

Welcome to **E-XFL.COM**

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded - Microcontrollers</u>"

Details	
Product Status	Active
Core Processor	R8C
Core Size	16-Bit
Speed	20MHz
Connectivity	SIO, UART/USART
Peripherals	LED, POR, Voltage Detect, WDT
Number of I/O	13
Program Memory Size	8KB (8K x 8)
Program Memory Type	FLASH
EEPROM Size	2K x 8
RAM Size	512 x 8
Voltage - Supply (Vcc/Vdd)	2.7V ~ 5.5V
Data Converters	-
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	20-LSSOP (0.173", 4.40mm Width)
Supplier Device Package	20-LSSOP
Purchase URL	https://www.e-xfl.com/product-detail/renesas-electronics-america/r5f21192dsp-u0

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Notice

- 1. All information included in this document is current as of the date this document is issued. Such information, however, is subject to change without any prior notice. Before purchasing or using any Renesas Electronics products listed herein, please confirm the latest product information with a Renesas Electronics sales office. Also, please pay regular and careful attention to additional and different information to be disclosed by Renesas Electronics such as that disclosed through our website.
- Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights
 of third parties by or arising from the use of Renesas Electronics products or technical information described in this document.
 No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights
 of Renesas Electronics or others.
- 3. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part.
- 4. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for the incorporation of these circuits, software, and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by you or third parties arising from the use of these circuits, software, or information.
- 5. When exporting the products or technology described in this document, you should comply with the applicable export control laws and regulations and follow the procedures required by such laws and regulations. You should not use Renesas Electronics products or the technology described in this document for any purpose relating to military applications or use by the military, including but not limited to the development of weapons of mass destruction. Renesas Electronics products and technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or regulations.
- 6. Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics does not warrant that such information is error free. Renesas Electronics assumes no liability whatsoever for any damages incurred by you resulting from errors in or omissions from the information included herein.
- 7. Renesas Electronics products are classified according to the following three quality grades: "Standard", "High Quality", and "Specific". The recommended applications for each Renesas Electronics product depends on the product's quality grade, as indicated below. You must check the quality grade of each Renesas Electronics product before using it in a particular application. You may not use any Renesas Electronics product for any application categorized as "Specific" without the prior written consent of Renesas Electronics. Further, you may not use any Renesas Electronics product for any application for which it is not intended without the prior written consent of Renesas Electronics. Renesas Electronics shall not be in any way liable for any damages or losses incurred by you or third parties arising from the use of any Renesas Electronics product for an application categorized as "Specific" or for which the product is not intended where you have failed to obtain the prior written consent of Renesas Electronics. The quality grade of each Renesas Electronics product is "Standard" unless otherwise expressly specified in a Renesas Electronics data sheets or data books, etc.
 - "Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools; personal electronic equipment; and industrial robots.
 - "High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anti-crime systems; safety equipment; and medical equipment not specifically designed for life support.
 - "Specific": Aircraft; aerospace equipment; submersible repeaters; nuclear reactor control systems; medical equipment or systems for life support (e.g. artificial life support devices or systems), surgical implantations, or healthcare intervention (e.g. excision, etc.), and any other applications or purposes that pose a direct threat to human life.
- 8. You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics, especially with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or damages arising out of the use of Renesas Electronics products beyond such specified ranges.
- 9. Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Further, Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to guard them against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a Renesas Electronics product, such as safety design for hardware and software including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult, please evaluate the safety of the final products or system manufactured by you.
- 10. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. Please use Renesas Electronics products in compliance with all applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive. Renesas Electronics assumes no liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations.
- 11. This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written consent of Renesas Electronics
- 12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products, or if you have any other inquiries.
- (Note 1) "Renesas Electronics" as used in this document means Renesas Electronics Corporation and also includes its majority-owned subsidiaries.
- (Note 2) "Renesas Electronics product(s)" means any product developed or manufactured by or for Renesas Electronics.

R8C/18 Group, R8C/19 Group SINGLE-CHIP 16-BIT CMOS MCU

REJ03B0124-0140 Rev.1.40 Apr 14, 2006

1. Overview

These MCUs are fabricated using a high-performance silicon gate CMOS process, embedding the R8C/Tiny Series CPU core, and is packaged in a 20-pin molded-plastic LSSOP, SDIP or a 28-pin plastic molded-HWQFN. It implements sophisticated instructions for a high level of instruction efficiency. With 1 Mbyte of address space, they are capable of executing instructions at high speed.

Furthermore, the R8C/19 Group has on-chip data flash ROM (1 KB x 2 blocks).

The difference between the R8C/18 Group and R8C/19 Group is only the presence or absence of data flash ROM. Their peripheral functions are the same.

1.1 Applications

Electric household appliances, office equipment, housing equipment (sensors, security systems), general industrial equipment, audio equipment, etc.

1.2 Performance Overview

Table 1.1 outlines the Functions and Specifications for R8C/18 Group and Table 1.2 outlines the Functions and Specifications for R8C/19 Group.

Table 1.1 Functions and Specifications for R8C/18 Group

	Item	Specification		
CPU	Number of fundamental	89 instructions		
	instructions			
	Minimum instruction execution	50 ns (f(XIN) = 20 MHz, VCC = 3.0 to 5.5 V)		
	time	100 ns (f(XIN) = 10 MHz, VCC = 2.7 to 5.5 V)		
	Operation mode	Single-chip		
	Address space	1 Mbyte		
	Memory capacity	Refer to Table 1.3 Product Information for R8C/18		
		Group		
Peripheral	Ports	I/O ports: 13 pins (including LED drive port)		
Functions		Input port: 3 pins		
	LED drive ports	I/O ports: 4 pins		
	Timers	Timer X: 8 bits × 1 channel, timer Z: 8 bits × 1 channel		
		(Each timer equipped with 8-bit prescaler)		
		Timer C: 16 bits x 1 channel		
		(Input capture and output compare circuits)		
	Serial interfaces	1 channel		
		Clock synchronous serial I/O, UART		
		1 channel		
		UART		
	Comparator	1-bit comparator: 1 circuit, 4 channels		
	Watchdog timer	15 bits x 1 channel (with prescaler)		
		Reset start selectable, count source protection mode		
	Interrupts	Internal: 10 sources, External: 4 sources, Software: 4		
		sources,		
		Priority levels: 7 levels		
	Clock generation circuits	2 circuits		
		Main clock oscillation circuit (with on-chip feedback		
		resistor)		
		On-chip oscillator (high speed, low speed)		
		High-speed on-chip oscillator has frequency		
		adjustment function		
	Oscillation stop detection	Main clock oscillation stop detection function		
	function			
	Voltage detection circuit	On-chip		
	Power-on reset circuit	On-chip On-chip		
Electric	Supply voltage	VCC = 3.0 to 5.5 V (f(XIN) = 20 MHz)		
Characteristics		VCC = 2.7 to 5.5 V (f(XIN) = 10 MHz)		
	Current consumption	Typ. 9 mA (VCC = 5.0 V, f(XIN) = 20 MHz, comparator stopped)		
		Typ. 5 mA (VCC = 3.0V, f(XIN) = 10 MHz, comparator stopped)		
		Typ. 35 μA (VCC = 3.0 V, wait mode, peripheral clock off)		
		Typ. 0.7 μ A (VCC = 3.0 V, stop mode)		
Flash Memory	Programming and erasure voltage	VCC = 2.7 to 5.5 V		
	Programming and erasure	100 times		
	endurance			
Operating Ambi	ent Temperature	-20 to 85°C		
		-40 to 85°C (D version)		
Package		20-pin molded-plastic LSSOP		
		20-pin molded-plastic SDIP		
		28-pin molded-plastic HWQFN		

1.3 Block Diagram

Figure 1.1 shows a Block Diagram.

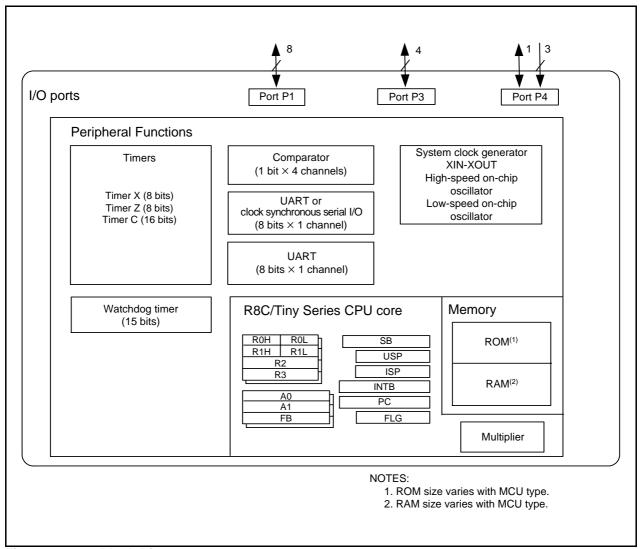


Figure 1.1 Block Diagram

Table 1.4 Product Information for R8C/19 Group

Current of Apr. 2006

Type No.	ROM C	apacity	RAM	Package Type	Remarks
Type No.	Program ROM	Data flash	Capacity	Fackage Type	Remarks
R5F21191SP	4 Kbytes	1 Kbyte x 2	384 bytes	PLSP0020JB-A	Flash memory version
R5F21192SP	8 Kbytes	1 Kbyte × 2	512 bytes	PLSP0020JB-A	
R5F21193SP	12 Kbytes	1 Kbyte × 2	768 bytes	PLSP0020JB-A	
R5F21194SP	16 Kbytes	1 Kbyte × 2	1 Kbyte	PLSP0020JB-A	
R5F21191DSP (D)	4 Kbytes	1 Kbyte × 2	384 bytes	PLSP0020JB-A	D version
R5F21192DSP (D)	8 Kbytes	1 Kbyte × 2	512 bytes	PLSP0020JB-A	
R5F21193DSP (D)	12 Kbytes	1 Kbyte x 2	768 bytes	PLSP0020JB-A	
R5F21194DSP (D)	16 Kbytes	1 Kbyte × 2	1 Kbyte	PLSP0020JB-A	
R5F21191DD	4 Kbytes	1 Kbyte × 2	384 bytes	PRDP0020BA-A	Flash memory version
R5F21192DD	8 Kbytes	1 Kbyte × 2	512 bytes	PRDP0020BA-A	
R5F21193DD	12 Kbytes	1 Kbyte x 2	768 bytes	PRDP0020BA-A	
R5F21194DD	16 Kbytes	1 Kbyte × 2	1 Kbyte	PRDP0020BA-A	
R5F21192NP	8 Kbytes	1 Kbyte × 2	512 bytes	PWQN0028KA-B	Flash memory version
R5F21193NP	12 Kbytes	1 Kbyte × 2	768 bytes	PWQN0028KA-B	
R5F21194NP	16 Kbytes	1 Kbyte × 2	1 Kbyte	PWQN0028KA-B	

(D): Under Development

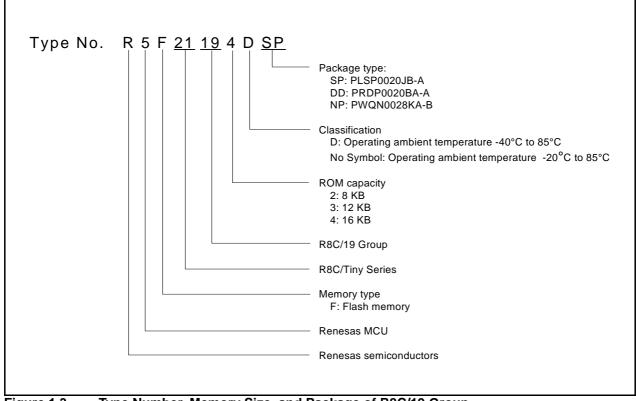


Figure 1.3 Type Number, Memory Size, and Package of R8C/19 Group

1.5 Pin Assignments

Figure 1.4 shows Pin Assignments for PLSP0020JB-A Package (Top View), Figure 1.5 shows Pin Assignments for PRDP0020BA-A Package (Top View) and Figure 1.6 shows Pin Assignments for PWQN0028KA-B Package (Top View).

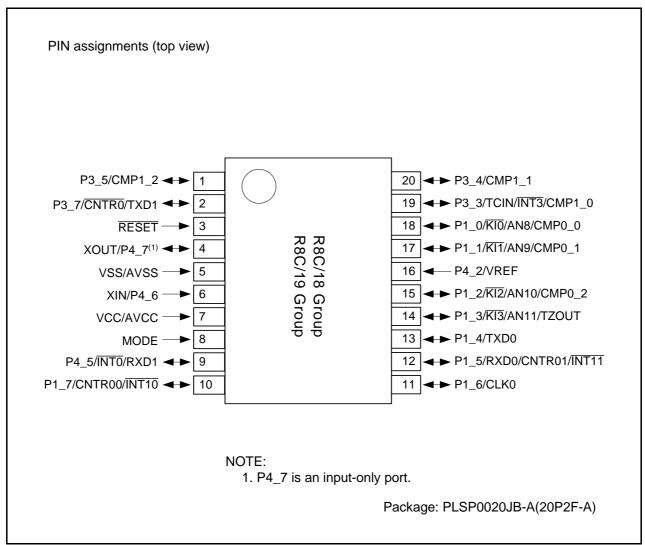


Figure 1.4 Pin Assignments for PLSP0020JB-A Package (Top View)

Page 7 of 38

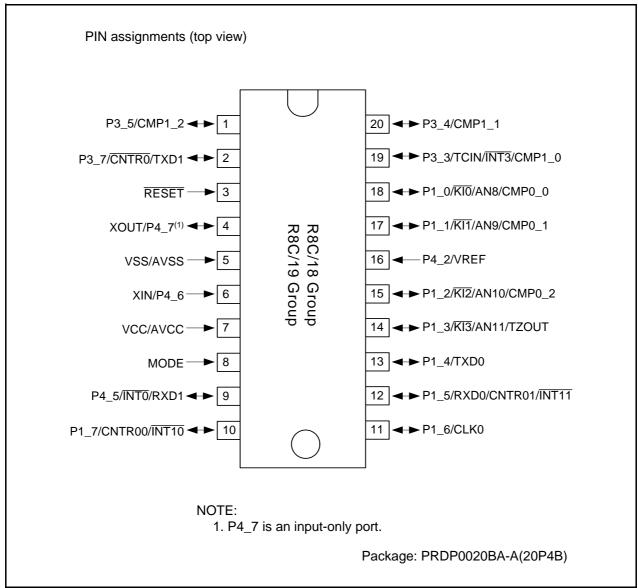


Figure 1.5 Pin Assignments for PRDP0020BA-A Package (Top View)

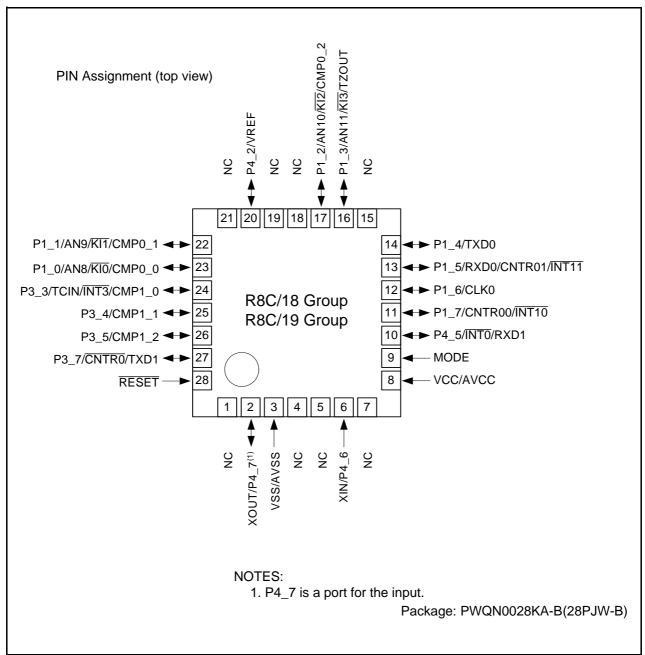


Figure 1.6 Pin Assignments for PWQN0028KA-B Package (Top View)

Table 1.7 Pin Name Information by Pin Number of PWQN0028KA-B package

Pin	Control	Port	I/O Pin of Peripheral Function					
Number	Pin	Port	Interrupt	Timer	Serial Interface	Comparator		
1	NC							
2	XOUT	P4_7						
3	VSS/AVSS							
4	NC							
5	NC							
6	XIN	P4_6						
7	NC							
8	VCC/AVCC							
9	MODE							
10		P4_5	ĪNT0		RXD1			
11		P1_7	ĪNT10	CNTR00				
12		P1_6			CLK0			
13		P1_5	ĪNT11	CNTR01	RXD0			
14		P1_4			TXD0			
15	NC							
16		P1_3	KI3	TZOUT		AN11		
17		P1_2	KI2	CMP0_2		AN10		
18	NC							
19	NC							
20	VREF	P4_2						
21	NC							
22		P1_1	KI1	CMP0_1		AN9		
23		P1_0	KI0	CMP0_0		AN8		
24		P3_3	ĪNT3	TCIN/CMP1_0				
25		P3_4		CMP1_1				
26		P3_5		CMP1_2				
27		P3_7		CNTR0	TXD1			
28	RESET							

2. Central Processing Unit (CPU)

Figure 2.1 shows the CPU Registers. The CPU contains 13 registers. R0, R1, R2, R3, A0, A1, and FB configure a register bank. There are two sets of register bank.

Figure 2.1 CPU Registers

3. Memory

3.1 R8C/18 Group

Figure 3.1 is a Memory Map of R8C/18 Group. The R8C/18 Group has 1 Mbyte of address space from addresses 00000h to FFFFFh.

The internal ROM area is allocated lower addresses, beginning with address 0FFFFh. For example, a 16-Kbyte internal ROM is allocated addresses 0C000h to 0FFFFh.

The fixed interrupt vector table is allocated addresses 0FFDCh to 0FFFFh. They store the starting address of each interrupt routine.

The internal RAM is allocated higher addresses, beginning with address 00400h. For example, a 1-Kbyte internal RAM area is allocated addresses 00400h to 007FFh. The internal RAM is used not only for storing data but also for calling subroutines and as stacks when interrupt requests are acknowledged.

Special function registers (SFRs) are allocated addresses 00000h to 002FFh. The peripheral function control registers are allocated here. All addresses within the SFR, which have nothing allocated are reserved for future use and cannot be accessed by users.

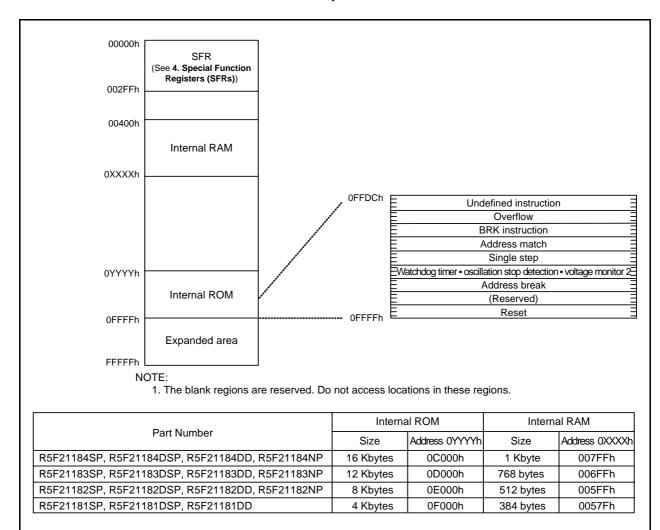


Figure 3.1 Memory Map of R8C/18 Group

4. Special Function Registers (SFRs)

An SFR (special function register) is a control register for a peripheral function. Tables 4.1 to 4.4 list the special function registers.

Table 4.1 SFR Information (1)⁽¹⁾

A -1-1	Devictor	Completel	A4
Address	Register	Symbol	After reset
0000h			
0001h			
0002h			
0003h			
0004h	Processor Mode Register 0	PM0	00h
0005h	Processor Mode Register 1	PM1	00h
0006h	System Clock Control Register 0	CM0	01101000b
0007h	System Clock Control Register 1	CM1	00100000b
0008h			
0009h	Address Match Interrupt Enable Register	AIER	00h
000Ah	Protect Register	PRCR	00h
000Bh	1 Total Tragistal	TROR	0011
000Ch	Oscillation Stop Detection Register	OCD	00000100b
000Ch	Watchdog Timer Reset Register	WDTR	XXh
		WDTS	XXh
000Eh	Watchdog Timer Start Register		
000Fh	Watchdog Timer Control Register	WDC	00011111b
0010h	Address Match Interrupt Register 0	RMAD0	00h
0011h			00h
0012h			X0h
0013h			
0014h	Address Match Interrupt Register 1	RMAD1	00h
0015h			00h
0016h			X0h
0017h			
0018h			
0019h			
001Ah			
001Bh			
001Ch	Count Source Protection Mode Register	CSPR	00h
001Dh	Count Source Flotection wode Register	COFIC	0011
001Dh	 	INITOE	001-
	INT0 Input Filter Select Register	INT0F	00h
001Fh			
0020h	High-Speed On-Chip Oscillator Control Register 0	HRA0	00h
0021h	High-Speed On-Chip Oscillator Control Register 1	HRA1	When shipping
0022h	High-Speed On-Chip Oscillator Control Register 2	HRA2	00h
0023h			
002Ah			
002Bh			
002Ch			
002Dh			
002Eh			
002En			
002FII			
	Valtana Datastina Danistas 4(2)	VCA1	00001000b
0031h	Voltage Detection Register 1 ⁽²⁾	VCA1	00001000b
0032h	Voltage Detection Register 2 ⁽²⁾	VCA2	00h ⁽³⁾
			01000000b ⁽⁴⁾
0033h			
0034h			
0035h			
0036h	Voltage Monitor 1 Circuit Control Register (2)	VW1C	0000X000b ⁽³⁾
			0100X001b ⁽⁴⁾
0037h	Voltage Monitor 2 Circuit Control Register (5)	VW2C	00h
	Voltage Monitor 2 Circuit Control Register (5)	V VVZO	OOH
0038h			
0039h			
003Ah			
003Bh			
003Ch			
003Dh			
003Eh			
003Fh			
	I .	l	1

X: Undefined

NOTES:

- 1. The blank regions are reserved. Do not access locations in these regions.
- 2. Software reset, watchdog timer reset, and voltage monitor 2 reset do not affect this register.
- 3. After hardware reset.
- 4. After power-on reset or voltage monitor 1 reset.
- 5. Software reset, watchdog timer reset, and voltage monitor 2 reset do not affect b2 and b3.

SFR Information (2)⁽¹⁾ Table 4.2

Address	Register	Symbol	After reset
0040h	5	,	
0041h			
0042h			
0043h			
0044h			
0045h			
0046h			
0047h			
0048h			
0049h			
004Ah			
004Bh			
004Ch			
004Dh	Key Input Interrupt Control Register	KUPIC	XXXXX000b
004Eh	Comparator Conversion Interrupt Control Register	ADIC	XXXXX000b
004Fh			
0050h	Compare 1 Interrupt Control Register	CMP1IC	XXXXX000b
0051h	UARTO Transmit Interrupt Control Register	SOTIC	XXXXX000b
0052h	UARTO Receive Interrupt Control Register	SORIC	XXXXX000b
0053h	UART1 Transmit Interrupt Control Register	S1TIC	XXXXX000b
0054h	UART1 Receive Interrupt Control Register	S1RIC	XXXXX000b
0055h	Timor V Interrupt Central Pagister	TVIC	VVVVV000h
0056h 0057h	Timer X Interrupt Control Register	TXIC	XXXXX000b
0057h 0058h	Timer Z Interrupt Control Register	TZIC	XXXXX000b
0059h	-	INT1IC	XXXXX000b
	INT1 Interrupt Control Register		
005Ah	INT3 Interrupt Control Register	INT3IC	XXXXX000b
005Bh	Timer C Interrupt Control Register	TCIC	XXXXX000b
005Ch	Compare 0 Interrupt Control Register	CMP0IC	XXXXX000b
005Dh	INTO Interrupt Control Register	INT0IC	XX00X000b
005Eh			
005Fh			
0060h			
0061h			
0062h			
0063h			
0064h			
0065h			
0066h			
0067h 0068h			
0069h			
006Ah			
006Bh			
006Ch			
006Dh			
006Eh			
006Fh			
0070h			
0071h			
0072h			
0073h			
0074h			
0075h			
0076h			
0077h			
0078h			
0079h			
007Ah			
007Bh			
007Ch			
007Dh			
007Eh			
007Fh			

X: Undefined

NOTE:

1. The blank regions are reserved. Do not access locations in these regions.

Table 5.3 Comparator Characteristics

Symbol	Parameter	Conditions		Unit		
Symbol	Falametei	Conditions	Min.	Тур.	Max.	Offic
=	Resolution		=	=	1	Bit
_	Absolute accuracy	$\phi AD = 10 \text{ MHz}^{(3)}$	_	_	±20	mV
tconv	Conversion time	$\phi AD = 10 \text{ MHz}^{(3)}$	1	_	=	μS
Vref	Reference voltage		0	_	AVcc	V
VIA	Analog input voltage		0	-	AVcc	V
_	Comparator conversion operating clock frequency ⁽²⁾		1	-	10	MHz

NOTES:

- 1. Vcc = 2.7 to 5.5 V at Topr = -20 to 85 °C / -40 to 85 °C, unless otherwise specified.
- 2. If f1 exceeds 10 MHz, divided f1 and ensure the comparator conversion operating clock frequency (φAD) is 10 MHz or below.
- 3. If AVcc is less than 4.2 V, divided f1 and ensure the comparator conversion operating clock frequency (\$\phiAD\$) is f1/2 or below.

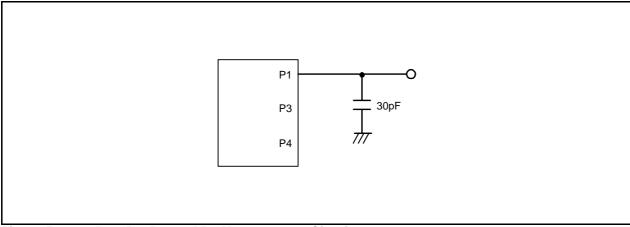


Figure 5.1 Port P1, P3, and P4 Measurement Circuit

Page 23 of 38

Table 5.4 Flash Memory (Program ROM) Electrical Characteristics

Cumbal	Parameter	Conditions		Unit			
Symbol	Parameter	Conditions	Min.	Тур.	Max.		
=	Program/erase endurance ⁽²⁾	R8C/18 Group	100 ⁽³⁾	=	=	times	
		R8C/19 Group	1,000(3)	-	=	times	
-	Byte program time		ī	50	400	μS	
=	Block erase time		=	0.4	9	S	
td(SR-SUS)	Time delay from suspend request until suspend		-	-	97+CPU clock × 6 cycles	μS	
=	Interval from erase start/restart until following suspend request		650	=	-	μS	
=	Interval from program start/restart until following suspend request		0	=	-	ns	
=	Time from suspend until program/erase restart		=	=	3+CPU clock × 4 cycles	μS	
_	Program, erase voltage		2.7	_	5.5	V	
-	Read voltage		2.7	-	5.5	V	
=	Program, erase temperature		0	-	60	°C	
=	Data hold time ⁽⁸⁾	Ambient temperature = 55 °C	20	_	_	year	

NOTES:

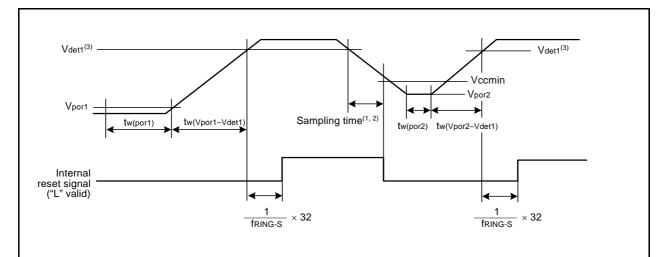
- 1. Vcc = 2.7 to 5.5 V at Topr = 0 to 60 °C, unless otherwise specified.
- 2. Definition of programming/erasure endurance
 - The programming and erasure endurance is defined on a per-block basis.
 - If the programming and erasure endurance is n (n = 100 or 10,000), each block can be erased n times. For example, if 1,024 1-byte writes are performed to block A, a 1 Kbyte block, and then the block is erased, the programming/erasure endurance still stands at one. However, the same address must not be programmed more than once per erase operation (overwriting prohibited).
- 3. Endurance to guarantee all electrical characteristics after program and erase. (1 to Min. value can be guaranteed).
- 4. If emergency processing is required, a suspend request can be generated independent of this characteristic. In that case the normal time delay to Suspend can be applied to the request. However, we recommend that a suspend request with an interval of less than 650 μs is only used once because, if the suspend state continues, erasure cannot operate and the incidence of erasure error rises.
- 5. In a system that executes multiple programming operations, the actual erasure count can be reduced by writing to sequential addresses in turn so that as much of the block as possible is used up before performing an erase operation. For example, when programming groups of 16 bytes, the effective number of rewrites can be minimized by programming up to 128 groups before erasing them all in one operation. In addition, averaging the number of erase operations between block A and block B can further reduce the effective number of rewrites. It is also advisable to retain data on the erase count of each block and limit the number of erase operations to a certain number.
- 6. If an error occurs during block erase, attempt to execute the clear status register command, then execute the block erase command at least three times until the erase error does not occur.
- 7. Customers desiring programming/erasure failure rate information should contact their Renesas technical support representative.
- 8. The data hold time includes time that the power supply is off or the clock is not supplied.

Page 24 of 38

Table 5.8 Reset Circuit Electrical Characteristics (When Using Voltage Monitor 1 Reset)

Symbol	Parameter	Condition	Standard		Unit	
			Min.	Тур.	Max.	
Vpor2	Power-on reset valid voltage	-20°C ≤ Topr ≤ 85°C	=	=	Vdet1	V
tw(Vpor2-Vdet1)	Supply voltage rising time when power-on reset is deasserted ⁽¹⁾	$ -20^{\circ}C \leq Topr \leq 85^{\circ}C, \\ t_{w(por2)} \geq 0s^{(3)} $	-	-	100	ms

NOTES:


- 1. This condition is not applicable when using with $Vcc \ge 1.0 \text{ V}$.
- 2. When turning power on after the time to hold the external power below effective voltage (Vpor1) exceeds10 s, refer to Table 5.9 Reset Circuit Electrical Characteristics (When Not Using Voltage Monitor 1 Reset).
- 3. tw(por2) is the time to hold the external power below effective voltage (Vpor2).

Reset Circuit Electrical Characteristics (When Not Using Voltage Monitor 1 Reset) Table 5.9

Symbol	Parameter	Condition		Standard		
			Min.	Тур.	Max.	
Vpor1	Power-on reset valid voltage	-20°C ≤ Topr ≤ 85°C	=	=	0.1	V
tw(Vpor1-Vdet1)	Supply voltage rising time when power-on reset is deasserted	$0^{\circ}C \leq Topr \leq 85^{\circ}C,$ $tw(por1) \geq 10 \ s^{(2)}$	-	-	100	ms
tw(Vpor1-Vdet1)	Supply voltage rising time when power-on reset is deasserted	$ -20^{\circ}C \leq Topr < 0^{\circ}C, \\ tw(por1) \geq 30 \ s^{(2)} $	-	=	100	ms
tw(Vpor1-Vdet1)	Supply voltage rising time when power-on reset is deasserted	$ -20^{\circ}C \leq Topr < 0^{\circ}C, $ $ tw(por1) \geq 10 \ s^{(2)} $	-	=	1	ms
tw(Vpor1-Vdet1)	Supply voltage rising time when power-on reset is deasserted	$0^{\circ}C \leq Topr \leq 85^{\circ}C,$ $tw(por1) \geq 1 \ s^{(2)}$	-	-	0.5	ms

NOTES:

- 1. When not using voltage monitor 1, use with $Vcc \ge 2.7 \text{ V}$.
- 2. tw(por1) is the time to hold the external power below effective voltage (Vpor1).

NOTES:

- 1. Hold the voltage inside the MCU operation voltage range (Vccmin or above) within the sampling time.
- The sampling clock can be selected. Refer to 7. Voltage Detection Circuit for details.
 Vdet1 indicates the voltage detection level of the voltage detection 1 circuit. Refer to 7. Voltage Detection Circuit for details.

Figure 5.3 **Reset Circuit Electrical Characteristics**

Table 5.12 Electrical Characteristics (1) [Vcc = 5 V]

Symbol	Parameter		Cond	dition	St	andard		Unit
Symbol			Condition		Min.	Тур.	Max.	Unit
Vон	Output "H" voltage	Except Xout	Iон = -5 mA	Iон = -5 mA		_	Vcc	V
			IOH = -200 μA		Vcc - 0.3	-	Vcc	V
		Хоит	Drive capacity HIGH	Iон = -1 mA	Vcc - 2.0	=	Vcc	V
			Drive capacity LOW	ΙΟΗ = -500 μΑ	Vcc - 2.0	-	Vcc	V
Vol	Output "L" voltage	Except P1_0 to	IoL = 5 mA	-	_	1	2.0	V
		Р1_3, Хоит	IoL = 200 μA		_	1	0.45	V
		P1_0 to P1_3	Drive capacity HIGH	IOL = 15 mA	=	=	2.0	V
			Drive capacity LOW	IOL = 5 mA	=	-	2.0	V
			Drive capacity LOW	IOL = 200 μA	=	=	0.45	V
		Хоит	Drive capacity HIGH	IOL = 1 mA	=	=	2.0	V
			Drive capacity LOW	IOL = 500 μA	=	=	2.0	V
VT+-VT-	Hysteresis	INTO, INT1, INT2, INT3, KIO, KI1, KI2, KI3, CNTRO, CNTR1, TCIN, RXD0			0.2	=	1.0	V
		RESET			0.2	_	2.2	V
lін	Input "H" current	1	VI = 5 V		_	-	5.0	μА
lı∟	Input "L" current		VI = 0 V		-	_	-5.0	μА
RPULLUP	Pull-up resistance		VI = 0 V		30	50	167	kΩ
RfXIN	Feedback resistance	XIN			-	1.0	-	ΜΩ
fring-s	Low-speed on-chip o	scillator frequency			40	125	250	kHz
VRAM	RAM hold voltage		During stop mode		2.0	-	-	V

NOTE:

^{1.} VCC = 4.2 to 5.5 V at Topr = -20 to 85 °C / -40 to 85 °C, f(XIN) = 20 MHz, unless otherwise specified.

Electrical Characteristics (3) [Vcc = 3V] **Table 5.19**

Cumbal	Parameter		Cons	dition	Standard			Unit
Symbol	Parar	neter	Condition		Min.	Тур.	Max.	Unit
Vон	Output "H" voltage	Except Xout	Iон = -1 mA		Vcc - 0.5	-	Vcc	V
		Хоит	Drive capacity HIGH	Iон = -0.1 mA	Vcc - 0.5	-	Vcc	V
			Drive capacity LOW	IOH = -50 μA	Vcc - 0.5	=	Vcc	V
Vol	Output "L" voltage	Except P1_0 to P1_3, Xout	IOL = 1mA		-	_	0.5	V
		P1_0 to P1_3	Drive capacity HIGH	IOL = 2 mA	-	_	0.5	V
			Drive capacity LOW	IOL = 1 mA	=	=	0.5	V
		Хоит	Drive capacity HIGH	IOL = 0.1 mA	-	-	0.5	V
			Drive capacity LOW	IOL = 50 μA	-	_	0.5	V
VT+-VT-	Hysteresis	INTO, INT1, INT2, INT3, KIO, KI1, KI2, KI3, CNTRO, CNTR1, TCIN, RXD0			0.2	=	0.8	V
		RESET			0.2	-	1.8	V
Іін	Input "H" current		VI = 3 V		-	-	4.0	μΑ
lıL	Input "L" current		VI = 0 V		-	-	-4.0	μΑ
RPULLUP	Pull-up resistance		VI = 0 V		66	160	500	kΩ
RfXIN	Feedback resistance	XIN			=	3.0	=	МΩ
fring-s	Low-speed on-chip os	scillator frequency			40	125	250	kHz
VRAM	RAM hold voltage		During stop mode		2.0	-	-	V

NOTE:

^{1.} Vcc = 2.7 to 3.3 V at Topr = -20 to 85 °C / -40 to 85 °C, f(XIN) = 10 MHz, unless otherwise specified.

Table 5.24 Serial Interface

Symbol	Parameter	Standard		Unit
	raidilletei		Max.	
tc(CK)	CLKi input cycle time	300	=	ns
tW(CKH)	CLKi input "H" width	150	=	ns
tW(CKL)	CLKi input "L" width	150	-	ns
td(C-Q)	TXDi output delay time	=	80	ns
th(C-Q)	TXDi hold time	0	-	ns
tsu(D-C)	RXDi input setup time	70	=	ns
th(C-D)	RXDi input hold time	90	-	ns

i = 0 or 1

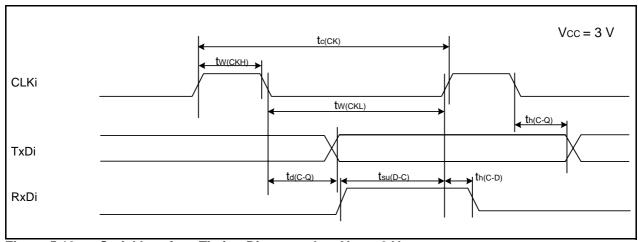


Figure 5.12 Serial Interface Timing Diagram when Vcc = 3 V

Table 5.25 External Interrupt INTO Input

Symbol	Parameter	Standard		Unit
	Falamete		Max.	
tW(INH)	INTO input "H" width	380 ⁽¹⁾	-	ns
tW(INL)	INTO input "L" width	380(2)	-	ns

NOTES:

- 1. When selecting the digital filter by the INT0 input filter select bit, use an INT0 input HIGH width of either (1/digital filter clock frequency x 3) or the minimum value of standard, whichever is greater.
- 2. When selecting the digital filter by the INT0 input filter select bit, use an INT0 input LOW width of either (1/digital filter clock frequency x 3) or the minimum value of standard, whichever is greater.

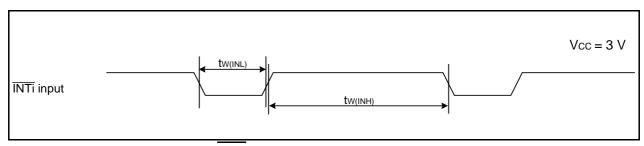


Figure 5.13 External Interrupt INTO Input Timing Diagram when Vcc = 3 V

Page 36 of 38

REVISION HISTORY			₹Y	R8C/18 Group, R8C/19 Group Datasheet	
Dota Data			Description		
Rev.	Date	Page		Summary	
1.20	Nov 01, 2005	16	Table 4.1 SFR Information(1); 0009h: "XXXXXX00b" → "00h" 000Ah: "00XXX000b" → "00h" 001Eh: "XXXXXX000b" → "00h" revised		
		18	0085h: 0086h: 0087h: 008Ch: 008Dh:	SFR Information(3); "Prescaler Z" → "Prescaler Z Register" "Timer Z Secondary" → "Timer Z Secondary Register" "Timer Z Primary" → "Timer Z Primary Register" "Prescaler X" → "Prescaler X Register" "Timer X" → "Timer X Register" 0091h: "Timer C" → "Timer C Register" revised	
		22	Table 5.4 Flash Memory (Program ROM) Electrical Character NOTES 3 and 5 revised, NOTE8 deleted		
		23	Table 5.5 Flash Memory (Data flash Block A, Block B) Electrical Characteristics; NOTES 1 and 3 revised		
		25		Reset Circuit Electrical Characteristics (When Using Voltage Reset); NOTE 2 revised	
		26	Table 5.10 High-speed On-Chip Oscillator Circuit Electrical Characteristics; "High-Speed On-Chip Oscillator" → "High-Speed On-Chip Oscillator Frequency" revised NOTE 2, 3 added		
		28		3 Electrical Characteristics (2) [Vcc = 5V]; deleted	
		32		D Electrical Characteristics (4) [Vcc = 3V]; I deleted	
1.30	Dec 16, 2005	_	Products	of PWQN0028KA-B package included	
		5, 6	Table 1.3,	Table 1.4 revised	
		24		Flash Memory (Program ROM) Electrical Characteristics; pient temperature	
		25		Flash Memory (Data flash Block A, Block B) Electrical ristics; Ta → Ambient temperature	
		30, 34	Table 5.13	3, Table 5.20; The title revised, Condition of Stop Mode added	
		32, 36	Table 5.17	7, Table 5.24; td(C-Q) and tsu(D-C) revised	
		37, 38	Package	Dimensions revised	
1.40	Apr 14, 2006	2, 3	•	Table 1.2; : Internal 8 → 10 sources,	
		5, 6	Table 1.3,	Table 1.4; Type No. added, deleted	
		16, 17	Figure 3.1	, Figure 3.2; Part Number added, deleted	
		24, 25	Table 5.4, Conditions	Table 5.5; s: VCC = 5.0 V at Topr = 25 °C deleted	