

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Not For New Designs
Core Processor	R8C
Core Size	16-Bit
Speed	20MHz
Connectivity	SIO, UART/USART
Peripherals	LED, POR, Voltage Detect, WDT
Number of I/O	13
Program Memory Size	16KB (16K × 8)
Program Memory Type	FLASH
EEPROM Size	2K x 8
RAM Size	1K x 8
Voltage - Supply (Vcc/Vdd)	2.7V ~ 5.5V
Data Converters	·
Oscillator Type	Internal
Operating Temperature	-20°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	28-WFQFN Exposed Pad
Supplier Device Package	28-HWQFN (5x5)
Purchase URL	https://www.e-xfl.com/product-detail/renesas-electronics-america/r5f21194np-u0

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

RENESAS

R8C/18 Group, R8C/19 Group SINGLE-CHIP 16-BIT CMOS MCU

1. Overview

These MCUs are fabricated using a high-performance silicon gate CMOS process, embedding the R8C/Tiny Series CPU core, and is packaged in a 20-pin molded-plastic LSSOP, SDIP or a 28-pin plastic molded-HWQFN. It implements sophisticated instructions for a high level of instruction efficiency. With 1 Mbyte of address space, they are capable of executing instructions at high speed.

Furthermore, the R8C/19 Group has on-chip data flash ROM (1 KB × 2 blocks).

The difference between the R8C/18 Group and R8C/19 Group is only the presence or absence of data flash ROM. Their peripheral functions are the same.

1.1 Applications

Electric household appliances, office equipment, housing equipment (sensors, security systems), general industrial equipment, audio equipment, etc.

1.2 Performance Overview

Table 1.1 outlines the Functions and Specifications for R8C/18 Group and Table 1.2 outlines the Functions and Specifications for R8C/19 Group.

	Item	Specification		
CPU	Number of fundamental	89 instructions		
	instructions			
	Minimum instruction execution	50 ns (f(XIN) = 20 MHz, VCC = 3.0 to 5.5 V)		
	time	100 ns (f(XIN) = 10 MHz, VCC = 2.7 to 5.5 V)		
	Operation mode	Single-chip		
	Address space	1 Mbyte		
	Memory capacity	Refer to Table 1.3 Product Information for R8C/18		
		Group		
Peripheral	Ports	I/O ports: 13 pins (including LED drive port)		
Functions		Input port: 3 pins		
	LED drive ports	I/O ports: 4 pins		
	Timers	Timer X: 8 bits x 1 channel, timer Z: 8 bits x 1 channel		
		(Each timer equipped with 8-bit prescaler)		
		Timer C: 16 bits × 1 channel		
		(Input capture and output compare circuits)		
	Serial interfaces	1 channel		
		Clock synchronous serial I/O, UART		
		1 channel		
		UART		
	Comparator	1-bit comparator: 1 circuit, 4 channels		
	Watchdog timer	15 bits x 1 channel (with prescaler)		
		Reset start selectable, count source protection mode		
	Interrupts	Internal: 10 sources, External: 4 sources, Software: 4		
		sources,		
		Priority levels: 7 levels		
	Clock generation circuits	2 circuits		
		Main clock oscillation circuit (with on-chip feedback		
		resistor)		
		On-chip oscillator (high speed, low speed)		
		High-speed on-chip oscillator has frequency		
		adjustment function		
	Oscillation stop detection	Main clock oscillation stop detection function		
	function			
	Voltage detection circuit	On-chip		
<u> </u>	Power-on reset circuit	On-chip		
Electric	Supply voltage	VCC = 3.0 to 5.5 V (f(XIN) = 20 MHz)		
Characteristics		VCC = 2.7 to 5.5 V (f(XIN) = 10 MHz)		
	Current consumption	Typ. 9 mA (VCC = 5.0 V, f(XIN) = 20 MHz, comparator stopped)		
		Typ. 5 mA (VCC = 3.0V, f(XIN) = 10 MHz, comparator stopped)		
		Typ. 35 μ A (VCC = 3.0 V, wait mode, peripheral clock off)		
		Typ. 0.7 μA (VCC = 3.0 V, stop mode)		
Flash Memory	Programming and erasure voltage	VCC = 2.7 to 5.5 V		
	Programming and erasure	100 times		
	endurance			
Operating Ambi	ent Temperature	-20 to 85°C		
<u> </u>		-40 to 85°C (D version)		
Package		20-pin molded-plastic LSSOP		
		20-pin molded-plastic SDIP		
		28-pin molded-plastic HWQFN		

 Table 1.1
 Functions and Specifications for R8C/18 Group

1.3 Block Diagram

Figure 1.1 shows a Block Diagram.

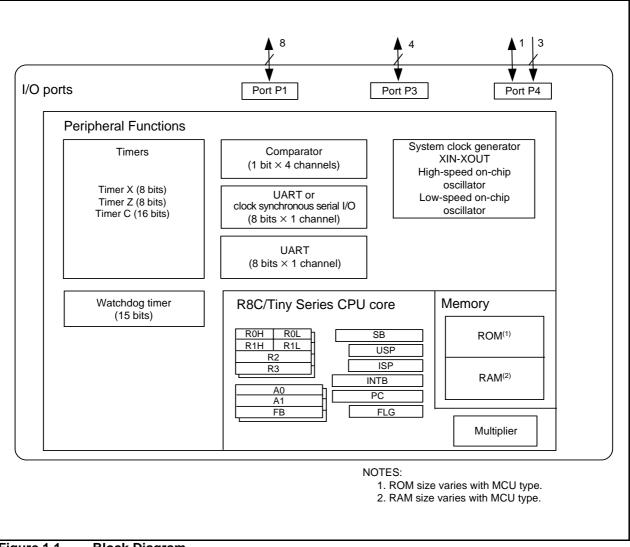
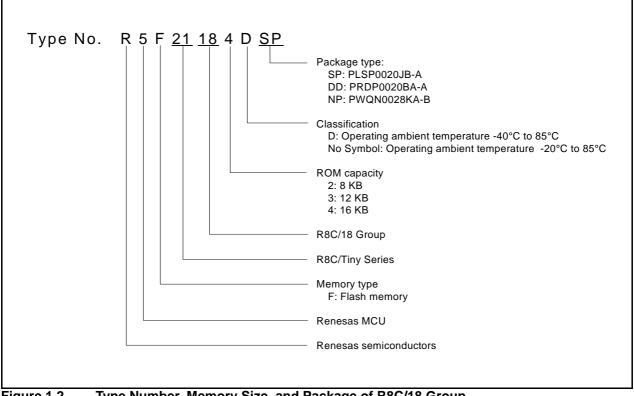
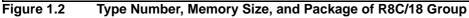


Figure 1.1 Block Diagram

Current of Apr. 2006


1.4 **Product Information**


Table 1.3 lists Product Information for R8C/18 Group and Table 1.4 lists Product Information for R8C/19 Group.

Type No.	ROM Capacity	RAM Capacity	Package Type	Remarks
R5F21181SP	4 Kbytes	384 bytes	PLSP0020JB-A	Flash memory version
R5F21182SP	8 Kbytes	512 bytes	PLSP0020JB-A	
R5F21183SP	12 Kbytes	768 bytes	PLSP0020JB-A	
R5F21184SP	16 Kbytes	1 Kbyte	PLSP0020JB-A	
R5F21181DSP (D)	4 Kbytes	384 bytes	PLSP0020JB-A	D version
R5F21182DSP (D)	8 Kbytes	512 bytes	PLSP0020JB-A	
R5F21183DSP (D)	12 Kbytes	768 bytes	PLSP0020JB-A	
R5F21184DSP (D)	16 Kbytes	1 Kbyte	PLSP0020JB-A	
R5F21181DD	4 Kbytes	384 bytes	PRDP0020BA-A	Flash memory version
R5F21182DD	8 Kbytes	512 bytes	PRDP0020BA-A	
R5F21183DD	12 Kbytes	768 bytes	PRDP0020BA-A	
R5F21184DD	16 Kbytes	1 Kbyte	PRDP0020BA-A	
R5F21182NP	8 Kbytes	512 bytes	PWQN0028KA-B	Flash memory version
R5F21183NP	12 Kbytes	768 bytes	PWQN0028KA-B	
R5F21184NP	16 Kbytes	1 Kbyte	PWQN0028KA-B	

Table 1.3 **Product Information for R8C/18 Group**

(D): Under Development

Type No.	ROM C	apacity	RAM	Package Type	Remarks	
туре но.	Program ROM	Data flash	Capacity	Fackage Type	Remarks	
R5F21191SP	4 Kbytes	1 Kbyte x 2	384 bytes	PLSP0020JB-A	Flash memory version	
R5F21192SP	8 Kbytes	1 Kbyte x 2	512 bytes	PLSP0020JB-A		
R5F21193SP	12 Kbytes	1 Kbyte x 2	768 bytes	PLSP0020JB-A		
R5F21194SP	16 Kbytes	1 Kbyte x 2	1 Kbyte	PLSP0020JB-A		
R5F21191DSP (D)	4 Kbytes	1 Kbyte x 2	384 bytes	PLSP0020JB-A	D version	
R5F21192DSP (D)	8 Kbytes	1 Kbyte x 2	512 bytes	PLSP0020JB-A		
R5F21193DSP (D)	12 Kbytes	1 Kbyte x 2	768 bytes	PLSP0020JB-A		
R5F21194DSP (D)	16 Kbytes	1 Kbyte x 2	1 Kbyte	PLSP0020JB-A		
R5F21191DD	4 Kbytes	1 Kbyte x 2	384 bytes	PRDP0020BA-A	Flash memory version	
R5F21192DD	8 Kbytes	1 Kbyte x 2	512 bytes	PRDP0020BA-A		
R5F21193DD	12 Kbytes	1 Kbyte x 2	768 bytes	PRDP0020BA-A		
R5F21194DD	16 Kbytes	1 Kbyte x 2	1 Kbyte	PRDP0020BA-A		
R5F21192NP	8 Kbytes	1 Kbyte x 2	512 bytes	PWQN0028KA-B	Flash memory version	
R5F21193NP	12 Kbytes	1 Kbyte × 2	768 bytes	PWQN0028KA-B		
R5F21194NP	16 Kbytes	1 Kbyte x 2	1 Kbyte	PWQN0028KA-B		

Table 1.4 Product Information for R8C/19 Group

Current of Apr. 2006

(D): Under Development

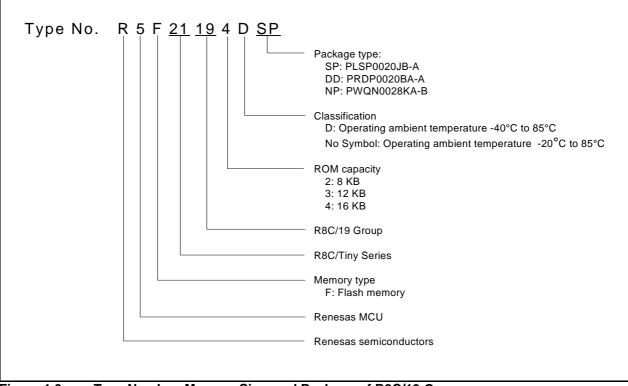


Figure 1.3

Type Number, Memory Size, and Package of R8C/19 Group

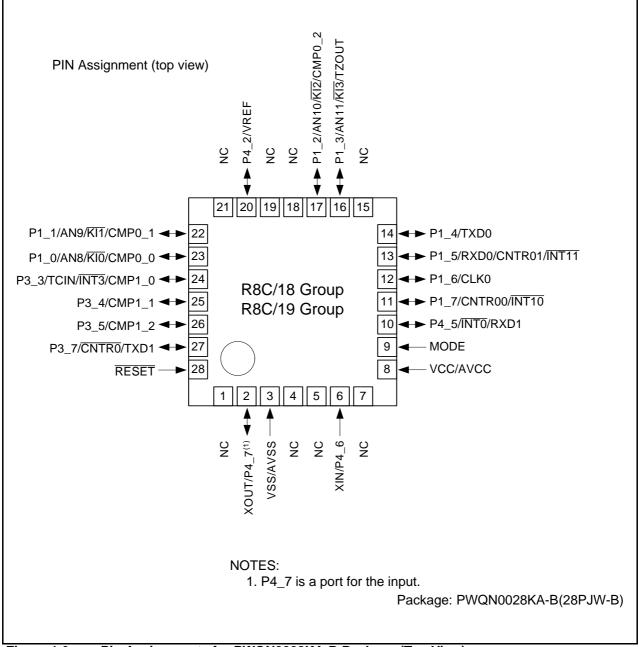


Figure 1.6 Pin Assignments for PWQN0028KA-B Package (Top View)

1.6 Pin Functions

Table 1.5 lists Pin Functions, Table 1.6 lists Pin Name Information by Pin Number of PLSP0020JB-A, PRDP0020BA-A packages, and Table 1.7 lists Pin Name Information by Pin Number of PWQN0028KA-B package.

Туре	Symbol	I/O Type	Description
Power supply input	VCC VSS	I	Apply 2.7 V to 5.5 V to the VCC pin. Apply 0 V to the VSS pin.
Analog power supply input	AVCC, AVSS	I	Power supply for the comparator Connect a capacitor between AVCC and AVSS.
Reset input	RESET	I	Input "L" on this pin resets the MCU.
MODE	MODE	I	Connect this pin to VCC via a resistor.
Main clock input	XIN	I	These pins are provided for main clock generation circuit I/O. Connect a ceramic resonator or a crystal oscillator between the XIN and XOUT pins.
Main clock output	XOUT	0	To use an external clock, input it to the XIN pin and leave the XOUT pin open.
INT interrupt	INTO, INT1, INT3	I	INT interrupt input pins
Key input interrupt	KI0 to KI3	I	Key input interrupt input pins
Timer X	CNTR0	I/O	Timer X I/O pin
	CNTR0	0	Timer X output pin
Timer Z	TZOUT	0	Timer Z output pin
Timer C	TCIN	I	Timer C input pin
	CMP0_0 to CMP0_2, CMP1_0 to CMP1_2	0	Timer C output pins
Serial interface	CLK0	I/O	Transfer clock I/O pin
	RXD0, RXD1	I	Serial data input pins
	TXD0, TXD1	0	Serial data output pins
Reference voltage input	VREF	I	Reference voltage input pin to comparator
Comparator	AN8 to AN11	I	Analog input pins to comparator
I/O port	P1_0 to P1_7, P3_3 to P3_5, P3_7, P4_5	I/O	CMOS I/O ports. Each port has an I/O select direction register, allowing each pin in the port to be directed for input or output individually. Any port set to input can be set to use a pull-up resistor or not by a program. P1_0 to P1_3 also function as LED drive ports.
Input port	P4_2, P4_6, P4_7	I	Input-only ports

Table 1.5 Pin Functions

I: Input O: Output I/O: Input and output

Pin	Control	Port	I/C	Pin Functions for	r Peripheral Modul	es
Number	Pin	Full	Interrupt	Timer	Serial Interface	Comparator
1		P3_5		CMP1_2		
2		P3_7		CNTR0	TXD1	
3	RESET					
4	XOUT	P4_7				
5	VSS/AVSS					
6	XIN	P4_6				
7	VCC/AVCC					
8	MODE					
9		P4_5	INTO		RXD1	
10		P1_7	INT10	CNTR00		
11		P1_6			CLK0	
12		P1_5	INT11	CNTR01	RXD0	
13		P1_4			TXD0	
14		P1_3	KI3	TZOUT		AN11
15		P1_2	KI2	CMP0_2		AN10
16	VREF	P4_2				
17		P1_1	KI1	CMP0_1		AN9
18		P1_0	KI0	CMP0_0		AN8
19		P3_3	INT3	TCIN/CMP1_0		
20		P3_4		CMP1_1		

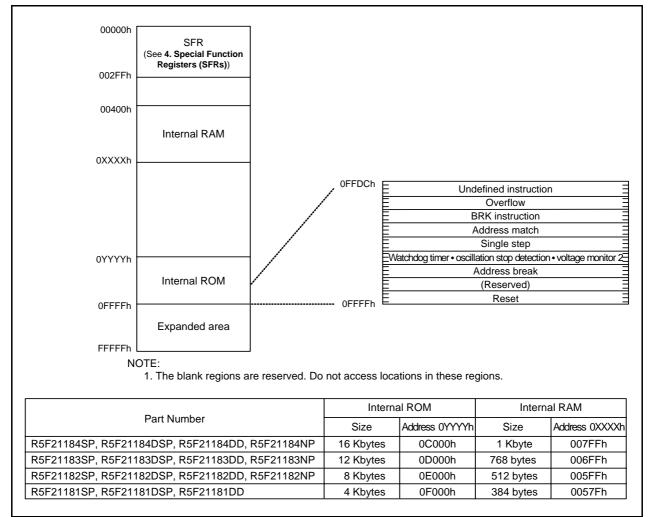
Table 1.6 Pin Name Information by Pin Number of PLSP0020JB-A, PRDP0020BA-A packages

Pin	Control	Dart	I/O Pin of Peripheral Function			
Number	Pin	Port	Interrupt	Timer	Serial Interface	Comparator
1	NC					
2	XOUT	P4_7				
3	VSS/AVSS					
4	NC					
5	NC					
6	XIN	P4_6				
7	NC					
8	VCC/AVCC					
9	MODE					
10		P4_5	INTO		RXD1	
11		P1_7	INT10	CNTR00		
12		P1_6			CLK0	
13		P1_5	INT11	CNTR01	RXD0	
14		P1_4			TXD0	
15	NC					
16		P1_3	KI3	TZOUT		AN11
17		P1_2	KI2	CMP0_2		AN10
18	NC					
19	NC					
20	VREF	P4_2				
21	NC					
22		P1_1	KI1	CMP0_1		AN9
23		P1_0	KI0	CMP0_0		AN8
24		P3_3	INT3	TCIN/CMP1_0		
25		P3_4		CMP1_1		
26		P3_5		CMP1_2		
27		P3_7		CNTR0	TXD1	
28	RESET					

3. Memory

3. Memory

3.1 R8C/18 Group


Figure 3.1 is a Memory Map of R8C/18 Group. The R8C/18 Group has 1 Mbyte of address space from addresses 00000h to FFFFFh.

The internal ROM area is allocated lower addresses, beginning with address 0FFFFh. For example, a 16-Kbyte internal ROM is allocated addresses 0C000h to 0FFFFh.

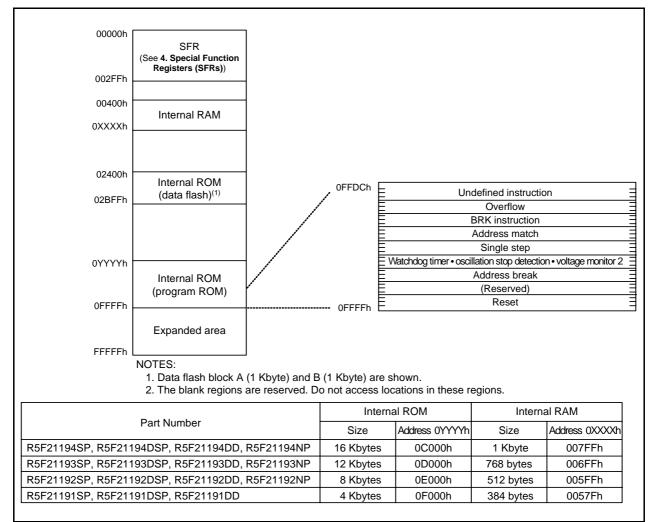
The fixed interrupt vector table is allocated addresses 0FFDCh to 0FFFFh. They store the starting address of each interrupt routine.

The internal RAM is allocated higher addresses, beginning with address 00400h. For example, a 1-Kbyte internal RAM area is allocated addresses 00400h to 007FFh. The internal RAM is used not only for storing data but also for calling subroutines and as stacks when interrupt requests are acknowledged.

Special function registers (SFRs) are allocated addresses 00000h to 002FFh. The peripheral function control registers are allocated here. All addresses within the SFR, which have nothing allocated are reserved for future use and cannot be accessed by users.

3.2 R8C/19 Group

Figure 3.2 is a Memory Map of R8C/19 Group. The R8C/19 group has 1 Mbyte of address space from addresses 00000h to FFFFFh.


The internal ROM (program ROM) is allocated lower addresses, beginning with address 0FFFFh. For example, a 16-Kbyte internal ROM area is allocated addresses 0C000h to 0FFFFh.

The fixed interrupt vector table is allocated addresses 0FFDCh to 0FFFFh. They store the starting address of each interrupt routine.

The internal ROM (data flash) is allocated addresses 02400h to 02BFFh.

The internal RAM is allocated higher addresses, beginning with address 00400h. For example, a 1-Kbyte internal RAM area is allocated addresses 00400h to 007FFh. The internal RAM is used not only for storing data but also for calling subroutines and as stacks when interrupt requests are acknowledged.

Special function registers (SFRs) are allocated addresses 00000h to 002FFh. The peripheral function control registers are allocated here. All addresses within the SFR, which have nothing allocated are reserved for future use and cannot be accessed by users.

Electrical Characteristics 5.

Table 5.1	Absolute	Maximum	Ratings
-----------	----------	---------	---------

Symbol	Parameter	Condition	Rated Value	Unit
Vcc	Supply voltage	Vcc = AVcc	-0.3 to 6.5	V
AVcc	Analog supply voltage	Vcc = AVcc	-0.3 to 6.5	V
VI	Input voltage		-0.3 to Vcc+0.3	V
Vo	Output voltage		-0.3 to Vcc+0.3	V
Pd	Power dissipation	Topr = 25°C	300	mW
Topr	Operating ambient temperature		-20 to 85 / -40 to 85 (D version)	°C
Tstg	Storage temperature		-65 to 150	°C

Table 5.2 **Recommended Operating Conditions**

Symbol	Parameter		Conditions		Standard		
Symbol	Fd	Tameter	Conditions	Min.	Тур.	Max.	Unit
Vcc	Supply voltage			2.7	-	5.5	V
AVcc	Analog supply volt	age		-	Vcc	-	V
Vss	Supply voltage			-	0	-	V
AVss	Analog supply volt	age		-	0	-	V
Vih	Input "H" voltage			0.8Vcc	-	Vcc	V
VIL	Input "L" voltage			0	-	0.2Vcc	V
IOH(sum)	Peak sum output "H" current	Sum of all pins IOH (peak)		-	-	-60	mA
OH(peak)	Peak output "H" current			-	-	-10	mA
OH(avg)	Average output "H	" current		-	-	-5	mA
IOL(sum)	Peak sum output "L" currents	Sum of all pins IOL (peak)		-	-	60	mA
IOL(peak)	Peak output "L"	Except P1_0 to P1_3		-	-	10	mA
	currents	P1_0 to P1_3	Drive capacity HIGH	-	-	30	mA
			Drive capacity LOW	-	-	10	mA
IOL(avg)	Average output	Except P1_0 to P1_3		-	-	5	mA
	"L" current	P1_0 to P1_3	Drive capacity HIGH	-	-	15	mA
			Drive capacity LOW	-	-	5	mA
f(XIN)	Main clock input o	scillation frequency	$3.0~V \leq Vcc \leq 5.5~V$	0	-	20	MHz
				0	-	10	MHz

NOTES:

1. Vcc = 2.7 to 5.5 V at T_{opr} = -20 to 85 °C / -40 to 85 °C, unless otherwise specified. 2. Typical values when average output current is 100 ms.

Symbol	Parameter	Condition	Standard			Unit
			Min.	Тур.	Max.	
Vpor2	Power-on reset valid voltage	$\text{-}20^\circ C \leq Topr \leq 85^\circ C$	-	-	Vdet1	V
tw(Vpor2-Vdet1)	Supply voltage rising time when power-on reset is deasserted ⁽¹⁾	$\label{eq:constraint} \begin{array}{l} -20^\circ C \leq Topr \leq 85^\circ C, \\ t_{w(por2)} \geq 0s^{(3)} \end{array}$	-	-	100	ms

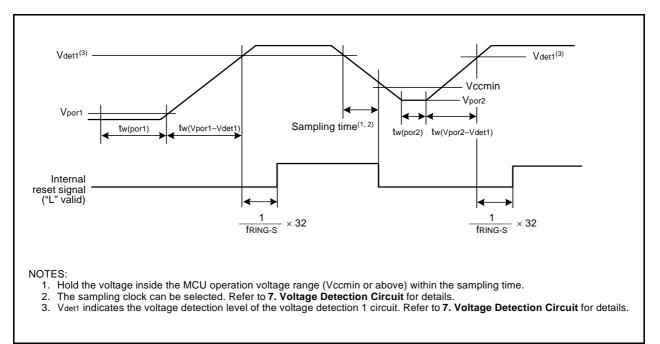
Table 5.8 Reset Circuit Electrical Characteristics (When Using Voltage Monitor 1 Reset)

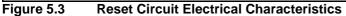
NOTES:

1. This condition is not applicable when using with $Vcc \ge 1.0 V$.

2. When turning power on after the time to hold the external power below effective voltage (Vpor1) exceeds10 s, refer to Table 5.9 Reset Circuit Electrical Characteristics (When Not Using Voltage Monitor 1 Reset).

3. tw(por2) is the time to hold the external power below effective voltage (Vpor2).


Table 5.9 Reset Circuit Electrical Characteristics (When Not Using Voltage Monitor 1 Reset)


Symbol	Parameter	Condition		Standar	d	Unit
			Min.	Тур.	Max.	
Vpor1	Power-on reset valid voltage	$-20^\circ C \le Topr \le 85^\circ C$	-	-	0.1	V
tw(Vpor1-Vdet1)	Supply voltage rising time when power-on reset is deasserted	$\begin{array}{l} 0^{\circ}C\leq Topr\leq 85^{\circ}C,\\ tw(por1)\geq 10\ s^{(2)} \end{array}$	-	-	100	ms
tw(Vpor1-Vdet1)	Supply voltage rising time when power-on reset is deasserted	$\label{eq:constraint} \begin{array}{l} -20^\circ C \leq \mbox{Topr} < 0^\circ C, \\ t_{w(\mbox{por1})} \geq 30 \ s^{(2)} \end{array}$	-	-	100	ms
tw(Vpor1-Vdet1)	Supply voltage rising time when power-on reset is deasserted	$\label{eq:constraint} \begin{array}{l} -20^\circ C \leq \mbox{Topr} < 0^\circ C, \\ \mbox{tw(por1)} \geq 10 \ s^{(2)} \end{array}$	-	-	1	ms
tw(Vpor1-Vdet1)	Supply voltage rising time when power-on reset is deasserted	$\label{eq:constraint} \begin{array}{l} 0^\circ C \leq \mbox{Topr} \leq 85^\circ C, \\ t_{w(\mbox{por}1)} \geq 1 \ s^{(2)} \end{array}$	_	-	0.5	ms

NOTES:

1. When not using voltage monitor 1, use with Vcc \ge 2.7 V.

2. tw(por1) is the time to hold the external power below effective voltage (Vpor1).

Symbol	Parameter	Condition	Standard			Linit
Symbol	Parameter	Condition	Min.	Тур.	Max.	Unit
_	High-speed on-chip oscillator frequency when the reset is deasserted	Vcc = 5.0 V, Topr = 25 °C	-	8	-	MHz
-	High-speed on-chip oscillator frequency temperature	0 to +60 °C/5 V ± 5 % ⁽³⁾	7.76	-	8.24	MHz
	supply voltage dependence ⁽²⁾	-20 to +85 °C/2.7 to 5.5 V ⁽³⁾	7.68	-	8.32	MHz
		-40 to +85 °C/2.7 to 5.5 V ⁽³⁾	7.44	-	8.32	MHz

Table 5.10 High-speed On-Chip Oscillator Circuit Electrical Characteristics

NOTES:

1. The measurement condition is Vcc = 5.0 V and Topr = 25 °C.

2. Refer to 10.6.4 High-Speed On-Chip Oscillator Clock for notes on high-speed on-chip oscillator clock.

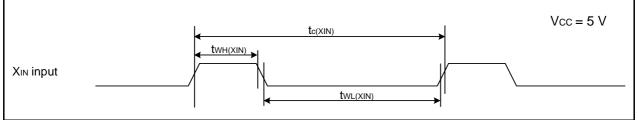
3. The standard value shows when the HRA1 register is assumed as the value in shipping and the HRA2 register value is set to 00h.

Table 5.11 Power Supply Circuit Timing Characteristics

Symbol	Parameter	Condition	:	Unit		
Symbol	Falanetei		Min.	Тур.	Max.	Offic
td(P-R)	Time for internal power supply stabilization during power-on ⁽²⁾		1	-	2000	μS
td(R-S)	STOP exit time ⁽³⁾		-	-	150	μS

NOTES:

1. The measurement condition is Vcc = 2.7 to 5.5 V and Topr = 25 °C.


2. Waiting time until the internal power supply generation circuit stabilizes during power-on.

3. Time until CPU clock supply starts after the interrupt is acknowledged to exit stop mode.

Timing Requirements (Unless Otherwise Specified: Vcc = 5 V, Vss = 0 V at Ta = 25 °C) [Vcc = 5 V]

Table 5.14 XIN Input

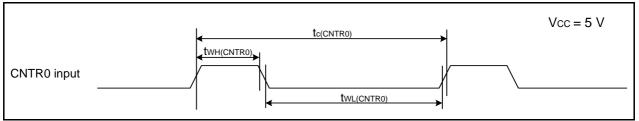
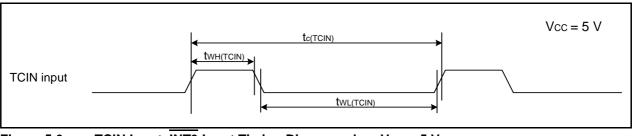

Symbol	Parameter	Stan	Unit	
	Farameter	Min.	Max.	Unit
tc(XIN)	XIN input cycle time	50	-	ns
twh(xin)	XIN input "H" width	25	-	ns
twl(XIN)	XIN input "L" width	25	-	ns

Figure 5.4 XIN Input Timing Diagram when VCC = 5 V

Table 5.15 CNTR0 Input, CNTR1 Input, INT1 Input

Symbol	Parameter		Standard		
Symbol	Falameter	Min.	Max.	Unit	
tc(CNTR0)	CNTR0 input cycle time	100	-	ns	
tWH(CNTR0)	CNTR0 input "H" width	40	-	ns	
tWL(CNTR0)	CNTR0 input "L" width	40	-	ns	

Figure 5.5 CNTR0 Input, CNTR1 Input, INT1 Input Timing Diagram when Vcc = 5 V


Table 5.16 TCIN Input, INT3 Input

Symbol	Parameter		Standard		
	Falametei	Min.	Max.	Unit	
tc(TCIN)	TCIN input cycle time	400 ⁽¹⁾	-	ns	
twh(tcin)	TCIN input "H" width	200(2)	-	ns	
twl(tcin)	TCIN input "L" width	200 ⁽²⁾	-	ns	

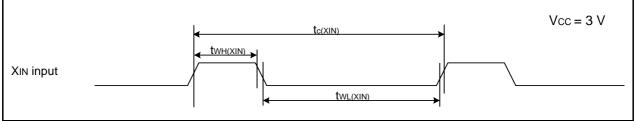
NOTES:

1. When using timer C input capture mode, adjust the cycle time to (1/timer C count source frequency x 3) or above.

2. When using timer C input capture mode, adjust the pulse width to (1/timer C count source frequency x 1.5) or above.

Figure 5.6 TCIN Input, INT3 Input Timing Diagram when Vcc = 5 V

Symbol	Parameter	Condition		Standard			Unit
-,				Min.	Тур.	Max.	
Icc Power supply current (Vcc = 2.7 to 3.3 V) Single-chip mode, output pins are open, other pins are Vss, comparator is stopped	Single-chip mode, output pins are open,	High-speed mode	XIN = 20 MHz (square wave) High-speed on-chip oscillator off Low-speed on-chip oscillator on = 125 kHz No division	_	8	13	mA
		XIN = 16 MHz (square wave) High-speed on-chip oscillator off Low-speed on-chip oscillator on = 125 kHz No division	-	7	12	mA	
		XIN = 10 MHz (square wave) High-speed on-chip oscillator off Low-speed on-chip oscillator on = 125 kHz No division	_	5	_	mA	
		Medium- speed mode	XIN = 20 MHz (square wave) High-speed on-chip oscillator off Low-speed on-chip oscillator on = 125 kHz Divide-by-8	_	3	_	mA
			XIN = 16 MHz (square wave) High-speed on-chip oscillator off Low-speed on-chip oscillator on = 125 kHz Divide-by-8		2.5	-	mA
			XIN = 10 MHz (square wave) High-speed on-chip oscillator off Low-speed on-chip oscillator on = 125 kHz Divide-by-8	_	1.6	_	mA
		High-speed on-chip oscillator mode	Main clock off High-speed on-chip oscillator on = 8 MHz Low-speed on-chip oscillator on = 125 kHz No division	_	3.5	7.5	mA
			Main clock off High-speed on-chip oscillator on = 8 MHz Low-speed on-chip oscillator on = 125 kHz Divide-by-8	_	1.5	_	mA
		Low-speed on-chip oscillator mode	Main clock off High-speed on-chip oscillator off Low-speed on-chip oscillator on = 125 kHz Divide-by-8 FMR47 = 1	_	100	280	μΑ
		Wait mode	Main clock off High-speed on-chip oscillator off Low-speed on-chip oscillator on = 125 kHz While a WAIT instruction is executed Peripheral clock operation VCA27 = VCA26 = 0	_	37	74	μΑ
		Wait mode	Main clock off High-speed on-chip oscillator off Low-speed on-chip oscillator on = 125 kHz While a WAIT instruction is executed Peripheral clock off VCA27 = VCA26 = 0		35	70	μΑ
		Stop mode	Main clock off, Topr = 25 °C High-speed on-chip oscillator off Low-speed on-chip oscillator off CM10 = 1 Peripheral clock off VCA27 = VCA26 = 0	_	0.7	3.0	μΑ


Table 5.20 Electrical Characteristics (4) [Vcc = 3V] (Topr = -40 to 85 °C, unless otherwise specified.)

RENESAS

Timing requirements (Unless Otherwise Specified: Vcc = 3 V, Vss = 0 V at Ta = 25 °C) [Vcc = 3 V]

Table 5.21 XIN Input

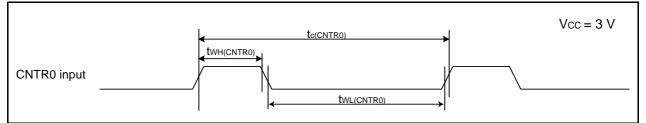
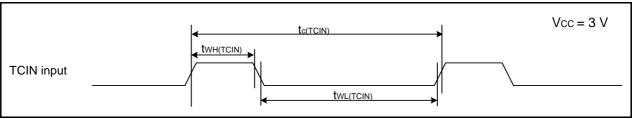

Symbol	Parameter	Stan	Unit	
	Falameter	Min.	Max.	Unit
tc(XIN)	XIN input cycle time	100	-	ns
twh(xin)	XIN input "H" width	40	-	ns
twl(XIN)	XIN input "L" width	40	-	ns

Figure 5.9 XIN Input Timing Diagram when Vcc = 3 V

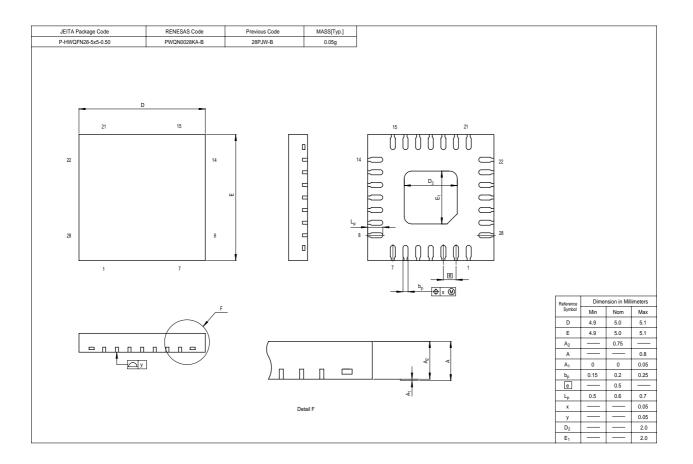
Table 5.22 CNTR0 Input, CNTR1 Input, INT1 Input

Symbol	Parameter		Standard		
	Falameter	Min.	Max.	Unit	
tc(CNTR0)	CNTR0 input cycle time	300	-	ns	
tWH(CNTR0)	CNTR0 input "H" width	120	-	ns	
tWL(CNTR0)	CNTR0 input "L" width	120	-	ns	

Figure 5.10 CNTR0 Input, CNTR1 Input, INT1 Input Timing Diagram when Vcc = 3 V


Table 5.23 TCIN Input, INT3 Input

Symbol	Parameter	Stan	Unit	
	Falameter	Min.	Max.	Offic
tc(TCIN)	TCIN input cycle time	1,200(1)	-	ns
twh(tcin)	TCIN input "H" width	600 ⁽²⁾	-	ns
twl(tcin)	TCIN input "L" width	600 ⁽²⁾	_	ns


NOTES:

1. When using the timer C input capture mode, adjust the cycle time to (1/timer C count source frequency x 3) or above.

2. When using the timer C input capture mode, adjust the width to $(1/timer C \text{ count source frequency } \times 1.5)$ or above.

Figure 5.11 TCIN Input, INT3 Input Timing Diagram when Vcc = 3 V

REVISION HISTORY

R8C/18 Group, R8C/19 Group Datasheet

Davi	Dete		Description
Rev.	Date	Page	Summary
0.10	Nov 15, 2004	-	First Edition issued
0.20	Jan 11, 2005	5, 6	Tables 1.3 and 1.4: The date updated
0.21	Apr 04, 2005	2, 3	Tables 1.1 and 1.2: Partly revised
		4	Figure 1.1: Partly revised
		5, 6	Tables 1.3 and 1.4: Partly revised
		5, 6	Figure 1.2 and 1.3: Partly revised
		7, 8	Figure 1.4 and 1.5: Partly revised
		10	Table 1.6: Partly revised
		16	Table 4.1: Partly revised
		17	Table 4.2: Partly revised
		18	Table 4.3: Partly revised
		20	Package Dimensions are revised
1.00	May 27, 2005	5, 6	Tables 1.3 and 1.4: Partly revised
		9	Table 1.5: Partly revised
		25	Table 5.9: Revised
		26	Table 5.10: Partly revised
		28	Table 5.13: Partly revised
		32	Table 5.20: Partly revised
1.10	Jun 09, 2005	26	Table 5.10: Partly revised
1.20	Nov 01, 2005	3	Table 1.2 Performance Outline of the R8C/19 Group;Flash Memory:(Data area) \rightarrow (Data flash)(Program area) \rightarrow (Program ROM) revised
		4	Figure 1.1 Block Diagram; "Peripheral Function" added, "System Clock Generation" → "System Clock Generator" revised
		6	Table 1.4 Product Information of R8C/19 Group; ROM capacity: "Program area" \rightarrow "Program ROM", "Data area" \rightarrow "Data flash" revised
		9	Table 1.5 Pin Description; Power Supply Input: "VCC/AVCC" → "VCC", "VSS/AVSS" → "VSS" revised Analog Power Supply Input: added
		11	Figure 2.1 CPU Register; "Reserved Area" \rightarrow "Reserved Bit" revised
		13	2.8.10 Reserved Area; "Reserved Area" → "Reserved Bit" revised
		15	3.2 R8C/19 Group, Figure 3.2 Memory Map of R8C/19 Group; "Data area" \rightarrow "Data flash", "Program area" \rightarrow "Program ROM" revised

Renesas Technology Corp. sales Strategic Planning Div. Nippon Bldg., 2-6-2, Ohte-machi, Chiyoda-ku, Tokyo 100-0004, Japan

Keep safety first in your circuit designs! 1. Renesas Technology Corp. puts the maximum effort into making semiconductor products better and more reliable, but there is always the possibility that trouble may occur with them. Trouble with semiconductors may lead to personal injury, fire or property damage. Remember to give due consideration to safety when making your circuit designs, with appropriate measures such as (i) placement of substitutive, auxiliary circuits, (ii) use of nonflammable material or (iii) prevention against any malfunction or mishap.

- Notes regarding these materials
 1. These materials are intended as a reference to assist our customers in the selection of the Renesas Technology Corp. product best suited to the customer's application; they do not convey any license under any intellectual property rights, or any other rights, belonging to Renesas Technology Corp. or a third party.
 2. Renesas Technology Corp. assumes no responsibility for any damage, or infringement of any third-party's rights, originating in the use of any product data, diagrams, charts, programs, algorithms, or circuit application examples contained in these materials.
 3. All information contained in these materials, including product data, diagrams, charts, programs and algorithms represents information on products at the time of publication of these materials, and are subject to change by Renesas Technology Corp. without notice due to product improvements or other reasons. It is therefore recommended that customers contact Renesas Technology Corp. or an authorized Renesas Technology Corp. product distributor for the latest product information before purchasing a product listed herein.
 The information described here may contain technical inaccuracies or typographical errors. Renesas Technology Corp. assumes no responsibility for any damage, liability, or other loss rising from these inaccuracies or errors. Please also pay attention to information published by Renesas Technology Corp. by various means, including the Renesas Technology Corp. Semiconductor home page (http://www.renesas.com).
 4. When using any or all of the information contained in these materials, including product data, diagrams, charts, programs, and algorithms, please be sure to

- Nonine page (intp://www.renessas.com).
 4. When using any or all of the information contained in these materials, including product data, diagrams, charts, programs, and algorithms, please be sure to evaluate all information as a total system before making a final decision on the applicability of the information and products. Renesas Technology Corp. assumes no responsibility for any damage, liability or ther loss resulting from the information contained herein.
 5. Renesas Technology Corp. semiconductors are not designed or manufactured for use in a device or system that is used under circumstances in which human life is potentially at stake. Please contact Renesas Technology Corp. or an authorized Renesas Technology Corp. product distributor when considering the use of a product contained herein for any specific purposes, such as apparatus or systems for transportation, vehicular, medical, aerospace, nuclear, or undersea repeater use.
- use. 6. The prior written approval of Renesas Technology Corp. is necessary to reprint or reproduce in whole or in part these materials. 7. If these products or technologies are subject to the Japanese export control restrictions, they must be exported under a license from the Japanese government and cannot be imported into a country other than the approved destination. Any diversion or reexport contrary to the export control laws and regulations of Japan and/or the country of destination is prohibited. 8. Please contact Renesas Technology Corp. for further details on these materials or the products contained therein.

RENESAS SALES OFFICES

Refer to "http://www.renesas.com/en/network" for the latest and detailed information.

Renesas Technology America, Inc. 450 Holger Way, San Jose, CA 95134-1368, U.S.A Tel: <1> (408) 382-7500, Fax: <1> (408) 382-7501

Renesas Technology Europe Limited Dukes Meadow, Millboard Road, Bourne End, Buckinghamshire, SL8 5FH, U.K. Tel: <44> (1628) 585-100, Fax: <44> (1628) 585-900

Renesas Technology (Shanghai) Co., Ltd. Unit 204, 205, AZIACenter, No.1233 Lujiazui Ring Rd, Pudong District, Shanghai, China 200120 Tel: <86> (21) 5877-1818, Fax: <86> (21) 6887-7898

Renesas Technology Hong Kong Ltd. 7th Floor, North Tower, World Finance Centre, Harbour City, 1 Canton Road, Tsimshatsui, Kowloon, Hong Kong Tel: <852> 2265-6688, Fax: <852> 2730-6071

Renesas Technology Taiwan Co., Ltd. 10th Floor, No.99, Fushing North Road, Taipei, Taiwan Tel: <886> (2) 2715-2888, Fax: <886> (2) 2713-2999

Renesas Technology Singapore Pte. Ltd. 1 Harbour Front Avenue, #06-10, Keppel Bay Tower, Singapore 098632 Tel: <65> 6213-0200, Fax: <65> 6278-8001

Renesas Technology Korea Co., Ltd. Kukje Center Bldg. 18th Fl., 191, 2-ka, Hangang-ro, Yongsan-ku, Seoul 140-702, Korea Tel: <82> (2) 796-3115, Fax: <82> (2) 796-2145

Renesas Technology Malaysia Sdn. Bhd Unit 906, Block B, Menara Amcorp, Amcorp Trade Centre, No.18, Jalan Persiaran Barat, 46050 Petaling Jaya, Selangor Darul Ehsan, Malaysia Tel: <603> 7955-9390, Fax: <603> 7955-9510

http://www.renesas.com