

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

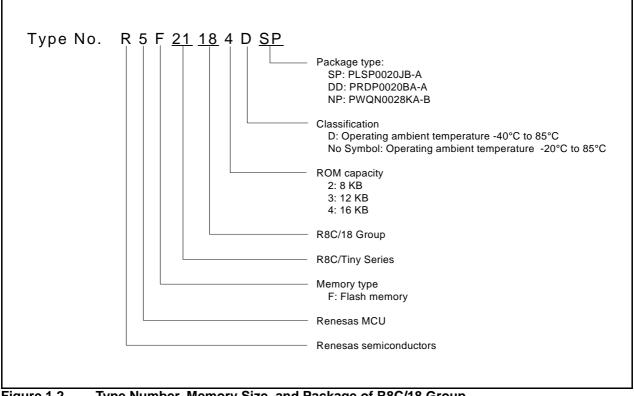
Details

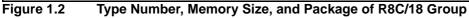
Details	
Product Status	Not For New Designs
Core Processor	R8C
Core Size	16-Bit
Speed	20MHz
Connectivity	SIO, UART/USART
Peripherals	LED, POR, Voltage Detect, WDT
Number of I/O	13
Program Memory Size	16KB (16K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	1K x 8
Voltage - Supply (Vcc/Vdd)	2.7V ~ 5.5V
Data Converters	-
Oscillator Type	Internal
Operating Temperature	-20°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	20-LSSOP (0.173", 4.40mm Width)
Supplier Device Package	20-LSSOP
Purchase URL	https://www.e-xfl.com/product-detail/renesas-electronics-america/r5f21184sp-u0

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Current of Apr. 2006

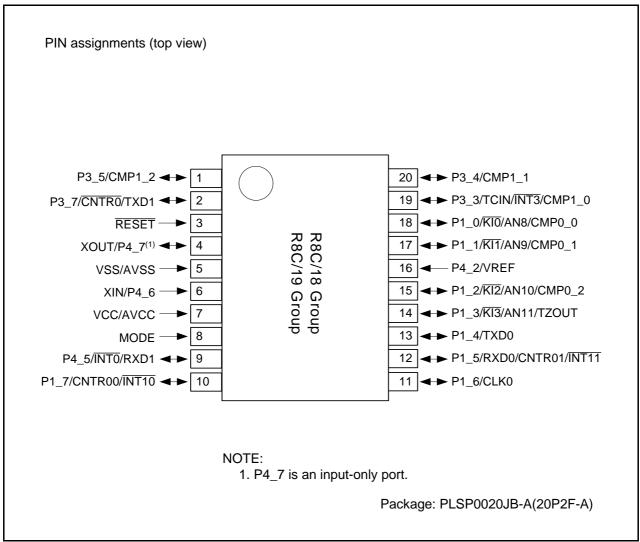

1.4 **Product Information**


Table 1.3 lists Product Information for R8C/18 Group and Table 1.4 lists Product Information for R8C/19 Group.

Type No.	ROM Capacity	RAM Capacity	Package Type	Remarks
R5F21181SP	4 Kbytes	384 bytes	PLSP0020JB-A	Flash memory version
R5F21182SP	8 Kbytes	512 bytes	PLSP0020JB-A	
R5F21183SP	12 Kbytes	768 bytes	PLSP0020JB-A	
R5F21184SP	16 Kbytes	1 Kbyte	PLSP0020JB-A	
R5F21181DSP (D)	4 Kbytes	384 bytes	PLSP0020JB-A	D version
R5F21182DSP (D)	8 Kbytes	512 bytes	PLSP0020JB-A	
R5F21183DSP (D)	12 Kbytes	768 bytes	PLSP0020JB-A	
R5F21184DSP (D)	16 Kbytes	1 Kbyte	PLSP0020JB-A	
R5F21181DD	4 Kbytes	384 bytes	PRDP0020BA-A	Flash memory version
R5F21182DD	8 Kbytes	512 bytes	PRDP0020BA-A	
R5F21183DD	12 Kbytes	768 bytes	PRDP0020BA-A	
R5F21184DD	16 Kbytes	1 Kbyte	PRDP0020BA-A	
R5F21182NP	8 Kbytes	512 bytes	PWQN0028KA-B	Flash memory version
R5F21183NP	12 Kbytes	768 bytes	PWQN0028KA-B	
R5F21184NP	16 Kbytes	1 Kbyte	PWQN0028KA-B	

Table 1.3 **Product Information for R8C/18 Group**

(D): Under Development



1.5 Pin Assignments

Figure 1.4 shows Pin Assignments for PLSP0020JB-A Package (Top View), Figure 1.5 shows Pin Assignments for PRDP0020BA-A Package (Top View) and Figure 1.6 shows Pin Assignments for PWQN0028KA-B Package (Top View).

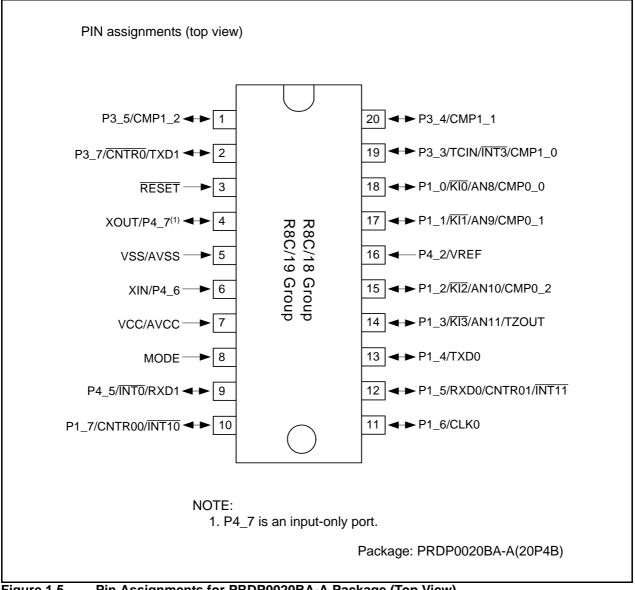
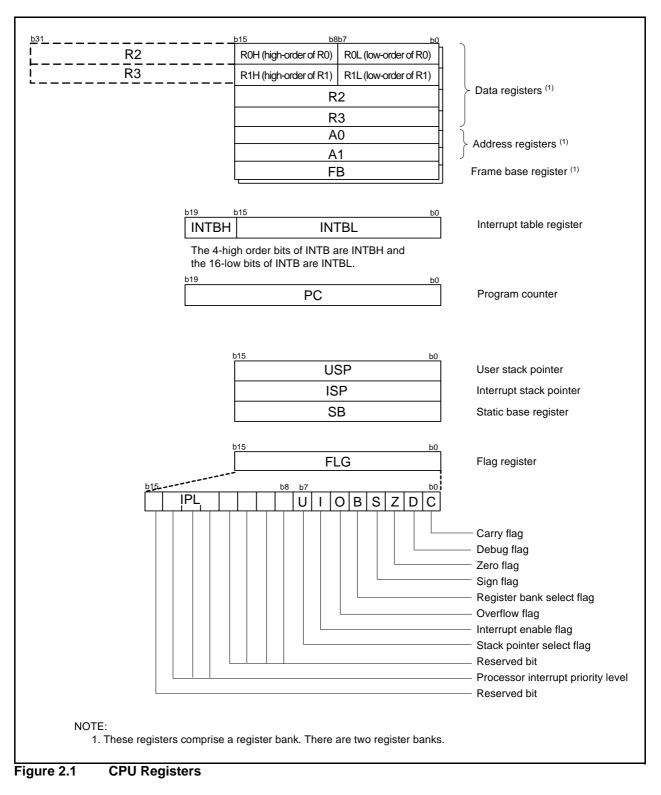


Figure 1.5 Pin Assignments for PRDP0020BA-A Package (Top View)



Pin	Control	Port	I/C	I/O Pin Functions for Peripheral Modules			
Number	Pin	Full	Interrupt	Timer	Serial Interface	Comparator	
1		P3_5		CMP1_2			
2		P3_7		CNTR0	TXD1		
3	RESET						
4	XOUT	P4_7					
5	VSS/AVSS						
6	XIN	P4_6					
7	VCC/AVCC						
8	MODE						
9		P4_5	INTO		RXD1		
10		P1_7	INT10	CNTR00			
11		P1_6			CLK0		
12		P1_5	INT11	CNTR01	RXD0		
13		P1_4			TXD0		
14		P1_3	KI3	TZOUT		AN11	
15		P1_2	KI2	CMP0_2		AN10	
16	VREF	P4_2					
17		P1_1	KI1	CMP0_1		AN9	
18		P1_0	KI0	CMP0_0		AN8	
19		P3_3	INT3	TCIN/CMP1_0			
20		P3_4		CMP1_1			

Table 1.6 Pin Name Information by Pin Number of PLSP0020JB-A, PRDP0020BA-A packages

2. Central Processing Unit (CPU)

Figure 2.1 shows the CPU Registers. The CPU contains 13 registers. R0, R1, R2, R3, A0, A1, and FB configure a register bank. There are two sets of register bank.

2.1 Data Registers (R0, R1, R2, and R3)

R0 is a 16-bit register for transfer, arithmetic, and logic operations. The same applies to R1 to R3. R0 can be split into high-order bits (R0H) and low-order bits (R0L) to be used separately as 8-bit data registers. R1H and R1L are analogous to R0H and R0L. R2 can be combined with R0 and used as a 32-bit data register (R2R0). R3R1 is analogous to R2R0.

2.2 Address Registers (A0 and A1)

A0 is a 16-bit register for address register indirect addressing and address register relative addressing. It is also used for transfer, arithmetic and logic operations. A1 is analogous to A0. A1 can be combined with A0 and used as a 32-bit address register (A1A0).

2.3 Frame Base Register (FB)

FB is a 16-bit register for FB relative addressing.

2.4 Interrupt Table Register (INTB)

INTB is a 20-bit register that indicates the start address of an interrupt vector table.

2.5 Program Counter (PC)

PC is 20 bits wide, indicates the address of the next instruction to be executed.

2.6 User Stack Pointer (USP) and Interrupt Stack Pointer (ISP)

The stack pointer (SP), USP, and ISP, are each 16 bits wide. The U flag of FLG is used to switch between USP and ISP.

2.7 Static Base Register (SB)

SB is a 16-bit register for SB relative addressing.

2.8 Flag Register (FLG)

FLG is an 11-bit register indicating the CPU state.

2.8.1 Carry Flag (C)

The C flag retains a carry, borrow, or shift-out bits that have been generated by the arithmetic and logic unit.

2.8.2 Debug Flag (D)

The D flag is for debugging only. Set it to 0.

2.8.3 Zero Flag (Z)

The Z flag is set to 1 when an arithmetic operation results in 0; otherwise to 0.

2.8.4 Sign Flag (S)

The S flag is set to 1 when an arithmetic operation results in a negative value; otherwise to 0.

2.8.5 Register Bank Select Flag (B)

Register bank 0 is selected when the B flag is 0. Register bank 1 is selected when this flag is set to 1.

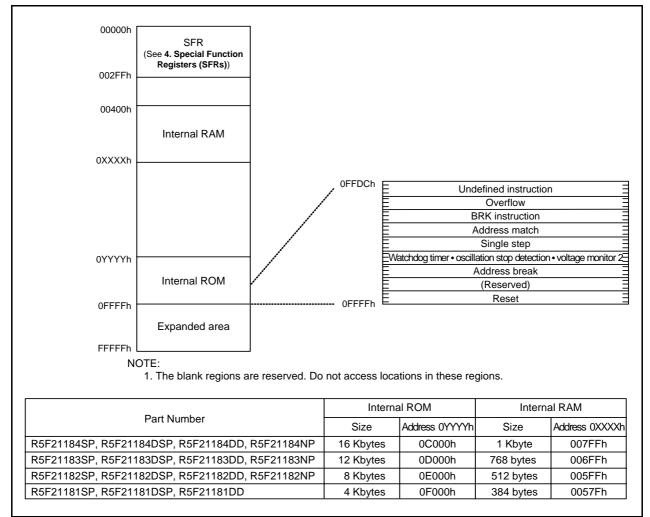
2.8.6 Overflow Flag (O)

The O flag is set to 1 when the operation results in an overflow; otherwise to 0.

3. Memory

3. Memory

3.1 R8C/18 Group


Figure 3.1 is a Memory Map of R8C/18 Group. The R8C/18 Group has 1 Mbyte of address space from addresses 00000h to FFFFFh.

The internal ROM area is allocated lower addresses, beginning with address 0FFFFh. For example, a 16-Kbyte internal ROM is allocated addresses 0C000h to 0FFFFh.

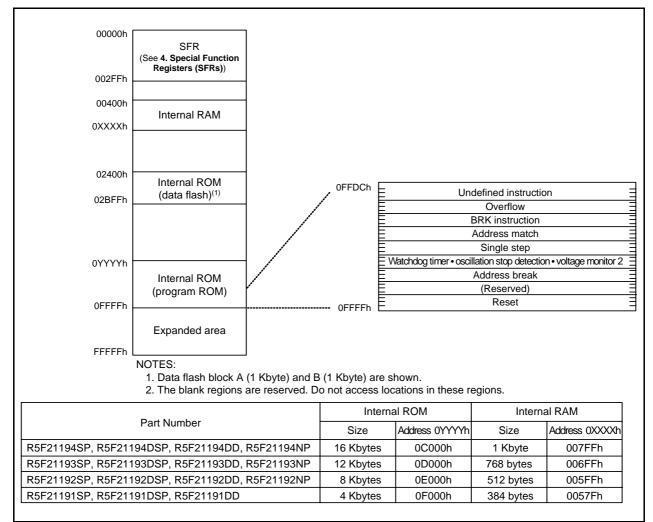
The fixed interrupt vector table is allocated addresses 0FFDCh to 0FFFFh. They store the starting address of each interrupt routine.

The internal RAM is allocated higher addresses, beginning with address 00400h. For example, a 1-Kbyte internal RAM area is allocated addresses 00400h to 007FFh. The internal RAM is used not only for storing data but also for calling subroutines and as stacks when interrupt requests are acknowledged.

Special function registers (SFRs) are allocated addresses 00000h to 002FFh. The peripheral function control registers are allocated here. All addresses within the SFR, which have nothing allocated are reserved for future use and cannot be accessed by users.

3.2 R8C/19 Group

Figure 3.2 is a Memory Map of R8C/19 Group. The R8C/19 group has 1 Mbyte of address space from addresses 00000h to FFFFFh.


The internal ROM (program ROM) is allocated lower addresses, beginning with address 0FFFFh. For example, a 16-Kbyte internal ROM area is allocated addresses 0C000h to 0FFFFh.

The fixed interrupt vector table is allocated addresses 0FFDCh to 0FFFFh. They store the starting address of each interrupt routine.

The internal ROM (data flash) is allocated addresses 02400h to 02BFFh.

The internal RAM is allocated higher addresses, beginning with address 00400h. For example, a 1-Kbyte internal RAM area is allocated addresses 00400h to 007FFh. The internal RAM is used not only for storing data but also for calling subroutines and as stacks when interrupt requests are acknowledged.

Special function registers (SFRs) are allocated addresses 00000h to 002FFh. The peripheral function control registers are allocated here. All addresses within the SFR, which have nothing allocated are reserved for future use and cannot be accessed by users.

4. Special Function Registers (SFRs)

An SFR (special function register) is a control register for a peripheral function. Tables 4.1 to 4.4 list the special function registers.

Table 4.1SFR Information (1)(1)

Address	Pagiatar	Symbol	After reset
	Register	Symbol	Allei Tesei
0000h			
0001h			
0002h			
0003h			
0004h	Processor Mode Register 0	PM0	00h
0005h	Processor Mode Register 1	PM1	00h
0006h	System Clock Control Register 0	CM0	01101000b
0007h	System Clock Control Register 1	CM1	0010000b
0008h		0	
0009h	Address Match Interrupt Enable Register	AIER	00h
0003h	Protect Register	PRCR	00h
000An		FRUK	0011
		0.00	000004001
000Ch	Oscillation Stop Detection Register	OCD	00000100b
000Dh	Watchdog Timer Reset Register	WDTR	XXh
000Eh	Watchdog Timer Start Register	WDTS	XXh
000Fh	Watchdog Timer Control Register	WDC	00011111b
0010h	Address Match Interrupt Register 0	RMAD0	00h
0011h			00h
0012h			X0h
0013h		1	
0014h	Address Match Interrupt Register 1	RMAD1	00h
0015h			00h
0016h	4		X0h
0017h			7.011
0017h			
0019h			
001Ah			
001Bh			
001Ch	Count Source Protection Mode Register	CSPR	00h
001Dh			
001Eh	INT0 Input Filter Select Register	INTOF	00h
001Fh			
0020h	High-Speed On-Chip Oscillator Control Register 0	HRA0	00h
0021h	High-Speed On-Chip Oscillator Control Register 1	HRA1	When shipping
0022h	High-Speed On-Chip Oscillator Control Register 2	HRA2	00h
0023h		1110.02	0011
002011			
002Ah			
002Bh			
002Ch			
002Dh			
002Eh			
002Fh			
0030h			
0031h	Voltage Detection Register 1 ⁽²⁾	VCA1	00001000b
0032h	Voltage Detection Register 2 ⁽²⁾	VCA2	00h(3)
-			0100000b ⁽⁴⁾
0033h			010000000,7
		+	
0034h		ļ	
0035h		100/40	
0036h	Voltage Monitor 1 Circuit Control Register ⁽²⁾	VW1C	0000X000b ⁽³⁾
			0100X001b ⁽⁴⁾
0037h	Voltage Monitor 2 Circuit Control Register ⁽⁵⁾	VW2C	00h
0038h		1	
0039h			
003Ah		+	
003Bh		+	
003Dh			
003Ch		+	
		ļ	
003Eh			
003Fh			

X: Undefined

NOTES:

- 1. The blank regions are reserved. Do not access locations in these regions.
- 2. Software reset, watchdog timer reset, and voltage monitor 2 reset do not affect this register.

3. After hardware reset.

- 4. After power-on reset or voltage monitor 1 reset.
- 5. Software reset, watchdog timer reset, and voltage monitor 2 reset do not affect b2 and b3.

Addroop	Pagintar	Symbol	After react
Address 00C0h	Register A/D Register	AD	After reset XXh
00C011		AD	~~!!
00C2h			-
00C3h			
00C4h			
00C5h			
00C6h			
00C7h			
00C8h			
00C9h			
00CAh			
00CBh			
00CCh			
00CDh			
00CEh			
00CFh			
00D0h			
00D1h 00D2h			
00D2h 00D3h			
00D3h 00D4h	A/D Control Register 2	ADCON2	00h
00D4n		, 10001N2	0011
00D6h	A/D Control Register 0	ADCON0	00000XXXb
00D7h	A/D Control Register 1	ADCON1	00000000000000000000000000000000000000
00D8h			
00D9h			
00DAh			
00DBh			
00DCh			
00DDh			
00DEh			
00DFh			
00E0h		.	× × ×
00E1h	Port P1 Register	P1	XXh
00E2h	Dest D4 Dissettion De sigter	004	0.0h
00E3h 00E4h	Port P1 Direction Register	PD1	00h
00E4h	Port P3 Register	P3	XXh
00E6h	Forregister	гJ	~~!!
00E7h	Port P3 Direction Register	PD3	00h
00E8h	Port P4 Register	P4	XXh
00E9h	· · · · · · · · · · · · · · · · · · ·		
00EAh	Port P4 Direction Register	PD4	00h
00EBh	-		
00ECh			
00EDh			
00EEh			
00EFh			
00F0h			
00F1h			
00F2h			
00F3h 00F4h			
00F4h 00F5h			
00F6h			+
00F7h			
00F8h			
00F9h			
00FAh			
00FBh			
00FCh	Pull-Up Control Register 0	PUR0	00XX0000b
00FDh	Pull-Up Control Register 1	PUR1	XXXXXX0Xb
00FEh	Port P1 Drive Capacity Control Register	DRR	00h
00FFh	Timer C Output Control Register	TCOUT	00h
01B3h	Flash Memory Control Register 4	FMR4	0100000b
01B4h	Elech Memory Control Desister 4		1000000Xh
01B5h 01B6h	Flash Memory Control Register 1	FMR1	1000000Xb
01B6h 01B7h	Flash Memory Control Register 0	FMR0	0000001b
	I IASH METHOLY CUITEUL REGISTER U		00000010
0FFFFh	Optional Function Select Register	OFS	(Note 2)
011111		0.0	(11010 2)

SFR Information (4)⁽¹⁾ Table 4.4

X: Undefined

NOTES:

The blank regions, 0100h to 01B2h and 01B8h to 02FFh are all reserved. Do not access locations in these regions.
 The OFS register cannot be changed by a program. Use a flash programmer to write to it.

Electrical Characteristics 5.

Table 5.1	Absolute	Maximum	Ratings
-----------	----------	---------	---------

Symbol	Parameter	Condition	Rated Value	Unit
Vcc	Supply voltage	Vcc = AVcc	-0.3 to 6.5	V
AVcc	Analog supply voltage	Vcc = AVcc	-0.3 to 6.5	V
VI	Input voltage		-0.3 to Vcc+0.3	V
Vo	Output voltage		-0.3 to Vcc+0.3	V
Pd	Power dissipation	Topr = 25°C	300	mW
Topr	Operating ambient temperature		-20 to 85 / -40 to 85 (D version)	°C
Tstg	Storage temperature		-65 to 150	°C

Table 5.2 **Recommended Operating Conditions**

Symbol	Parameter		Conditions		Unit		
Symbol			Conditions	Min.	Тур.	Max.	Unit
Vcc	Supply voltage			2.7	-	5.5	V
AVcc	Analog supply volt	age		-	Vcc	-	V
Vss	Supply voltage			-	0	-	V
AVss	Analog supply volt	age		-	0	-	V
Vih	Input "H" voltage			0.8Vcc	-	Vcc	V
VIL	Input "L" voltage			0	-	0.2Vcc	V
IOH(sum)	Peak sum output "H" current	Sum of all pins IOH (peak)		-	-	-60	mA
OH(peak)	Peak output "H" current			-	-	-10	mA
OH(avg)	Average output "H" current			-	-	-5	mA
IOL(sum)	Peak sum output "L" currents	Sum of all pins IOL (peak)		-	-	60	mA
IOL(peak)	Peak output "L"	Except P1_0 to P1_3		-	-	10	mA
	currents	P1_0 to P1_3	Drive capacity HIGH	-	-	30	mA
			Drive capacity LOW	-	-	10	mA
IOL(avg)	Average output	Except P1_0 to P1_3		-	-	5	mA
	"L" current	P1_0 to P1_3	Drive capacity HIGH	-	-	15	mA
			Drive capacity LOW	-	-	5	mA
f(XIN)	Main clock input o	scillation frequency	$3.0~V \leq Vcc \leq 5.5~V$	0	-	20	MHz
			$2.7~V \leq Vcc < 3.0~V$	0	-	10	MHz

NOTES:

1. Vcc = 2.7 to 5.5 V at T_{opr} = -20 to 85 °C / -40 to 85 °C, unless otherwise specified. 2. Typical values when average output current is 100 ms.

Cumbal	Deremeter	Conditions		Lincit			
Symbol	Parameter	Conditions	Min.	Min. Typ.		Unit	
-	Program/erase endurance ⁽²⁾	R8C/18 Group	100 ⁽³⁾	-	-	times	
		R8C/19 Group	1,000(3)	-	-	times	
-	Byte program time		-	50	400	μS	
-	Block erase time		-	0.4	9	s	
td(SR-SUS)	Time delay from suspend request until suspend		-	-	97+CPU clock × 6 cycles	μS	
-	Interval from erase start/restart until following suspend request		650	-	_	μS	
-	Interval from program start/restart until following suspend request		0	-	-	ns	
-	Time from suspend until program/erase restart		-	-	3+CPU clock × 4 cycles	μS	
-	Program, erase voltage		2.7	-	5.5	V	
-	Read voltage		2.7	-	5.5	V	
-	Program, erase temperature		0	-	60	°C	
=	Data hold time ⁽⁸⁾	Ambient temperature = 55 °C	20	=	-	year	

Table 5.4 Flash Memory (Program ROM) Electrical Characteristics

NOTES:

1. Vcc = 2.7 to 5.5 V at Topr = 0 to 60 °C, unless otherwise specified.

2. Definition of programming/erasure endurance

The programming and erasure endurance is defined on a per-block basis.

If the programming and erasure endurance is n (n = 100 or 10,000), each block can be erased n times. For example, if 1,024 1-byte writes are performed to block A, a 1 Kbyte block, and then the block is erased, the programming/erasure endurance still stands at one. However, the same address must not be programmed more than once per erase operation (overwriting prohibited).

3. Endurance to guarantee all electrical characteristics after program and erase. (1 to Min. value can be guaranteed).

- 4. If emergency processing is required, a suspend request can be generated independent of this characteristic. In that case the normal time delay to Suspend can be applied to the request. However, we recommend that a suspend request with an interval of less than 650 μs is only used once because, if the suspend state continues, erasure cannot operate and the incidence of erasure error rises.
- 5. In a system that executes multiple programming operations, the actual erasure count can be reduced by writing to sequential addresses in turn so that as much of the block as possible is used up before performing an erase operation. For example, when programming groups of 16 bytes, the effective number of rewrites can be minimized by programming up to 128 groups before erasing them all in one operation. In addition, averaging the number of erase operations between block A and block B can further reduce the effective number of rewrites. It is also advisable to retain data on the erase count of each block and limit the number of erase operations to a certain number.
- 6. If an error occurs during block erase, attempt to execute the clear status register command, then execute the block erase command at least three times until the erase error does not occur.
- 7. Customers desiring programming/erasure failure rate information should contact their Renesas technical support representative.
- 8. The data hold time includes time that the power supply is off or the clock is not supplied.

Symbol	Parameter	Conditions		Unit		
Symbol	Falameter	Conditions	Min.	Тур.	Max.	Unit
-	Program/erase endurance ⁽²⁾		10,000 ⁽³⁾	-	-	times
_	Byte program time (Program/erase endurance \leq 1,000 times)		-	50	400	μS
_	Byte program time (Program/erase endurance > 1,000 times)		_	65	_	μS
_	Block erase time (Program/erase endurance ≤ 1,000 times)		_	0.2	9	S
-	Block erase time (Program/erase endurance > 1,000 times)		_	0.3	_	S
td(SR-SUS)	Time delay from suspend request until suspend		-	_	97+CPU clock × 6 cycles	μS
-	Interval from erase start/restart until following suspend request		650	_	_	μS
-	Interval from program start/restart until following suspend request		0	-	_	ns
-	Time from suspend until program/erase restart		-	-	3+CPU clock × 4 cycles	μS
-	Program, erase voltage		2.7	-	5.5	V
-	Read voltage		2.7	-	5.5	V
-	Program, erase temperature		-20 ⁽⁸⁾	-	85	°C
-	Data hold time ⁽⁹⁾	Ambient temperature = 55 °C	20	-	-	year

Table 5.5 Flash Memory (Data flash Block A, Block B) Electrical Characteristics

NOTES:

1. Vcc = 2.7 to 5.5 V at Topr = -20 to 85 $^{\circ}$ C / -40 to 85 $^{\circ}$ C, unless otherwise specified.

2. Definition of programming/erasure endurance

The programming and erasure endurance is defined on a per-block basis. If the programming and erasure endurance is n (n = 100 or 10,000), each block can be erased n times. For example, if 1,024 1-byte writes are performed to block A, a 1 Kbyte block, and then the block is erased, the programming/erasure endurance still stands at one. However, the same address must not be programmed more than once per erase operation (overwriting prohibited).

3. Endurance to guarantee all electrical characteristics after program and erase. (1 to Min. value can be guaranteed).

- 4. If emergency processing is required, a suspend request can be generated independent of this characteristic. In that case the normal time delay to suspend can be applied to the request. However, we recommend that a suspend request with an interval of less than 650 μs is only used once because, if the suspend state continues, erasure cannot operate and the incidence of erasure error rises.
- 5. In a system that executes multiple programming operations, the actual erasure count can be reduced by writing to sequential addresses in turn so that as much of the block as possible is used up before performing an erase operation. For example, when programming groups of 16 bytes, the effective number of rewrites can be minimized by programming up to 128 groups before erasing them all in one operation. It is also advisable to retain data on the erase count of each block and limit the number of erase operations to a certain number.
- 6. If an error occurs during block erase, attempt to execute the clear status register command, then execute the block erase command at least three times until the erase error does not occur.
- 7. Customers desiring programming/erasure failure rate information should contact their Renesas technical support representative.
- 8. -40 °C for D version.
- 9. The data hold time includes time that the power supply is off or the clock is not supplied.

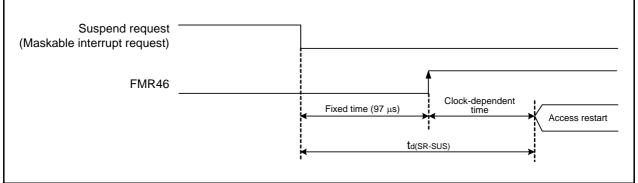


Figure 5.2 Transition Time to Suspend

Symbol	Parameter	Condition	Standard		Unit	
			Min.	Тур.	Max.	
Vpor2	Power-on reset valid voltage	$\text{-}20^\circ C \leq Topr \leq 85^\circ C$	-	-	Vdet1	V
tw(Vpor2-Vdet1)	Supply voltage rising time when power-on reset is deasserted ⁽¹⁾	$\label{eq:constraint} \begin{array}{l} -20^\circ C \leq Topr \leq 85^\circ C, \\ t_{w(por2)} \geq 0s^{(3)} \end{array}$	-	-	100	ms

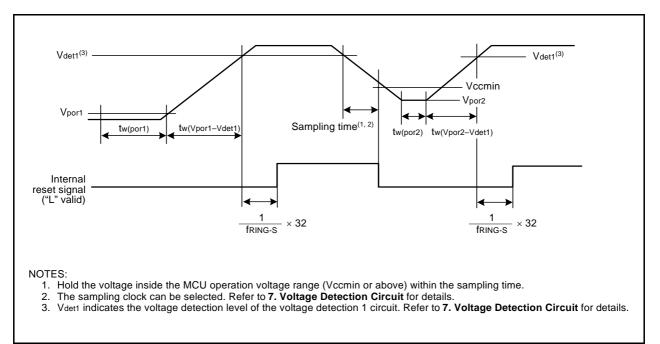
Table 5.8 Reset Circuit Electrical Characteristics (When Using Voltage Monitor 1 Reset)

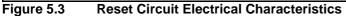
NOTES:

1. This condition is not applicable when using with $Vcc \ge 1.0 V$.

2. When turning power on after the time to hold the external power below effective voltage (Vpor1) exceeds10 s, refer to Table 5.9 Reset Circuit Electrical Characteristics (When Not Using Voltage Monitor 1 Reset).

3. tw(por2) is the time to hold the external power below effective voltage (Vpor2).


Table 5.9 Reset Circuit Electrical Characteristics (When Not Using Voltage Monitor 1 Reset)


Symbol	Parameter	Condition	Standard			Unit
			Min.	Тур.	Max.	
Vpor1	Power-on reset valid voltage	$-20^\circ C \le Topr \le 85^\circ C$	-	-	0.1	V
tw(Vpor1-Vdet1)	Supply voltage rising time when power-on reset is deasserted	$\begin{array}{l} 0^{\circ}C\leq Topr\leq 85^{\circ}C,\\ tw(por1)\geq 10\ s^{(2)} \end{array}$	-	-	100	ms
tw(Vpor1-Vdet1)	Supply voltage rising time when power-on reset is deasserted	$\label{eq:constraint} \begin{array}{l} -20^\circ C \leq \mbox{Topr} < 0^\circ C, \\ t_{w(\mbox{por1})} \geq 30 \ s^{(2)} \end{array}$	-	-	100	ms
tw(Vpor1-Vdet1)	Supply voltage rising time when power-on reset is deasserted	$\label{eq:constraint} \begin{array}{l} -20^\circ C \leq \mbox{Topr} < 0^\circ C, \\ \mbox{tw(por1)} \geq 10 \ s^{(2)} \end{array}$	-	-	1	ms
tw(Vpor1-Vdet1)	Supply voltage rising time when power-on reset is deasserted	$\label{eq:constraint} \begin{array}{l} 0^\circ C \leq \mbox{Topr} \leq 85^\circ C, \\ t_{w(\mbox{por}1)} \geq 1 \ s^{(2)} \end{array}$	_	-	0.5	ms

NOTES:

1. When not using voltage monitor 1, use with Vcc \ge 2.7 V.

2. tw(por1) is the time to hold the external power below effective voltage (Vpor1).

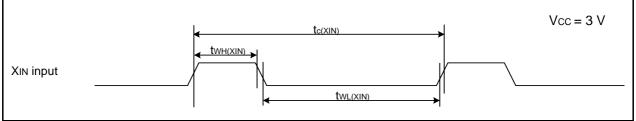

Symbol	Parameter	Condition		Standard		Unit	
5,1100				Min.	Тур.	Max.	Unit
Icc	Power supply current (Vcc = 3.3 to 5.5 V) Single-chip mode, output pins are open,	High-speed mode	XIN = 20 MHz (square wave) High-speed on-chip oscillator off Low-speed on-chip oscillator on = 125 kHz No division	_	9	15	mA
	other pins are Vss, comparator is stopped		XIN = 16 MHz (square wave) High-speed on-chip oscillator off Low-speed on-chip oscillator on = 125 kHz No division	_	8	14	mA
			XIN = 10 MHz (square wave) High-speed on-chip oscillator off Low-speed on-chip oscillator on = 125 kHz No division		5	_	mA
		Medium- speed mode	XIN = 20 MHz (square wave) High-speed on-chip oscillator off Low-speed on-chip oscillator on = 125 kHz Divide-by-8	_	4	_	mA
			XIN = 16 MHz (square wave) High-speed on-chip oscillator off Low-speed on-chip oscillator on = 125 kHz Divide-by-8	_	3	_	mA
			XIN = 10 MHz (square wave) High-speed on-chip oscillator off Low-speed on-chip oscillator on = 125 kHz Divide-by-8	-	2	_	mA
		High-speed on-chip oscillator mode	Main clock off High-speed on-chip oscillator on = 8 MHz Low-speed on-chip oscillator on = 125 kHz No division	_	4	8	mA
			Main clock off High-speed on-chip oscillator on = 8 MHz Low-speed on-chip oscillator on = 125 kHz Divide-by-8	-	1.5	_	mA
		Low-speed on-chip oscillator mode	Main clock off High-speed on-chip oscillator off Low-speed on-chip oscillator on = 125 kHz Divide-by-8 FMR47 = 1	_	110	300	μA
		Wait mode	Main clock off High-speed on-chip oscillator off Low-speed on-chip oscillator on = 125 kHz While a WAIT instruction is executed Peripheral clock operation VCA27 = VCA26 = 0	_	40	80	μΑ
		Wait mode	Main clock off High-speed on-chip oscillator off Low-speed on-chip oscillator on = 125 kHz While a WAIT instruction is executed Peripheral clock off VCA27 = VCA26 = 0	_	38	76	μA
		Stop mode	Main clock off, Topr = 25 °C High-speed on-chip oscillator off Low-speed on-chip oscillator off CM10 = 1 Peripheral clock off VCA27 = VCA26 = 0	_	0.8	3.0	μA

Table 5.13Electrical Characteristics (2) [Vcc = 5 V] (Topr = -40 to 85 °C, unless otherwise specified.)

Timing requirements (Unless Otherwise Specified: Vcc = 3 V, Vss = 0 V at Ta = 25 °C) [Vcc = 3 V]

Table 5.21 XIN Input

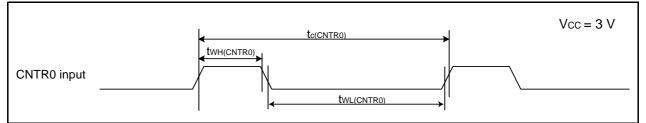
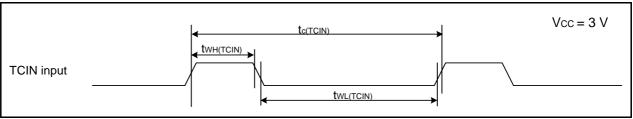

Symbol	Parameter		Standard	
Symbol			Max.	Unit
tc(XIN)	XIN input cycle time	100	-	ns
twh(XIN)	XIN input "H" width		-	ns
twl(XIN)	XIN input "L" width	40	-	ns

Figure 5.9 XIN Input Timing Diagram when Vcc = 3 V

Table 5.22 CNTR0 Input, CNTR1 Input, INT1 Input

Symbol	Parameter		Standard	
Symbol			Max.	Unit
tc(CNTR0)	CNTR0 input cycle time		-	ns
tWH(CNTR0)	CNTR0 input "H" width		-	ns
tWL(CNTR0)	CNTR0 input "L" width	120	-	ns

Figure 5.10 CNTR0 Input, CNTR1 Input, INT1 Input Timing Diagram when Vcc = 3 V


Table 5.23 TCIN Input, INT3 Input

Symbol	Parameter		Standard	
Symbol			Max.	Unit
tc(TCIN)	TCIN input cycle time	1,200(1)	-	ns
twh(tcin)	TCIN input "H" width		-	ns
twl(tcin)	TCIN input "L" width		_	ns

NOTES:

1. When using the timer C input capture mode, adjust the cycle time to (1/timer C count source frequency x 3) or above.

2. When using the timer C input capture mode, adjust the width to $(1/timer C \text{ count source frequency } \times 1.5)$ or above.

Figure 5.11 TCIN Input, INT3 Input Timing Diagram when Vcc = 3 V

Table 5.24 Serial Interface

Symbol	Parameter		Standard	
	Parameter	Min.	Max.	Unit
tc(CK)	CLKi input cycle time	300	-	ns
tw(CKH)	CLKi input "H" width	150	-	ns
tW(CKL)	CLKi input "L" width	150	-	ns
td(C-Q)	TXDi output delay time	-	80	ns
th(C-Q)	TXDi hold time		-	ns
tsu(D-C)	RXDi input setup time	70	-	ns
th(C-D)	RXDi input hold time		-	ns

i = 0 or 1

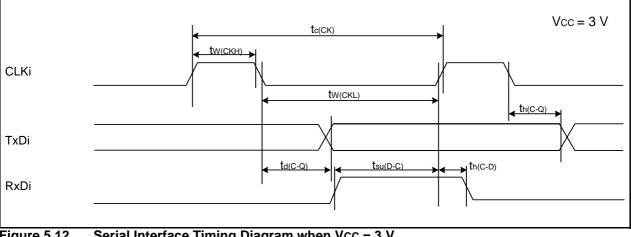
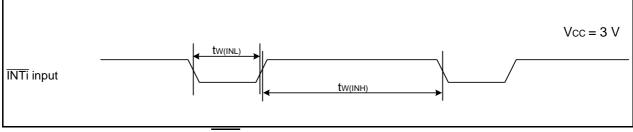
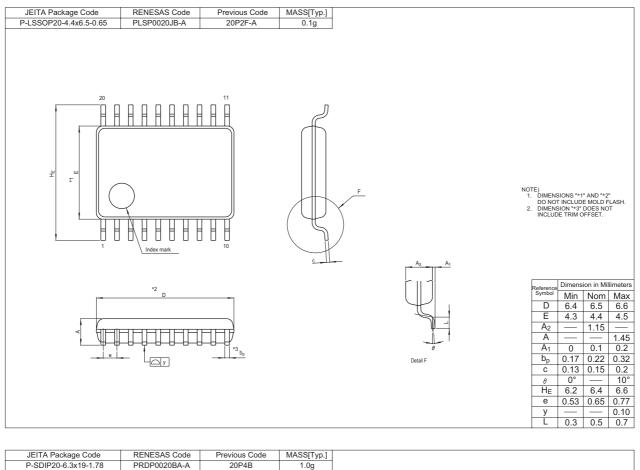


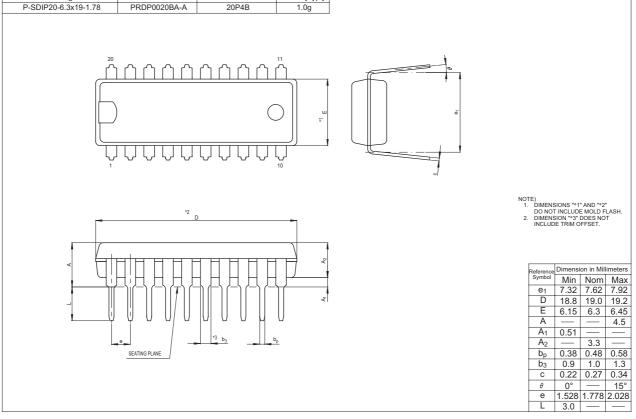
Figure 5.12 Serial Interface Timing Diagram when Vcc = 3 V

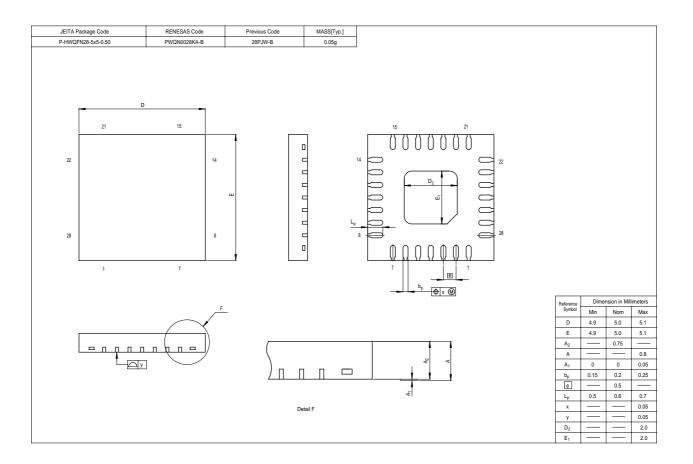

Table 5.25 External Interrupt INT0 Input

Symbol	Parameter	Standard		Unit
Symbol	Falameter		Max.	
tw(INH)	INT0 input "H" width	380 ⁽¹⁾	-	ns
tw(INL)	INTO input "L" width	380(2)	I	ns

NOTES:


1. When selecting the digital filter by the INTO input filter select bit, use an INTO input HIGH width of either (1/digital filter clock frequency x 3) or the minimum value of standard, whichever is greater.


2. When selecting the digital filter by the INTO input filter select bit, use an INTO input LOW width of either (1/digital filter clock frequency x 3) or the minimum value of standard, whichever is greater.



External Interrupt INTO Input Timing Diagram when Vcc = 3 V Figure 5.13

Package Dimensions

F	REVISION HISTORY R8C/18 Group, R8C/19 Group Datashee					
Rev. Date			Description			
		Page	Summary			
1.20	Nov 01, 2005	16	Table 4.1 SFR Information(1);0009h: "XXXXX00b" \rightarrow "00h"000Ah: "00XXX000b" \rightarrow "00h"001Eh: "XXXXX000b" \rightarrow "00h" revised			
		18	Table 4.3 SFR Information(3);0085h:"Prescaler Z" \rightarrow "Prescaler Z Register"0086h:"Timer Z Secondary" \rightarrow "Timer Z Secondary Register"0087h:"Timer Z Primary" \rightarrow "Timer Z Primary Register"008Ch:"Prescaler X" \rightarrow "Prescaler X Register"008Dh:"Timer X" \rightarrow "Timer X Register"0090h, 0091h:"Timer C" \rightarrow "Timer C Register" revised			
		22	Table 5.4 Flash Memory (Program ROM) Electrical Characteristics; NOTES 3 and 5 revised, NOTE8 deleted			
		23	Table 5.5 Flash Memory (Data flash Block A, Block B) Electrical Characteristics; NOTES 1 and 3 revised			
		25	Table 5.8 Reset Circuit Electrical Characteristics (When Using VoltageMonitor 1 Reset); NOTE 2 revised			
		26	 Table 5.10 High-speed On-Chip Oscillator Circuit Electrical Characteristics; "High-Speed On-Chip Oscillator" → "High-Speed On-Chip Oscillator Frequency" revised NOTE 2, 3 added 			
		28	Table 5.13 Electrical Characteristics (2) [Vcc = 5V]; NOTE 1 deleted			
		32	Table 5.20 Electrical Characteristics (4) [Vcc = 3V]; NOTE 1 deleted			
1.30	Dec 16, 2005	_	Products of PWQN0028KA-B package included			
		5, 6	Table 1.3, Table 1.4 revised			
		24	Table 5.4 Flash Memory (Program ROM) Electrical Characteristics; Ta \rightarrow Ambient temperature			
		25	Table 5.5 Flash Memory (Data flash Block A, Block B) Electrical Characteristics; Ta \rightarrow Ambient temperature			
		30, 34	Table 5.13, Table 5.20; The title revised, Condition of Stop Mode added			
		32, 36	Table 5.17, Table 5.24; td(C-Q) and tsu(D-C) revised			
		37, 38	Package Dimensions revised			
1.40	Apr 14, 2006	2, 3	Table 1.1, Table 1.2; Interrupts: Internal 8 \rightarrow 10 sources,			
		5, 6	Table 1.3, Table 1.4; Type No. added, deleted			
		16, 17	Figure 3.1, Figure 3.2; Part Number added, deleted			
		24, 25	Table 5.4, Table 5.5;			
			Conditions: VCC = 5.0 V at Topr = $25 \degree \text{C}$ deleted			