

Welcome to **E-XFL.COM**

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded - Microcontrollers</u>"

Details	
Product Status	Not For New Designs
Core Processor	R8C
Core Size	16-Bit
Speed	20MHz
Connectivity	SIO, UART/USART
Peripherals	LED, POR, Voltage Detect, WDT
Number of I/O	13
Program Memory Size	4KB (4K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	384 x 8
Voltage - Supply (Vcc/Vdd)	2.7V ~ 5.5V
Data Converters	-
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	20-LSSOP (0.173", 4.40mm Width)
Supplier Device Package	20-LSSOP
Purchase URL	https://www.e-xfl.com/product-detail/renesas-electronics-america/r5f21181dsp-u0

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Notice

- 1. All information included in this document is current as of the date this document is issued. Such information, however, is subject to change without any prior notice. Before purchasing or using any Renesas Electronics products listed herein, please confirm the latest product information with a Renesas Electronics sales office. Also, please pay regular and careful attention to additional and different information to be disclosed by Renesas Electronics such as that disclosed through our website.
- Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights
 of third parties by or arising from the use of Renesas Electronics products or technical information described in this document.
 No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights
 of Renesas Electronics or others.
- 3. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part.
- 4. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for the incorporation of these circuits, software, and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by you or third parties arising from the use of these circuits, software, or information.
- 5. When exporting the products or technology described in this document, you should comply with the applicable export control laws and regulations and follow the procedures required by such laws and regulations. You should not use Renesas Electronics products or the technology described in this document for any purpose relating to military applications or use by the military, including but not limited to the development of weapons of mass destruction. Renesas Electronics products and technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or regulations.
- 6. Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics does not warrant that such information is error free. Renesas Electronics assumes no liability whatsoever for any damages incurred by you resulting from errors in or omissions from the information included herein.
- 7. Renesas Electronics products are classified according to the following three quality grades: "Standard", "High Quality", and "Specific". The recommended applications for each Renesas Electronics product depends on the product's quality grade, as indicated below. You must check the quality grade of each Renesas Electronics product before using it in a particular application. You may not use any Renesas Electronics product for any application categorized as "Specific" without the prior written consent of Renesas Electronics. Further, you may not use any Renesas Electronics product for any application for which it is not intended without the prior written consent of Renesas Electronics. Renesas Electronics shall not be in any way liable for any damages or losses incurred by you or third parties arising from the use of any Renesas Electronics product for an application categorized as "Specific" or for which the product is not intended where you have failed to obtain the prior written consent of Renesas Electronics. The quality grade of each Renesas Electronics product is "Standard" unless otherwise expressly specified in a Renesas Electronics data sheets or data books, etc.
 - "Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools; personal electronic equipment; and industrial robots.
 - "High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anti-crime systems; safety equipment; and medical equipment not specifically designed for life support.
 - "Specific": Aircraft; aerospace equipment; submersible repeaters; nuclear reactor control systems; medical equipment or systems for life support (e.g. artificial life support devices or systems), surgical implantations, or healthcare intervention (e.g. excision, etc.), and any other applications or purposes that pose a direct threat to human life.
- 8. You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics, especially with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or damages arising out of the use of Renesas Electronics products beyond such specified ranges.
- 9. Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Further, Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to guard them against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a Renesas Electronics product, such as safety design for hardware and software including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult, please evaluate the safety of the final products or system manufactured by you.
- 10. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. Please use Renesas Electronics products in compliance with all applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive. Renesas Electronics assumes no liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations.
- 11. This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written consent of Renesas Electronics
- 12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products, or if you have any other inquiries.
- (Note 1) "Renesas Electronics" as used in this document means Renesas Electronics Corporation and also includes its majority-owned subsidiaries.
- (Note 2) "Renesas Electronics product(s)" means any product developed or manufactured by or for Renesas Electronics.

R8C/18 Group, R8C/19 Group SINGLE-CHIP 16-BIT CMOS MCU

REJ03B0124-0140 Rev.1.40 Apr 14, 2006

1. Overview

These MCUs are fabricated using a high-performance silicon gate CMOS process, embedding the R8C/Tiny Series CPU core, and is packaged in a 20-pin molded-plastic LSSOP, SDIP or a 28-pin plastic molded-HWQFN. It implements sophisticated instructions for a high level of instruction efficiency. With 1 Mbyte of address space, they are capable of executing instructions at high speed.

Furthermore, the R8C/19 Group has on-chip data flash ROM (1 KB x 2 blocks).

The difference between the R8C/18 Group and R8C/19 Group is only the presence or absence of data flash ROM. Their peripheral functions are the same.

1.1 Applications

Electric household appliances, office equipment, housing equipment (sensors, security systems), general industrial equipment, audio equipment, etc.

Functions and Specifications for R8C/19 Group Table 1.2

	Item	Specification
CPU	Number of fundamental	89 instructions
	instructions	
	Minimum instruction	50 ns (f(XIN) = 20 MHz, VCC = 3.0 to 5.5 V)
	execution time	100 ns (f(XIN) = 10 MHz, VCC = 2.7 to 5.5 V)
	Operation mode	Single-chip
	Address space	1 Mbyte
	Memory capacity	Refer to Table 1.4 Product Information for R8C/19
		Group
Peripheral	Ports	I/O ports: 13 pins (including LED drive port)
Functions		Input port: 3 pins
	LED drive ports	I/O ports: 4 pins
	Timers	Timer X: 8 bits x 1 channel, timer Z: 8 bits x 1 channel
		(Each timer equipped with 8-bit prescaler)
		Timer C: 16 bits x 1 channel
		(Input capture and output compare circuits)
	Serial interfaces	1 channel
		Clock synchronous serial I/O, UART
		1 channel
		UART
	Comparator	1-bit comparator: 1 circuit, 4 channels
	Watchdog timer	15 bits x 1 channel (with prescaler)
		Reset start selectable, count source protection mode
	Interrupts	Internal: 10 sources, External: 4 sources, Software: 4
		sources,
		Priority levels: 7 levels
	Clock generation circuits	2 circuits
		Main clock generation circuit (with on-chip feedback
		resistor)
		On-chip oscillator (high speed, low speed)
		High-speed on-chip oscillator has frequency
		adjustment function
	Oscillation stop detection	Main clock oscillation stop detection function
	function	·
	Voltage detection circuit	On-chip
	Power-on reset circuit	On-chip
Electric	Supply voltage	VCC = 3.0 to 5.5 V (f(XIN) = 20 MHz)
Characteristics		VCC = 2.7 to 5.5 V (f(XIN) = 10 MHz)
	Current consumption	Typ. 9 mA (VCC = 5.0 V, f(XIN) = 20 MHz, comparator stopped)
		Typ. 5 mA (VCC = 3.0 V, f(XIN) = 10MHz, comparator stopped)
		Typ. 35 μ A (VCC = 3.0 V, wait mode, peripheral clock off)
		Typ. 0.7 μA (VCC = 3.0 V, stop mode)
Flash Memory	Programming and erasure voltage	VCC = 2.7 to 5.5 V
	Programming and erasure	10,000 times (data flash)
	endurance	1,000 times (program ROM)
Operating Ambi	ent Temperature	-20 to 85°C
		-40 to 85°C (D version)
Package		20-pin molded-plastic LSSOP
		20-pin molded-plastic SDIP
		28-pin molded-plastic HWQFN

1.3 Block Diagram

Figure 1.1 shows a Block Diagram.

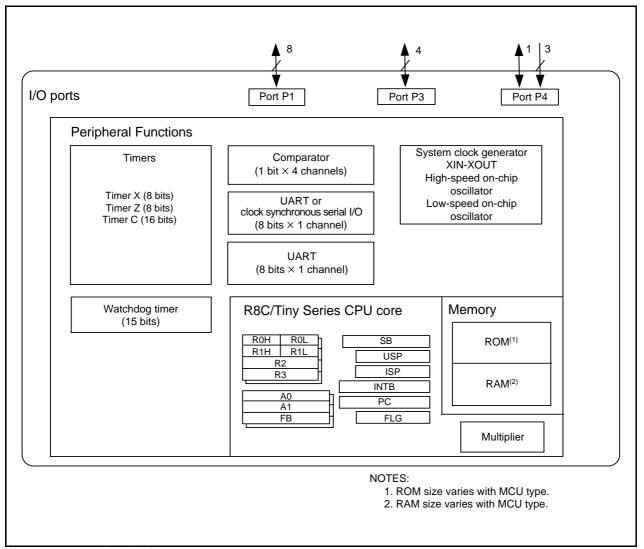


Figure 1.1 Block Diagram

1.4 Product Information

Table 1.3 lists Product Information for R8C/18 Group and Table 1.4 lists Product Information for R8C/19 Group.

Table 1.3 Product Information for R8C/18 Group

Current of Apr. 2006

Type No.	ROM Capacity	RAM Capacity	Package Type	Remarks
R5F21181SP	4 Kbytes	384 bytes	PLSP0020JB-A	Flash memory version
R5F21182SP	8 Kbytes	512 bytes	PLSP0020JB-A	
R5F21183SP	12 Kbytes	768 bytes	PLSP0020JB-A	
R5F21184SP	16 Kbytes	1 Kbyte	PLSP0020JB-A	
R5F21181DSP (D)	4 Kbytes	384 bytes	PLSP0020JB-A	D version
R5F21182DSP (D)	8 Kbytes	512 bytes	PLSP0020JB-A	
R5F21183DSP (D)	12 Kbytes	768 bytes	PLSP0020JB-A	
R5F21184DSP (D)	16 Kbytes	1 Kbyte	PLSP0020JB-A	
R5F21181DD	4 Kbytes	384 bytes	PRDP0020BA-A	Flash memory version
R5F21182DD	8 Kbytes	512 bytes	PRDP0020BA-A	
R5F21183DD	12 Kbytes	768 bytes	PRDP0020BA-A	
R5F21184DD	16 Kbytes	1 Kbyte	PRDP0020BA-A	
R5F21182NP	8 Kbytes	512 bytes	PWQN0028KA-B	Flash memory version
R5F21183NP	12 Kbytes	768 bytes	PWQN0028KA-B	
R5F21184NP	16 Kbytes	1 Kbyte	PWQN0028KA-B	

(D): Under Development

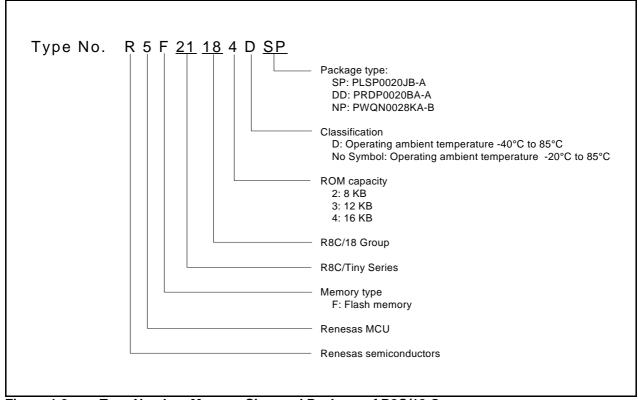


Figure 1.2 Type Number, Memory Size, and Package of R8C/18 Group

1.5 Pin Assignments

Figure 1.4 shows Pin Assignments for PLSP0020JB-A Package (Top View), Figure 1.5 shows Pin Assignments for PRDP0020BA-A Package (Top View) and Figure 1.6 shows Pin Assignments for PWQN0028KA-B Package (Top View).

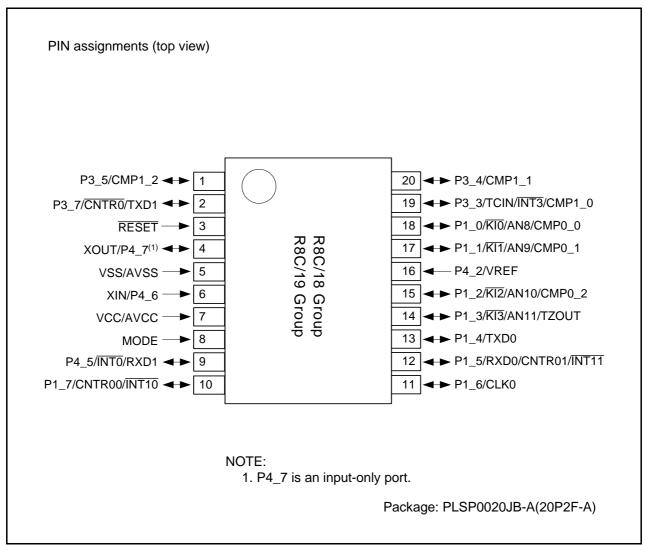


Figure 1.4 Pin Assignments for PLSP0020JB-A Package (Top View)

Page 7 of 38

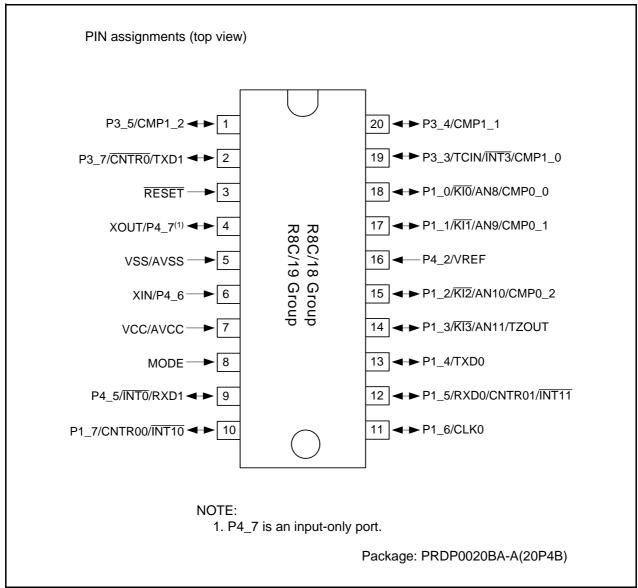


Figure 1.5 Pin Assignments for PRDP0020BA-A Package (Top View)

1.6 Pin Functions

Table 1.5 lists Pin Functions, Table 1.6 lists Pin Name Information by Pin Number of PLSP0020JB-A, PRDP0020BA-A packages, and Table 1.7 lists Pin Name Information by Pin Number of PWQN0028KA-B package.

Table 1.5 Pin Functions

Туре	Symbol	I/O Type	Description
Power supply input	VCC VSS	I	Apply 2.7 V to 5.5 V to the VCC pin. Apply 0 V to the VSS pin.
Analog power supply input	AVCC, AVSS	I	Power supply for the comparator Connect a capacitor between AVCC and AVSS.
Reset input	RESET	I	Input "L" on this pin resets the MCU.
MODE	MODE	I	Connect this pin to VCC via a resistor.
Main clock input	XIN	I	These pins are provided for main clock generation circuit I/O. Connect a ceramic resonator or a crystal oscillator between the XIN and XOUT pins.
Main clock output	XOUT	0	To use an external clock, input it to the XIN pin and leave the XOUT pin open.
INT interrupt	INTO, INT1, INT3	I	INT interrupt input pins
Key input interrupt	KI0 to KI3	I	Key input interrupt input pins
Timer X	CNTR0	I/O	Timer X I/O pin
	CNTR0	0	Timer X output pin
Timer Z	TZOUT	0	Timer Z output pin
Timer C	TCIN	I	Timer C input pin
	CMP0_0 to CMP0_2, CMP1_0 to CMP1_2	0	Timer C output pins
Serial interface	CLK0	I/O	Transfer clock I/O pin
	RXD0, RXD1	I	Serial data input pins
	TXD0, TXD1	0	Serial data output pins
Reference voltage input	VREF	I	Reference voltage input pin to comparator
Comparator	AN8 to AN11	I	Analog input pins to comparator
I/O port	P1_0 to P1_7, P3_3 to P3_5, P3_7, P4_5	I/O	CMOS I/O ports. Each port has an I/O select direction register, allowing each pin in the port to be directed for input or output individually. Any port set to input can be set to use a pull-up resistor or not by a program. P1_0 to P1_3 also function as LED drive ports.
Input port	P4_2, P4_6, P4_7	I	Input-only ports

I: Input C

O: Output

I/O: Input and output

2.8.7 Interrupt Enable Flag (I)

The I flag enables maskable interrupts.

Interrupts are disabled when the I flag is set to 0, and are enabled when the I flag is set to 1. The I flag is set to 0 when an interrupt request is acknowledged.

2.8.8 Stack Pointer Select Flag (U)

ISP is selected when the U flag is set to 0; USP is selected when the U flag is set to 1.

The U flag is set to 0 when a hardware interrupt request is acknowledged or the INT instruction of software interrupt numbers 0 to 31 is executed.

2.8.9 Processor Interrupt Priority Level (IPL)

IPL is 3 bits wide, assigns processor interrupt priority levels from level 0 to level 7. If a requested interrupt has higher priority than IPL, the interrupt is enabled.

2.8.10 Reserved Bit

If necessary, set to 0. When read, the content is undefined.

5. Electrical Characteristics

Table 5.1 Absolute Maximum Ratings

Symbol	Parameter	Condition	Rated Value	Unit
Vcc	Supply voltage	Vcc = AVcc	-0.3 to 6.5	V
AVcc	Analog supply voltage	Vcc = AVcc	-0.3 to 6.5	V
Vı	Input voltage		-0.3 to Vcc+0.3	V
Vo	Output voltage		-0.3 to Vcc+0.3	V
Pd	Power dissipation	Topr = 25°C	300	mW
Topr	Operating ambient temperature		-20 to 85 / -40 to 85 (D version)	°C
Tstg	Storage temperature		-65 to 150	°C

Table 5.2 Recommended Operating Conditions

Cumbal	Do	romotor	Conditions		Standard			
Symbol	Pa	Parameter		Min.	Тур.	Max.	Unit	
Vcc	Supply voltage			2.7	-	5.5	V	
AVcc	Analog supply volt	age		-	Vcc	-	V	
Vss	Supply voltage			-	0	-	V	
AVss	Analog supply volt	age		-	0	-	V	
VIH	Input "H" voltage			0.8Vcc	-	Vcc	V	
VIL	Input "L" voltage			0	_	0.2Vcc	V	
IOH(sum)	Peak sum output "H" current	Sum of all pins IOH (peak)		=	=	-60	mA	
IOH(peak)	Peak output "H" current			-	-	-10	mA	
IOH(avg)	Average output "H" current			-	-	-5	mA	
IOL(sum)	Peak sum output "L" currents	Sum of all pins IOL (peak)		-	-	60	mA	
IOL(peak)	Peak output "L"	Except P1_0 to P1_3		-	-	10	mA	
	currents	P1_0 to P1_3	Drive capacity HIGH	-	-	30	mA	
			Drive capacity LOW	-	-	10	mA	
IOL(avg)	Average output	Except P1_0 to P1_3		=	-	5	mA	
	"L" current	P1_0 to P1_3	Drive capacity HIGH	=	=	15	mA	
			Drive capacity LOW	-	=	5	mA	
f(XIN)	Main clock input o	scillation frequency	3.0 V ≤ Vcc ≤ 5.5 V	0	=	20	MHz	
			2.7 V ≤ Vcc < 3.0 V	0	-	10	MHz	

- 1. Vcc = 2.7 to 5.5 V at Topr = -20 to 85 °C / -40 to 85 °C, unless otherwise specified.
- 2. Typical values when average output current is 100 ms.

Table 5.3 Comparator Characteristics

Symbol	Parameter	Conditions		Unit		
	Falanielei	Conditions	Min.	Тур.	Max.	Offic
=	Resolution		=	=	1	Bit
_	Absolute accuracy	$\phi AD = 10 \text{ MHz}^{(3)}$	-	-	±20	mV
tconv	Conversion time	$\phi AD = 10 \text{ MHz}^{(3)}$	1	-	_	μS
Vref	Reference voltage		0	_	AVcc	V
VIA	Analog input voltage		0	=	AVcc	V
_	Comparator conversion operating clock frequency ⁽²⁾		1	_	10	MHz

- 1. Vcc = 2.7 to 5.5 V at Topr = -20 to 85 °C / -40 to 85 °C, unless otherwise specified.
- 2. If f1 exceeds 10 MHz, divided f1 and ensure the comparator conversion operating clock frequency (φAD) is 10 MHz or below.
- 3. If AVcc is less than 4.2 V, divided f1 and ensure the comparator conversion operating clock frequency (\$\phiAD\$) is f1/2 or below.

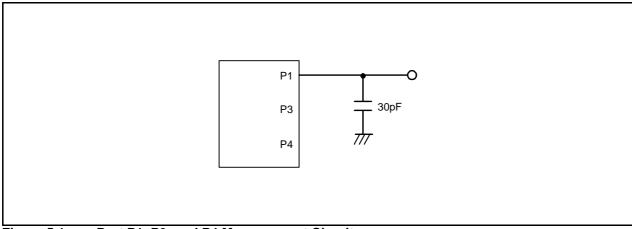


Figure 5.1 Port P1, P3, and P4 Measurement Circuit

Page 23 of 38

Table 5.4 Flash Memory (Program ROM) Electrical Characteristics

Cumbal	Parameter	Conditions		Unit		
Symbol	Faiailletei	Conditions	Min.	Тур.	Max.	Unit
=	Program/erase endurance ⁽²⁾	R8C/18 Group	100 ⁽³⁾	=	-	times
		R8C/19 Group	1,000(3)	-	-	times
-	Byte program time		ī	50	400	μS
=	Block erase time		=	0.4	9	S
td(SR-SUS)	Time delay from suspend request until suspend		-	-	97+CPU clock × 6 cycles	μS
=	Interval from erase start/restart until following suspend request		650	=	-	μS
=	Interval from program start/restart until following suspend request		0	=	-	ns
=	Time from suspend until program/erase restart		=	=	3+CPU clock × 4 cycles	μS
_	Program, erase voltage		2.7	_	5.5	V
=	Read voltage		2.7	-	5.5	V
=	Program, erase temperature		0	-	60	°C
=	Data hold time ⁽⁸⁾	Ambient temperature = 55 °C	20	_	_	year

- 1. Vcc = 2.7 to 5.5 V at Topr = 0 to 60 °C, unless otherwise specified.
- 2. Definition of programming/erasure endurance
 - The programming and erasure endurance is defined on a per-block basis.
 - If the programming and erasure endurance is n (n = 100 or 10,000), each block can be erased n times. For example, if 1,024 1-byte writes are performed to block A, a 1 Kbyte block, and then the block is erased, the programming/erasure endurance still stands at one. However, the same address must not be programmed more than once per erase operation (overwriting prohibited).
- 3. Endurance to guarantee all electrical characteristics after program and erase. (1 to Min. value can be guaranteed).
- 4. If emergency processing is required, a suspend request can be generated independent of this characteristic. In that case the normal time delay to Suspend can be applied to the request. However, we recommend that a suspend request with an interval of less than 650 μs is only used once because, if the suspend state continues, erasure cannot operate and the incidence of erasure error rises.
- 5. In a system that executes multiple programming operations, the actual erasure count can be reduced by writing to sequential addresses in turn so that as much of the block as possible is used up before performing an erase operation. For example, when programming groups of 16 bytes, the effective number of rewrites can be minimized by programming up to 128 groups before erasing them all in one operation. In addition, averaging the number of erase operations between block A and block B can further reduce the effective number of rewrites. It is also advisable to retain data on the erase count of each block and limit the number of erase operations to a certain number.
- 6. If an error occurs during block erase, attempt to execute the clear status register command, then execute the block erase command at least three times until the erase error does not occur.
- 7. Customers desiring programming/erasure failure rate information should contact their Renesas technical support representative.
- 8. The data hold time includes time that the power supply is off or the clock is not supplied.

Page 24 of 38

Cumbal	Doromotor	Conditions		Unit		
Symbol	Parameter	Conditions	Min.	Min. Typ. Ma		Unit
=	Program/erase endurance ⁽²⁾		10,000(3)	-	-	times
=	Byte program time (Program/erase endurance ≤ 1,000 times)		_	50	400	μS
_	Byte program time (Program/erase endurance > 1,000 times)		_	65	_	μS
=	Block erase time (Program/erase endurance ≤ 1,000 times)		=	0.2	9	S
=	Block erase time (Program/erase endurance > 1,000 times)		=	0.3	_	S
td(SR-SUS)	Time delay from suspend request until suspend		_	=	97+CPU clock × 6 cycles	μS
_	Interval from erase start/restart until following suspend request		650	_	_	μS
_	Interval from program start/restart until following suspend request		0	_	_	ns
=	Time from suspend until program/erase restart		_	=	3+CPU clock × 4 cycles	μS
_	Program, erase voltage		2.7	_	5.5	V
=	Read voltage		2.7	-	5.5	V
=	Program, erase temperature		-20 ⁽⁸⁾	=	85	°C
_	Data hold time ⁽⁹⁾	Ambient temperature = 55 °C	20	-	_	year

Table 5.5 Flash Memory (Data flash Block A, Block B) Electrical Characteristics

- 1. Vcc = 2.7 to 5.5 V at Topr = -20 to 85 °C / -40 to 85 °C, unless otherwise specified.
- 2. Definition of programming/erasure endurance
 - The programming and erasure endurance is defined on a per-block basis.
 - If the programming and erasure endurance is n (n = 100 or 10,000), each block can be erased n times. For example, if 1,024 1-byte writes are performed to block A, a 1 Kbyte block, and then the block is erased, the programming/erasure endurance still stands at one. However, the same address must not be programmed more than once per erase operation (overwriting prohibited).
- 3. Endurance to guarantee all electrical characteristics after program and erase. (1 to Min. value can be guaranteed).
- 4. If emergency processing is required, a suspend request can be generated independent of this characteristic. In that case the normal time delay to suspend can be applied to the request. However, we recommend that a suspend request with an interval of less than 650 μs is only used once because, if the suspend state continues, erasure cannot operate and the incidence of erasure error rises.
- 5. In a system that executes multiple programming operations, the actual erasure count can be reduced by writing to sequential addresses in turn so that as much of the block as possible is used up before performing an erase operation. For example, when programming groups of 16 bytes, the effective number of rewrites can be minimized by programming up to 128 groups before erasing them all in one operation. It is also advisable to retain data on the erase count of each block and limit the number of erase operations to a certain number.
- 6. If an error occurs during block erase, attempt to execute the clear status register command, then execute the block erase command at least three times until the erase error does not occur.
- 7. Customers desiring programming/erasure failure rate information should contact their Renesas technical support representative.
- 8. -40 °C for D version.
- 9. The data hold time includes time that the power supply is off or the clock is not supplied.

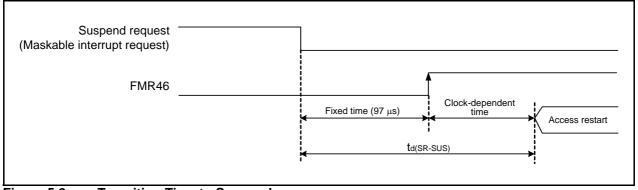


Figure 5.2 Transition Time to Suspend

Table 5.6 **Voltage Detection 1 Circuit Electrical Characteristics**

Symbol	Parameter	Condition		Unit		
Syllibol	Farameter	Condition	Min.	Тур.	Max.	Offic
Vdet1	Voltage detection level ⁽³⁾		2.70	2.85	3.00	V
_	Voltage detection circuit self power consumption	VCA26 = 1, Vcc = 5.0 V	-	600	-	nA
td(E-A)	Waiting time until voltage detection circuit operation starts ⁽²⁾		=	=	100	μS
Vccmin	MCU operating voltage minimum value		2.7	_	_	V

- 1. The measurement condition is Vcc = 2.7 V to 5.5 V and T_{opr} = -40°C to 85 °C.
- 2. Necessary time until the voltage detection circuit operates when setting to 1 again after setting the VCA26 bit in the VCA2 register to 0.
- 3. Ensure that Vdet2 > Vdet1.

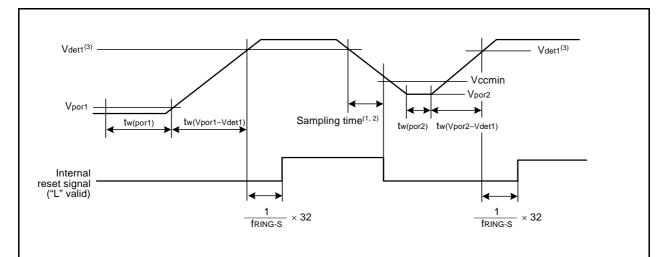
Table 5.7 **Voltage Detection 2 Circuit Electrical Characteristics**

Symbol	Parameter	Condition		Unit		
Syllibol	Farameter	Condition	Min.	Тур.	Max.	Offic
Vdet2	Voltage detection level ⁽⁴⁾		3.00	3.30	3.60	V
_	Voltage monitor 2 interrupt request generation time ⁽²⁾		_	40	_	μS
-	Voltage detection circuit self power consumption	VCA27 = 1, Vcc = 5.0 V	-	600	-	nA
td(E-A)	Waiting time until voltage detection circuit operation starts ⁽³⁾		=	=	100	μS

- The measurement condition is Vcc = 2.7 V to 5.5 V and Topr = -40°C to 85 °C.
 Time until the voltage monitor 2 interrupt request is generated after the voltage passes Vdet1.
- 3. Necessary time until the voltage detection circuit operates when setting to 1 again after setting the VCA27 bit in the VCA2 register to 0.
- 4. Ensure that Vdet2 > Vdet1.

Table 5.8 Reset Circuit Electrical Characteristics (When Using Voltage Monitor 1 Reset)

Symbol	Parameter	Condition	Standard		Unit	
			Min.	Тур.	Max.	
Vpor2	Power-on reset valid voltage	-20°C ≤ Topr ≤ 85°C	=	=	Vdet1	V
tw(Vpor2-Vdet1)	Supply voltage rising time when power-on reset is deasserted ⁽¹⁾	$ -20^{\circ}C \leq Topr \leq 85^{\circ}C, \\ t_{w(por2)} \geq 0s^{(3)} $	-	-	100	ms


- 1. This condition is not applicable when using with $Vcc \ge 1.0 \text{ V}$.
- 2. When turning power on after the time to hold the external power below effective voltage (Vpor1) exceeds10 s, refer to Table 5.9 Reset Circuit Electrical Characteristics (When Not Using Voltage Monitor 1 Reset).
- 3. tw(por2) is the time to hold the external power below effective voltage (Vpor2).

Reset Circuit Electrical Characteristics (When Not Using Voltage Monitor 1 Reset) Table 5.9

Symbol	Parameter	Condition	Standard		d	Unit
			Min.	Тур.	Max.	
Vpor1	Power-on reset valid voltage	-20°C ≤ Topr ≤ 85°C	=	=	0.1	V
tw(Vpor1-Vdet1)	Supply voltage rising time when power-on reset is deasserted	$0^{\circ}C \leq Topr \leq 85^{\circ}C,$ $tw(por1) \geq 10 \ s^{(2)}$	-	-	100	ms
tw(Vpor1-Vdet1)	Supply voltage rising time when power-on reset is deasserted	$ -20^{\circ}C \leq Topr < 0^{\circ}C, \\ tw(por1) \geq 30 \ s^{(2)} $	-	=	100	ms
tw(Vpor1-Vdet1)	Supply voltage rising time when power-on reset is deasserted	$ -20^{\circ}C \leq Topr < 0^{\circ}C, $ $ tw(por1) \geq 10 \ s^{(2)} $	-	=	1	ms
tw(Vpor1-Vdet1)	Supply voltage rising time when power-on reset is deasserted	$0^{\circ}C \leq Topr \leq 85^{\circ}C,$ $tw(por1) \geq 1 \ s^{(2)}$	-	-	0.5	ms

NOTES:

- 1. When not using voltage monitor 1, use with $Vcc \ge 2.7 \text{ V}$.
- 2. tw(por1) is the time to hold the external power below effective voltage (Vpor1).

- 1. Hold the voltage inside the MCU operation voltage range (Vccmin or above) within the sampling time.
- The sampling clock can be selected. Refer to 7. Voltage Detection Circuit for details.
 Vdet1 indicates the voltage detection level of the voltage detection 1 circuit. Refer to 7. Voltage Detection Circuit for details.

Figure 5.3 **Reset Circuit Electrical Characteristics**

Table 5.10 High-speed On-Chip Oscillator Circuit Electrical Characteristics

Symbol	Dorometer	Condition	Standard			I India
Symbol	Parameter	Condition	Min.	Тур.	Max.	Unit
_	High-speed on-chip oscillator frequency when the reset is deasserted	Vcc = 5.0 V, Topr = 25 °C	I	8	I	MHz
_	High-speed on-chip oscillator frequency temperature	0 to +60 °C/5 V ± 5 % ⁽³⁾	7.76	_	8.24	MHz
	supply voltage dependence ⁽²⁾	-20 to +85 °C/2.7 to 5.5 V(3)	7.68	_	8.32	MHz
		-40 to +85 °C/2.7 to 5.5 V ⁽³⁾	7.44	-	8.32	MHz

- 1. The measurement condition is Vcc = 5.0 V and $T_{opr} = 25 \,^{\circ}\text{C}$.
- 2. Refer to 10.6.4 High-Speed On-Chip Oscillator Clock for notes on high-speed on-chip oscillator clock.
- 3. The standard value shows when the HRA1 register is assumed as the value in shipping and the HRA2 register value is set to 00h.

Table 5.11 Power Supply Circuit Timing Characteristics

Symbol	Parameter	Condition	Standard			Unit
Symbol	Falametei	Condition	Min.	Тур.	Max.	Offic
td(P-R)	Time for internal power supply stabilization during power-on ⁽²⁾		1	=	2000	μS
td(R-S)	STOP exit time ⁽³⁾		=	-	150	μS

- 1. The measurement condition is Vcc = 2.7 to 5.5 V and $T_{opr} = 25$ °C.
- 2. Waiting time until the internal power supply generation circuit stabilizes during power-on.
- 3. Time until CPU clock supply starts after the interrupt is acknowledged to exit stop mode.

Table 5.12 Electrical Characteristics (1) [Vcc = 5 V]

Symbol	Parameter		Condition		Standard			Unit
Symbol					Min.	Тур.	Max.	Offic
Vон	Output "H" voltage	Except Xout	Iон = -5 mA		Vcc - 2.0	_	Vcc	V
			Ιοн = -200 μΑ		Vcc - 0.3	-	Vcc	V
		Хоит	Drive capacity HIGH	Iон = -1 mA	Vcc - 2.0	=	Vcc	V
			Drive capacity LOW	ΙΟΗ = -500 μΑ	Vcc - 2.0	-	Vcc	V
Vol	Output "L" voltage	Except P1_0 to	IoL = 5 mA	-	_	1	2.0	V
		Р1_3, Хоит	IoL = 200 μA		_	1	0.45	V
		P1_0 to P1_3	Drive capacity HIGH	IOL = 15 mA	=	=	2.0	V
			Drive capacity LOW	IOL = 5 mA	=	1	2.0	V
			Drive capacity LOW	IOL = 200 μA	-	-	0.45	V
		Хоит	Drive capacity HIGH	IOL = 1 mA	=	=	2.0	V
			Drive capacity LOW	IOL = 500 μA	=	=	2.0	V
VT+-VT-	Hysteresis	INTO, INT1, INT2, INT3, KIO, KI1, KI2, KI3, CNTRO, CNTR1, TCIN, RXD0			0.2	-	1.0	V
		RESET			0.2	_	2.2	V
lін	Input "H" current		VI = 5 V		_	-	5.0	μА
lı∟	Input "L" current		VI = 0 V		-	_	-5.0	μА
RPULLUP	Pull-up resistance		VI = 0 V		30	50	167	kΩ
RfXIN	Feedback resistance	Feedback resistance XIN			-	1.0	-	ΜΩ
fring-s	Low-speed on-chip oscillator frequency				40	125	250	kHz
VRAM	RAM hold voltage		During stop mode		2.0	-	-	V

^{1.} VCC = 4.2 to 5.5 V at Topr = -20 to 85 °C / -40 to 85 °C, f(XIN) = 20 MHz, unless otherwise specified.

Electrical Characteristics (4) [Vcc = 3V] (Topr = -40 to 85 °C, unless otherwise specified.) **Table 5.20**

Symbol	Parameter	Parameter Condition		Standard			
٠,٥٥١	. 3.3			Min.	Тур.	Max.	Unit
Icc	Power supply current (Vcc = 2.7 to 3.3 V) Single-chip mode, output pins are open,	High-speed mode	XIN = 20 MHz (square wave) High-speed on-chip oscillator off Low-speed on-chip oscillator on = 125 kHz No division	ı	8	13	mA
other pins are Vss, comparator is stopped		XIN = 16 MHz (square wave) High-speed on-chip oscillator off Low-speed on-chip oscillator on = 125 kHz No division	1	7	12	mA	
			XIN = 10 MHz (square wave) High-speed on-chip oscillator off Low-speed on-chip oscillator on = 125 kHz No division	-	5	I	mA
		Medium- speed mode	XIN = 20 MHz (square wave) High-speed on-chip oscillator off Low-speed on-chip oscillator on = 125 kHz Divide-by-8	I	3	İ	mA
			XIN = 16 MHz (square wave) High-speed on-chip oscillator off Low-speed on-chip oscillator on = 125 kHz Divide-by-8	=	2.5	-	mA
			XIN = 10 MHz (square wave) High-speed on-chip oscillator off Low-speed on-chip oscillator on = 125 kHz Divide-by-8	_	1.6	-	mA
		High-speed on-chip oscillator mode	Main clock off High-speed on-chip oscillator on = 8 MHz Low-speed on-chip oscillator on = 125 kHz No division	_	3.5	7.5	mA
			Main clock off High-speed on-chip oscillator on = 8 MHz Low-speed on-chip oscillator on = 125 kHz Divide-by-8	ı	1.5	Ī	mA
		Low-speed on-chip oscillator mode	Main clock off High-speed on-chip oscillator off Low-speed on-chip oscillator on = 125 kHz Divide-by-8 FMR47 = 1	-	100	280	μА
		Wait mode	Main clock off High-speed on-chip oscillator off Low-speed on-chip oscillator on = 125 kHz While a WAIT instruction is executed Peripheral clock operation VCA27 = VCA26 = 0	=	37	74	μΑ
		Wait mode	Main clock off High-speed on-chip oscillator off Low-speed on-chip oscillator on = 125 kHz While a WAIT instruction is executed Peripheral clock off VCA27 = VCA26 = 0	_	35	70	μА
		Stop mode	Main clock off, Topr = 25 °C High-speed on-chip oscillator off Low-speed on-chip oscillator off CM10 = 1 Peripheral clock off VCA27 = VCA26 = 0	=	0.7	3.0	μΑ

Table 5.24 Serial Interface

Symbol	Parameter	Stan	Unit	
Symbol		Min.	Max.	Offic
tc(CK)	CLKi input cycle time 300 -			
tW(CKH)	CLKi input "H" width 150 –			
tW(CKL)	CLKi input "L" width	150	-	ns
td(C-Q)	TXDi output delay time – 80			
th(C-Q)	TXDi hold time 0			ns
tsu(D-C)	RXDi input setup time 70 –			ns
th(C-D)	RXDi input hold time 90 -			ns

i = 0 or 1

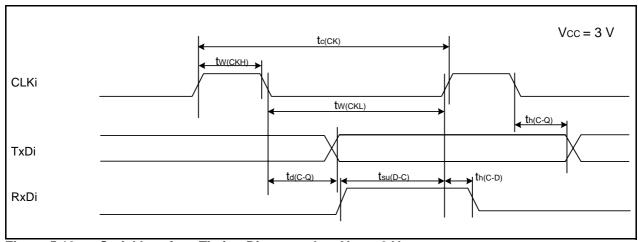


Figure 5.12 Serial Interface Timing Diagram when Vcc = 3 V

Table 5.25 External Interrupt INTO Input

Symbol	Parameter	Stan	Unit	
Symbol	i didiletei		Max.	Offic
tW(INH)	INTO input "H" width	380 ⁽¹⁾	-	ns
tW(INL)	INT0 input "L" width 380(2) -			

NOTES:

- 1. When selecting the digital filter by the INT0 input filter select bit, use an INT0 input HIGH width of either (1/digital filter clock frequency x 3) or the minimum value of standard, whichever is greater.
- 2. When selecting the digital filter by the INT0 input filter select bit, use an INT0 input LOW width of either (1/digital filter clock frequency x 3) or the minimum value of standard, whichever is greater.

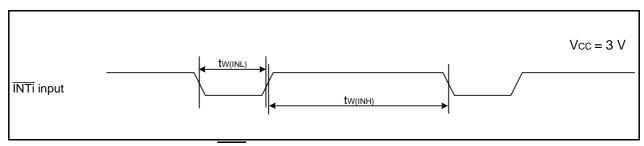


Figure 5.13 External Interrupt INTO Input Timing Diagram when Vcc = 3 V

Page 36 of 38

REVISION HISTORY

R8C/18 Group, R8C/19 Group Datasheet

Day	Doto		Description
Rev.	Date	Page	Summary
0.10	Nov 15, 2004	_	First Edition issued
0.20	Jan 11, 2005	5, 6	Tables 1.3 and 1.4: The date updated
0.21	Apr 04, 2005	2, 3	Tables 1.1 and 1.2: Partly revised
		4	Figure 1.1: Partly revised
		5, 6	Tables 1.3 and 1.4: Partly revised
		5, 6	Figure 1.2 and 1.3: Partly revised
		7, 8	Figure 1.4 and 1.5: Partly revised
		10	Table 1.6: Partly revised
		16	Table 4.1: Partly revised
		17	Table 4.2: Partly revised
		18	Table 4.3: Partly revised
		20	Package Dimensions are revised
1.00	May 27, 2005	5, 6	Tables 1.3 and 1.4: Partly revised
		9	Table 1.5: Partly revised
		25	Table 5.9: Revised
		26	Table 5.10: Partly revised
		28	Table 5.13: Partly revised
		32	Table 5.20: Partly revised
1.10	Jun 09, 2005	26	Table 5.10: Partly revised
1.20	Nov 01, 2005	3	Table 1.2 Performance Outline of the R8C/19 Group; Flash Memory: (Data area) → (Data flash) (Program area) → (Program ROM) revised
		4	Figure 1.1 Block Diagram; "Peripheral Function" added, "System Clock Generation" → "System Clock Generator" revised
		6	Table 1.4 Product Information of R8C/19 Group; ROM capacity: "Program area" → "Program ROM", "Data area" → "Data flash" revised
		9	Table 1.5 Pin Description; Power Supply Input: "VCC/AVCC" → "VCC", "VSS/AVSS" → "VSS" revised Analog Power Supply Input: added
		11	Figure 2.1 CPU Register; "Reserved Area" → "Reserved Bit" revised
		13	2.8.10 Reserved Area; "Reserved Area" → "Reserved Bit" revised
		15	3.2 R8C/19 Group, Figure 3.2 Memory Map of R8C/19 Group; "Data area" → "Data flash", "Program area" → "Program ROM" revised