRQ	IDXIEN
bit 7							bit 0
Legend:		HS = Hardware		C = Clearable			
R = Readable		W = Writable b	bit		nented bit, read		
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unki	nown
bit 15-14	Unimplome	ntad. Dood oo '	,				
bit 13	-	nted: Read as '(nnara Statua hi		
DIL IO		Position Counter IT ≥ QEIxGEC	er Greater i Na	n or Equal Cor	npare Status DI	ι	
		IT < QEIXGEC					
bit 12	PCHEQIEN:	Position Counter	er Greater Tha	n or Equal Con	npare Interrupt	Enable bit	
	1 = Interrupt						
	0 = Interrupt				o		
bit 11		Position Counter $T \leq QEIxLEC$	er Less Than o	r Equal Compa	are Status bit		
		$T \ge QEIXLEC$					
bit 10	PCLEQIEN:	Position Counte	er Less Than o	r Equal Compa	re Interrupt En	able bit	
	1 = Interrupt						
	0 = Interrupt						
bit 9		Position Counter	er Overflow Sta	atus bit			
		has occurred	d				
bit 8		Position Counte		errupt Enable b	bit		
	1 = Interrupt			I			
	0 = Interrupt						
bit 7		sition Counter (H	÷.	ation Process	Complete Statu	us bit ⁽¹⁾	
		IT was reinitializ					
bit 6		IT was not reinit sition Counter (H		ation Process	Complete inter	runt Enable bit	
DILO	1 = Interrupt	-	oming) mitianz	auoniniocess			
	0 = Interrupt						
bit 5	VELOVIRQ:	Velocity Counter	r Overflow Sta	tus bit			
		has occurred					
		low has occurre			.,		
bit 4		Velocity Counte	r Overflow Inte	errupt Enable b	It		
	1 = Interrupt 0 = Interrupt						
bit 3	-	atus Flag for Ho	me Event Stat	us bit			
		ent has occurre					
	0 = No home	e event has occu	irred				

REGISTER 17-3: QEIxSTAT: QEIx STATUS REGISTER

Note 1: This status bit is only applicable to PIMOD<2:0> = 011 and 100 modes.

REGISTER 17-10: INDXxHLD: INDEX COUNTER x HOLD REGISTER

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			INDXH	LD<15:8>			
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			INDXH	ILD<7:0>			
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable b	oit	U = Unimplen	nented bit, read	d as '0'	
-n = Value at P	OR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	nown

bit 15-0 INDXHLD<15:0>: Holding Register for Reading and Writing INDXxCNT bits

REGISTER 17-11: QEIXICH: QEIX INITIALIZATION/CAPTURE HIGH WORD REGISTER

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			QEIIC	<31:24>			
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			QEIIC	23:16>			
bit 7							bit C
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimplen	nented bit, rea	ad as '0'	
-n = Value at P	OR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unki	nown

bit 15-0 QEIIC<31:16>: High Word Used to Form 32-Bit Initialization/Capture Register (QEIxIC) bits

REGISTER 17-12: QEIxICL: QEIx INITIALIZATION/CAPTURE LOW WORD REGISTER

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			QEIIC	C<15:8>			
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			QEII	C<7:0>			
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimplen	nented bit, rea	d as '0'	
-n = Value at P	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	nown
L							

bit 15-0 QEIIC<15:0>: Low Word Used to Form 32-Bit Initialization/Capture Register (QEIxIC) bits

REGISTER 18-2: SPIXCON1: SPIX CONTROL REGISTER 1 (CONTINUED)

- bit 4-2 SPRE<2:0>: Secondary Prescale bits (Master mode)⁽³⁾ 111 = Secondary prescale 1:1
 - 110 = Secondary prescale 2:1

 - 000 = Secondary prescale 8:1
- bit 1-0 **PPRE<1:0>:** Primary Prescale bits (Master mode)⁽³⁾
 - 11 = Primary prescale 1:1
 - 10 = Primary prescale 4:1
 - 01 = Primary prescale 16:1
 - 00 = Primary prescale 64:1
- Note 1: The CKE bit is not used in Framed SPI modes. Program this bit to '0' for Framed SPI modes (FRMEN = 1).
 - 2: This bit must be cleared when FRMEN = 1.
 - **3:** Do not set both primary and secondary prescalers to the value of 1:1.

REGISTER 28-1: PMCON: PARALLEL MASTER PORT CONTROL REGISTER⁽³⁾ (CONTINUED)

- bit 3 **CS1P:** Chip Select 0 Polarity bit⁽¹⁾ 1 = Active-high (PMCS1/PMCS)⁽²⁾ 0 = Active-low (PMCS1/PMCS)
- bit 2 **BEP:** Byte Enable Polarity bit
 - 1 = Byte enable is active-high (PMBE)
 - 0 = Byte enable is active-low (PMBE)
- bit 1
 WRSP: Write Strobe Polarity bit

 For Slave Modes and Master Mode 2 (PMMODE<9:8> = 00, 01, 10):

 1 = Write strobe is active-high (PMWR)

 0 = Write strobe is active-low (PMWR)

 For Master Mode 1 (PMMODE<9:8> = 11):

 1 = Enables strobe active-high (PMENB)

 0 = Enables strobe active-low (PMENB)

 0 = Enables strobe active-low (PMENB)

 bit 0
 RDSP: Read Strobe Polarity bit

 For Slave Modes and Master Mode 2 (PMMODE<9:8> = 00, 01, 10):

 1 = Read strobe is active-high (PMRD)
 - 0 = Read strobe is active-ligh (PMRD)
 - 0 Read Strobe is active-low (FIVIRD)
 - For Master Mode 1 (PMMODE<9:8> = 11):
 - 1 = Enables strobe active-high (PMRD/PMWR)
 - 0 = Enables strobe active-low (PMRD/PMWR)
- **Note 1:** These bits have no effect when their corresponding pins are used as address lines.
 - 2: PMCS1 applies to Master mode and PMCS applies to Slave mode.
 - 3: This register is not available on 44-pin devices.

33.0 ELECTRICAL CHARACTERISTICS

This section provides an overview of dsPIC33EPXXXGM3XX/6XX/7XX electrical characteristics. Additional information will be provided in future revisions of this document as it becomes available.

Absolute maximum ratings for the dsPIC33EPXXXGM3XX/6XX/7XX family are listed below. Exposure to these maximum rating conditions for extended periods may affect device reliability. Functional operation of the device at these or any other conditions above the parameters indicated in the operation listings of this specification is not implied.

Absolute Maximum Ratings

(See Note 1)

Ambient temperature under bias	40°C to +125°C
Storage temperature	65°C to +160°C
Voltage on VDD with respect to Vss	0.3V to +4.0V
Voltage on any pin that is not 5V tolerant with respect to Vss ⁽³⁾	0.3V to (VDD + 0.3V)
Voltage on any 5V tolerant pin with respect to Vss when VDD $\geq 3.0V^{(3)}$	0.3V to +5.5V
Voltage on any 5V tolerant pin with respect to Vss when $VDD < 3.0V^{(3)}$	-0.3V to +3.6V
Voltage on VCAP with respect to Vss	1.62V to 1.98V
Maximum current out of Vss pin	350 mA
Maximum current into Vod pin ⁽²⁾	350 mA
Maximum current sunk by any I/O pin	20 mA
Maximum current sourced by I/O pin	
Maximum current sourced/sunk by all ports ^(2,4)	200 mA

- **Note 1:** Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at those or any other conditions above those indicated in the operational listings of this specification is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability.
 - 2: Maximum allowable current is a function of device maximum power dissipation (see Table 33-2).
 - 3: See the "Pin Diagrams" section for the 5V tolerant pins.
 - 4: Exceptions are: RA3, RA4, RA7, RA9, RA10, RB7-RB15, RC3, RC15, RD1-RD4, which are able to sink 30 mA and source 20 mA.

DC CHARACTERISTICS			(unless oth	perating Condition erwise stated) emperature -40°C : -40°C :			
Parameter No.	Typ. ⁽²⁾	Max.	Units		Conditions		
Idle Current (III	dle) ⁽¹⁾			·			
DC40d	1.5	8.0	mA	-40°C			
DC40a	1.5	8.0	mA	+25°C	3.3V	10 MIPS	
DC40b	1.5	8.0	mA	+85°C	3.3V		
DC40c	1.5	8.0	mA	+125°C			
DC41d	2.0	12.0	mA	-40°C			
DC41a	2.0	12.0	mA	+25°C	3.3V	20 MIPS	
DC41b	2.0	12.0	mA	+85°C	3.3V	20 1011 3	
DC41c	2.0	12.0	mA	+125°C			
DC42d	5.5	15.0	mA	-40°C			
DC42a	5.5	15.0	mA	+25°C	3.3V	40 MIPS	
DC42b	5.5	15.0	mA	+85°C	3.3V	40 10117-3	
DC42c	5.5	15.0	mA	+125°C			
DC43d	9.0	20.0	mA	-40°C			
DC43a	9.0	20.0	mA	+25°C	3.3V	60 MIPS	
DC43b	9.0	20.0	mA	+85°C	3.3V		
DC43c	9.0	20.0	mA	+125°C			
DC44d	10.0	25.0	mA	-40°C			
DC44a	10.0	25.0	mA	+25°C	3.3V	70 MIPS	
DC44b	10.0	25.0	mA	+85°C]		

TABLE 33-7:	DC CHARACTERISTICS: IDLE CURRENT (IIDLE)
-------------	--

Note 1: Base Idle current (IIDLE) is measured as follows:

 CPU core is off, oscillator is configured in EC mode and external clock is active, OSC1 is driven with external square wave from rail-to-rail (EC clock overshoot/undershoot < 250 mV required)

- CLKO is configured as an I/O input pin in the Configuration Word
- · All I/O pins are configured as outputs and driving low
- $\overline{\text{MCLR}}$ = VDD, WDT and FSCM are disabled
- No peripheral modules are operating or being clocked (defined PMDx bits are all ones)
- The NVMSIDL bit (NVMCON<12>) = 1 (i.e., Flash regulator is set to standby while the device is in Idle mode)
- The VREGSF bit (RCON<11>) = 0 (i.e., Flash regulator is set to standby while the device is in Sleep mode)
- JTAG is disabled
- 2: Data in the "Typical" column is at 3.3V, +25°C unless otherwise specified.

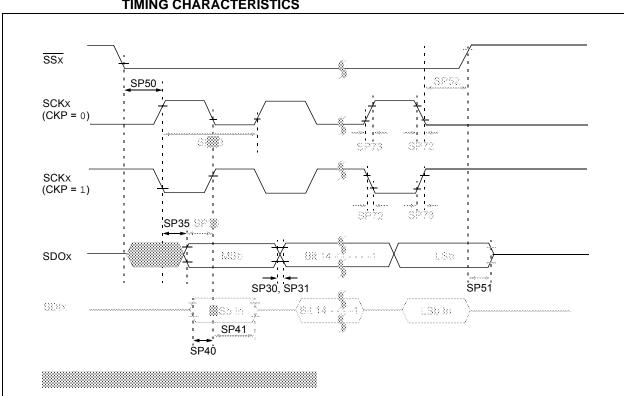
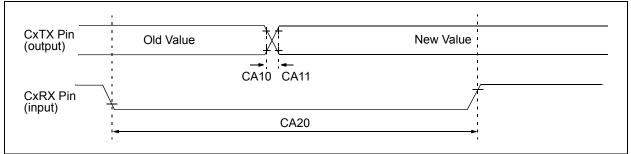
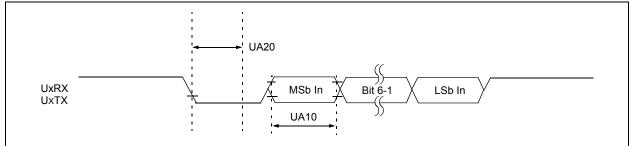



FIGURE 33-22: SPI2 AND SPI3 SLAVE MODE (FULL-DUPLEX, CKE = 0, CKP = 0, SMP = 0) TIMING CHARACTERISTICS


TABLE 33-50: CANx MODULE I/O TIMING REQUIREMENTS

AC CHARACTERISTICS		$\begin{array}{l} \mbox{Standard Operating Conditions: 3.0V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industrial} \\ & -40^{\circ}C \leq TA \leq +125^{\circ}C \mbox{ for Extended} \end{array}$					
Param No.	Symbol	Characteristic ⁽¹⁾	Min.	Тур. ⁽²⁾	Max.	Units	Conditions
CA10	TIOF	Port Output Fall Time		_	_	ns	See Parameter DO32
CA11	TIOR	Port Output Rise Time	_	_	_	ns	See Parameter DO31
CA20	TCWF	Pulse Width to Trigger CAN Wake-up Filter	120	_		ns	

Note 1: These parameters are characterized but not tested in manufacturing.

2: Data in "Typical" column is at 3.3V, +25°C unless otherwise stated. Parameters are for design guidance only and are not tested.

FIGURE 33-36: UARTX MODULE I/O TIMING CHARACTERISTICS

TABLE 33-51: UARTx MODULE I/O TIMING REQUIREMENTS

AC CHARACTERISTICS			Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated) Operating temperature $-40^{\circ}C \le TA \le +125^{\circ}C$				
Param No.	Symbol	Characteristic ⁽¹⁾	Min.	Typ. ⁽²⁾	Max.	Units	Conditions
UA10	TUABAUD	UARTx Baud Time	66.67			ns	
UA11	FBAUD	UARTx Baud Frequency	—		15	Mbps	
UA20	TCWF	Start Bit Pulse Width to Trigger UARTx Wake-up	500	_	_	ns	

Note 1: These parameters are characterized but not tested in manufacturing.

^{2:} Data in "Typical" column is at 3.3V, +25°C unless otherwise stated. Parameters are for design guidance only and are not tested.

DC CHARACTERISTICS		Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated) Operating temperature $-40^{\circ}C \le TA \le +150^{\circ}C$					
Param.	Symbol	Characteristic	Min. Typ. Max. Units				Conditions
HDO10	Vol	Output Low Voltage 4x Sink Driver Pins ⁽²⁾		—	0.4	V	IOL ≤ 5 mA, VDD = 3.3V (Note 1)
		Output Low Voltage 8x Sink Driver Pins ⁽³⁾	—	—	0.4	V	IOL ≤ 8 mA, VDD = 3.3V (Note 1)
HDO20 Voh	Vон	Output High Voltage 4x Source Driver Pins ⁽²⁾	2.4	—	—	V	ІОн ≥ -10 mA, VDD = 3.3V (Note 1)
		Output High Voltage 8x Source Driver Pins ⁽³⁾	2.4	—	—	V	ІОн ≥ 15 mA, VDD = 3.3V (Note 1)
HDO20A Vo	Von1	1 Output High Voltage 4x Source Driver Pins ⁽²⁾	1.5	—	—	V	IOH ≥ -3.9 mA, VDD = 3.3V (Note 1)
			2.0	—	—		IOH ≥ -3.7 mA, VDD = 3.3V (Note 1)
			3.0	—	—		ІОн ≥ -2 mA, VDD = 3.3V (Note 1)
		Output High Voltage 8x Source Driver Pins ⁽³⁾	1.5	—	—	V	ІОН ≥ -7.5 mA, VDD = 3.3V (Note 1)
			2.0	—	—		IOH ≥ -6.8 mA, VDD = 3.3V (Note 1)
			3.0	—	—		IOH ≥ -3 mA, VDD = 3.3V (Note 1)

TABLE 34-8: DC CHARACTERISTICS: I/O PIN OUTPUT SPECIFICATIONS

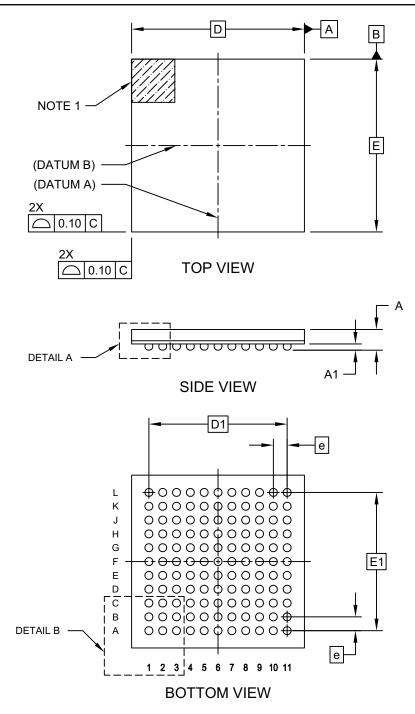
Note 1: Parameters are characterized, but not tested.

2: Includes all I/O pins that are not 8x Sink Driver pins (see below).

3: Includes the following pins:

For 44-pin devices: RA3, RA4, RA7, RA9, RA10, RB7, RB<15:9>, RC1 and RC<9:3> **For 64-pin devices:** RA4, RA7, RA<10:9>, RB7, RB<15:9>, RC1, RC<9:3>, RC15 and RG<8:7> **For 100-pin devices:** RA4, RA7, RA9, RA10, RB7, RB<15:9>, RC1, RC<9:3>, RC15, RD<3:1> and RG<8:6>

TABLE 34-9: DC CHARACTERISTICS: PROGRAM MEMORY


DC CHARACTERISTICS		Standard Operating Conditions: 3.0V to 3.6V(unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +150^{\circ}C$					
Param.	Symbol	Characteristic ⁽¹⁾	Min. Typ. Max. Units Conditions				
-		Program Flash Memory					
HD130	Ер	Cell Endurance	10,000	_	_	E/W	-40°C to +150°C ⁽²⁾
HD134	Tretd	Characteristic Retention	20	_	—	Year	1000 E/W cycles or less and no other specifications are violated

Note 1: These parameters are assured by design, but are not characterized or tested in manufacturing.

2: Programming of the Flash memory is allowed up to +150°C.

121-Ball Plastic Thin Profile Fine Pitch Ball Grid Array (BG) - 10x10x1.10 mm Body [TFBGA]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

Microchip Technology Drawing C04-148 Rev F Sheet 1 of 2

PMP Pinout and Connections to	
External Devices	
Programmer's Model	
PTG Module	
QEIx Module	
Recommended Minimum Connection	22
Remappable Input for U1RX	
Reset System	111
RTCC Module	
Shared Port Structure	
Single-Phase Synchronous Buck Converter	25
SPIx Module	
Suggested Oscillator Circuit Placement	23
Type B Timer (Timer2/4/6/8)	214
Type B/Type C Timer Pair (32-Bit Timer)	
Type C Timer (Timer3/5/7/9)	
UARTx Module	
User-Programmable Blanking Function	
Watchdog Timer (WDT)	417
Brown-out Reset (BOR)	416

С

C Compilers MPLAB XC Compilers		430
CAN Module		430
Control Registers		207
Message Buffers		
Word 0		
Word 1		
Word 2		
Word 3		
Word 4		
Word 5		
Word 6		
Word 7		
Modes of Operation		
Overview		
CAN Module (CAN)		
Charge Time Measurement Unit (CTMU)		
Code Examples		
IC1 Connection to HOME1 QEI1 Digital		
Filter Input on Pin 43		. 166
PORTB Write/Read		. 164
PWM1 Write-Protected Register		
Unlock Sequence		230
PWRSAV Instruction Syntax		153
Code Protection	.411,	418
CodeGuard Security	.411,	418
Configuration Bits		.411
Description		.413
CPU		27
Addressing Modes		
Arithmetic Logic Unit (ALU)		
Control Registers		
Data Space Addressing		27
DSP Engine		35
Instruction Set		27
Programmer's Model		
Register Descriptions		29
CTMU		
Control Registers		
Customer Change Notification Service		536
Customer Notification Service		
Customer Support		536

D

Data Address Space
Memory Map for 128-Kbyte Devices
Memory Map for 256-Kbyte Devices
Memory Map for 512-Kbyte Devices
Near Data Space 41
Organization and Alignment 41
SFR Space 41
Width 41
Data Converter Interface (DCI) Module
Data Memory
Arbitration and Bus Master Priority
DC Characteristics
Brown-out Reset (BOR) 443
CTMU Current Source 490
Doze Current (IDOZE) 439, 501
Filter Capacitor (CEFC) Specifications 435
High Temperature 500
I/O Pin Input Specifications 440
I/O Pin Output Specifications 443, 502
Idle Current (IIDLE)
Op Amp/Comparator Specifications 488
Op Amp/Comparator Voltage
Reference Specifications 489
Operating Current (IDD) 436, 501
Operating MIPS vs. Voltage 434, 500
Power-Down Current (IPD) 438, 500
Program Memory 444, 502
Temperature and Voltage 500
Temperature and Voltage Specifications
Thermal Operating Conditions
Thermal Packaging Characteristics
DCI
Control Registers 344
Introduction 343
Demo/Development Boards, Evaluation
and Starter Kits 432
Development Support 429
Third-Party Tools 432
DMA Controller
Channel to Peripheral Associations 130
Control Registers 132
DMAxCNT 132
DMAxCON 132
DMAxPAD 132
DMAxREQ 132
DMAxSTAL/H 132
DMAxSTBL/H 132
Supported Peripherals 129
Doze Mode 155
E

Electrical Characteristics	433
AC	445, 503
Equations	
Device Operating Frequency	144
Fosc Calculation	144
Fvco Calculation	144
Errata	12