

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Active
Core Processor	dsPIC
Core Size	16-Bit
Speed	20 MIPS
Connectivity	I ² C, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, Motor Control PWM, QEI, POR, PWM, WDT
Number of I/O	20
Program Memory Size	12KB (4K x 24)
Program Memory Type	FLASH
EEPROM Size	1K x 8
RAM Size	512 x 8
Voltage - Supply (Vcc/Vdd)	2.5V ~ 5.5V
Data Converters	A/D 6x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	28-SOIC (0.295", 7.50mm Width)
Supplier Device Package	28-SOIC
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/dspic30f2010-20e-so

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

5.4 Interrupt Sequence

All interrupt event flags are sampled in the beginning of each instruction cycle by the IFSx registers. A pending interrupt request (IRQ) is indicated by the flag bit being equal to a '1' in an IFSx register. The IRQ will cause an interrupt to occur if the corresponding bit in the interrupt enable (IECx) register is set. For the remainder of the instruction cycle, the priorities of all pending interrupt requests are evaluated.

If there is a pending IRQ with a priority level greater than the current processor priority level in the IPL bits, the processor will be interrupted.

The processor then stacks the current program counter and the low byte of the processor STATUS register (SRL), as shown in Figure 5-2. The low byte of the status register contains the processor priority level at the time, prior to the beginning of the interrupt cycle. The processor then loads the priority level for this interrupt into the STATUS register. This action will disable all lower priority interrupts until the completion of the Interrupt Service Routine (ISR).

FIGURE 5-2: INTERRUPT STACK FRAME

- Note 1: The user can always lower the priority level by writing a new value into SR. The Interrupt Service Routine must clear the interrupt flag bits in the IFSx register before lowering the processor interrupt priority, in order to avoid recursive interrupts.
 - The IPL3 bit (CORCON<3>) is always clear when interrupts are being processed. It is set only during execution of traps.

The RETFIE (Return from Interrupt) instruction will unstack the program counter and status registers to return the processor to its state prior to the interrupt sequence.

5.5 Alternate Vector Table

In Program Memory, the Interrupt Vector Table (IVT) is followed by the Alternate Interrupt Vector Table (AIVT), as shown in Figure 5-1. Access to the Alternate Vector Table is provided by the ALTIVT bit in the INTCON2 register. If the ALTIVT bit is set, all interrupt and exception processes will use the alternate vectors instead of the default vectors. The alternate vectors are organized in the same manner as the default vectors. The AIVT supports emulation and debugging efforts by providing a means to switch between an application and a support environment, without requiring the interrupt vectors to be reprogrammed. This feature also enables switching between applications for evaluation of different software algorithms at run time.

If the AIVT is not required, the program memory allocated to the AIVT may be used for other purposes. AIVT is not a protected section and may be freely programmed by the user.

5.6 Fast Context Saving

A context saving option is available using shadow registers. Shadow registers are provided for the DC, N, OV, Z and C bits in SR, and the registers W0 through W3. The shadows are only one level deep. The shadow registers are accessible using the PUSH.S and POP.S instructions only.

When the processor vectors to an interrupt, the PUSH.S instruction can be used to store the current value of the aforementioned registers into their respective shadow registers.

If an ISR of a certain priority uses the PUSH.S and POP.S instructions for fast context saving, then a higher priority ISR should not include the same instructions. Users must save the key registers in software during a lower priority interrupt, if the higher priority ISR uses fast context saving.

5.7 External Interrupt Requests

The interrupt controller supports five external interrupt request signals, INT0-INT4. These inputs are edge sensitive; they require a low-to-high or a high-to-low transition to generate an interrupt request. The INTCON2 register has three bits, INT0EP-INT2EP, that select the polarity of the edge detection circuitry.

5.8 Wake-up from Sleep and Idle

The interrupt controller may be used to wake up the processor from either Sleep or Idle modes, if Sleep or Idle mode is active when the interrupt is generated.

If an enabled interrupt request of sufficient priority is received by the interrupt controller, then the standard interrupt request is presented to the processor. At the same time, the processor will wake-up from Sleep or Idle and begin execution of the Interrupt Service Routine needed to process the interrupt request.

dsPIC30F2010

NOTES:

TABLE 10-1: TIMER2/3 REGISTER MAP

SFR Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Reset State
TMR2	0106								Tir	mer2 Registe	er							uuuu uuuu uuuu uuuu
TMR3HLD	0108	Timer3 Holding Register (For 32-bit timer operations only)								uuuu uuuu uuuu uuuu								
TMR3	010A	Timer3 Register									uuuu uuuu uuuu uuuu							
PR2	010C								Pe	riod Registe	r 2							1111 1111 1111 1111
PR3	010E								Pe	riod Registe	r 3	_	_			_		1111 1111 1111 1111
T2CON	0110	TON	_	TSIDL	_	_	_	_	_	_	TGATE	TCKPS1	TCKPS0	T32	_	TCS		0000 0000 0000 0000
T3CON	0112	TON	_	TSIDL	_	_	—	_	-	_	TGATE	TCKPS1	TCKPS0	_	_	TCS	_	0000 0000 0000 0000

Legend: u = uninitialized bit; — = unimplemented bit, read as '0'

Note: Refer to the "dsPIC30F Family Reference Manual" (DS70046) for descriptions of register bit fields.

dsPIC30F2010

NOTES:

11.0 INPUT CAPTURE MODULE

Note: This data sheet summarizes features of this group of dsPIC30F devices and is not intended to be a complete reference source. For more information on the CPU, peripherals, register descriptions and general device functionality, refer to the "dsPIC30F Family Reference Manual" (DS70046).

This section describes the Input Capture module and associated operational modes. The features provided by this module are useful in applications requiring Frequency (Period) and Pulse measurement. Figure 11-1 depicts a block diagram of the Input Capture module. Input capture is useful for such modes as:

- Frequency/Period/Pulse Measurements
- Additional sources of External Interrupts

The key operational features of the Input Capture module are:

- Simple Capture Event mode
- Timer2 and Timer3 mode selection
- Interrupt on input capture event

These operating modes are determined by setting the appropriate bits in the ICxCON register (where x = 1,2,...,N). The dsPIC DSC devices contain up to eight capture channels, (i.e., the maximum value of N is 8).

Note: The dsPIC30F2010 device has four capture inputs – IC1, IC2, IC7 and IC8. The naming of these four capture channels is intentional and preserves software compatibility with other dsPIC DSC devices.

FIGURE 11-1: INPUT CAPTURE MODE BLOCK DIAGRAM

TABLE 11-1: INPUT CAPTURE REGISTER MAP

SFR Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Reset State
IC1BUF	0140		_	_	_	_		Input	1 Captur	e Register	r			_	_			uuuu uuuu uuuu uuuu
IC1CON	0142	_	—	ICSIDL	—	_	_		_	ICTMR	ICI<1:	0>	ICOV	ICBNE	IC	CM<2:0>	>	0000 0000 0000 0000
IC2BUF	0144							Input	2 Captur	e Register	r							uuuu uuuu uuuu uuuu
IC2CON	0146	_	_	ICSIDL	_	—	_	_	_	ICTMR	ICI<1:	0>	ICOV	ICBNE	IC	CM<2:0>	>	0000 0000 0000 0000
IC3BUF	0148							Input	3 Captur	e Register	r							uuuu uuuu uuuu uuuu
IC3CON	014A	_	—	ICSIDL	—	_	_		_	ICTMR	ICI<1:	0>	ICOV	ICBNE	10	CM<2:0>	>	0000 0000 0000 0000
IC4BUF	014C							Input	4 Captur	e Register	r							uuuu uuuu uuuu uuuu
IC4CON	014E		—	ICSIDL	—	_	_		_	ICTMR	ICI<1:	0>	ICOV	ICBNE	IC	CM<2:0>	>	0000 0000 0000 0000
IC5BUF	0150			-				Input	5 Captur	e Register	ŗ							uuuu uuuu uuuu uuuu
IC5CON	0152		—	ICSIDL	—	_	_		_	ICTMR	ICI<1:	0>	ICOV	ICBNE	IC	CM<2:0>	>	0000 0000 0000 0000
IC6BUF	0154			-		-		Input	6 Captur	e Register	ŗ							uuuu uuuu uuuu uuuu
IC6CON	0156	_	_	ICSIDL		_	_		_	ICTMR	ICI<1:	0>	ICOV	ICBNE	10	CM<2:0>	>	0000 0000 0000 0000
IC7BUF	0158		-	-		-		Input	7 Captur	e Register	r							uuuu uuuu uuuu uuuu
IC7CON	015A		—	ICSIDL	—	_	_		_	ICTMR	ICI<1:	0>	ICOV	ICBNE	IC	CM<2:0>	>	0000 0000 0000 0000
IC8BUF	015C							Input	8 Captur	e Register	ŗ							นนนน นนนน นนนน
IC8CON	015E	_	_	ICSIDL	_	_	_	_	_	ICTMR	ICI<1.	0>	ICOV	ICBNE	10	CM<2:0>	>	0000 0000 0000 0000

dsPIC30F2010

Legend: u = uninitialized bit; — = unimplemented bit, read as '0'

Note: Refer to the "dsPIC30F Family Reference Manual" (DS70046) for descriptions of register bit fields.

17.3.4 TRANSMIT INTERRUPT

The transmit interrupt flag (U1TXIF or U2TXIF) is located in the corresponding interrupt flag register.

The transmitter generates an edge to set the UxTXIF bit. The condition for generating the interrupt depends on UTXISEL control bit:

- a) If UTXISEL = 0, an interrupt is generated when a word is transferred from the Transmit buffer to the Transmit Shift register (UxTSR). This means that the transmit buffer has at least one empty word.
- b) If UTXISEL = 1, an interrupt is generated when a word is transferred from the Transmit buffer to the Transmit Shift register (UxTSR) and the Transmit buffer is empty.

Switching between the two interrupt modes during operation is possible and sometimes offers more flexibility.

17.3.5 TRANSMIT BREAK

Setting the UTXBRK bit (UxSTA<11>) will cause the UxTX line to be driven to logic '0'. The UTXBRK bit overrides all transmission activity. Therefore, the user should generally wait for the transmitter to be Idle before setting UTXBRK.

To send a break character, the UTXBRK bit must be set by software and must remain set for a minimum of 13 baud clock cycles. The UTXBRK bit is then cleared by software to generate Stop bits. The user must wait for a duration of at least one or two baud clock cycles in order to ensure a valid Stop bit(s) before reloading the UxTXB or starting other transmitter activity. Transmission of a break character does not generate a transmit interrupt.

17.4 Receiving Data

17.4.1 RECEIVING IN 8-BIT OR 9-BIT DATA MODE

The following steps must be performed while receiving 8-bit or 9-bit data:

- 1. Set up the UART (see Section 17.3.1 "Transmitting in 8-bit data mode").
- 2. Enable the UART (see Section 17.3.1 "Transmitting in 8-bit data mode").
- A receive interrupt will be generated when one or more data words have been received, depending on the receive interrupt settings specified by the URXISEL bits (UxSTA<7:6>).
- 4. Read the OERR bit to determine if an overrun error has occurred. The OERR bit must be reset in software.
- Read the received data from UxRXREG. The act of reading UxRXREG will move the next word to the top of the receive FIFO, and the PERR and FERR values will be updated.

17.4.2 RECEIVE BUFFER (UXRXB)

The receive buffer is 4 words deep. Including the Receive Shift register (UxRSR), the user effectively has a 5-word deep FIFO buffer.

URXDA (UxSTA<0>) = 1 indicates that the receive buffer has data available. URXDA = 0 implies that the buffer is empty. If a user attempts to read an empty buffer, the old values in the buffer will be read and no data shift will occur within the FIFO.

The FIFO is reset during any device Reset. It is not affected when the device enters or wakes up from a Power-Saving mode.

17.4.3 RECEIVE INTERRUPT

The receive interrupt flag (U1RXIF) can be read from the corresponding interrupt flag register. The interrupt flag is set by an edge generated by the receiver. The condition for setting the receive interrupt flag depends on the settings specified by the URXISEL<1:0> (UxSTA<7:6>) control bits.

- a) If URXISEL<1:0> = 00 or 01, an interrupt is generated every time a data word is transferred from the Receive Shift Register (UxRSR) to the Receive Buffer. There may be one or more characters in the receive buffer.
- b) If URXISEL<1:0> = 10, an interrupt is generated when a word is transferred from the Receive Shift Register (UxRSR) to the Receive Buffer, which, as a result of the transfer, contains 3 characters.
- c) If URXISEL<1:0> = 11, an interrupt is set when a word is transferred from the Receive Shift Register (UxRSR) to the Receive Buffer, which, as a result of the transfer, contains 4 characters (i.e., becomes full).

Switching between the Interrupt modes during operation is possible, though generally not advisable during normal operation.

17.5 Reception Error Handling

17.5.1 RECEIVE BUFFER OVERRUN ERROR (OERR BIT)

The OERR bit (UxSTA<1>) is set if all of the following conditions occur:

- a) The receive buffer is full.
- b) The receive shift register is full, but unable to transfer the character to the receive buffer.
- c) The Stop bit of the character in the UxRSR is detected, indicating that the UxRSR needs to transfer the character to the buffer.

Once OERR is set, no further data is shifted in UxRSR (until the OERR bit is cleared in software or a Reset occurs). The data held in UxRSR and UxRXREG remains valid.

17.5.2 FRAMING ERROR (FERR)

The FERR bit (UxSTA<2>) is set if a '0' is detected instead of a Stop bit. If two Stop bits are selected, both Stop bits must be '1', otherwise FERR will be set. The read-only FERR bit is buffered along with the received data. It is cleared on any Reset.

17.5.3 PARITY ERROR (PERR)

The PERR bit (UxSTA<3>) is set if the parity of the received word is incorrect. This error bit is applicable only if a Parity mode (odd or even) is selected. The read-only PERR bit is buffered along with the received data bytes. It is cleared on any Reset.

17.5.4 IDLE STATUS

When the receiver is active (i.e., between the initial detection of the Start bit and the completion of the Stop bit), the RIDLE bit (UxSTA<4>) is '0'. Between the completion of the Stop bit and detection of the next Start bit, the RIDLE bit is '1', indicating that the UART is Idle.

17.5.5 RECEIVE BREAK

The receiver will count and expect a certain number of bit times based on the values programmed in the PDSEL (UxMODE<2:1>) and STSEL (UxMODE<0>) bits.

If the break is longer than 13 bit times, the reception is considered complete after the number of bit times specified by PDSEL and STSEL. The URXDA bit is set, FERR is set, zeros are loaded into the receive FIFO, interrupts are generated, if appropriate, and the RIDLE bit is set.

When the module receives a long break signal and the receiver has detected the Start bit, the data bits and the invalid Stop bit (which sets the FERR), the receiver must wait for a valid Stop bit before looking for the next Start bit. It cannot assume that the break condition on the line is the next Start bit.

Break is regarded as a character containing all '0's, with the FERR bit set. The break character is loaded into the buffer. No further reception can occur until a Stop bit is received. Note that RIDLE goes high when the Stop bit has not been received yet.

17.6 Address Detect Mode

Setting the ADDEN bit (UxSTA<5>) enables this special mode, in which a 9th bit (URX8) value of '1' identifies the received word as an address rather than data. This mode is only applicable for 9-bit data communication. The URXISEL control bit does not have any impact on interrupt generation in this mode, since an interrupt (if enabled) will be generated every time the received word has the 9th bit set.

17.7 Loopback Mode

Setting the LPBACK bit enables this special mode in which the UxTX pin is internally connected to the UxRX pin. When configured for the Loopback mode, the UxRX pin is disconnected from the internal UART receive logic. However, the UxTX pin still functions as in a normal operation.

To select this mode:

- a) Configure UART for desired mode of operation.
- b) Set LPBACK = 1 to enable Loopback mode.
- c) Enable transmission as defined in **Section 17.3** "**Transmitting Data**".

17.8 Baud Rate Generator

The UART has a 16-bit Baud Rate Generator to allow maximum flexibility in baud rate generation. The Baud Rate Generator register (UxBRG) is readable and writable. The baud rate is computed as follows:

- BRG = 16-bit value held in UxBRG register (0 through 65535)
- FCY = Instruction Clock Rate (1/TCY)

The Baud Rate is given by Equation 17-1.

EQUATION 17-1: BAUD RATE

Baud Rate = FCY/(16 * (BRG + 1))

Therefore, maximum baud rate possible is

FCY/16 (if BRG = 0),

and the minimum baud rate possible is

FCY/(16 * 65536).

With a full 16-bit Baud Rate Generator, at 30 MIPs operation, the minimum baud rate achievable is 28.5 bps.

17.9 Auto Baud Support

To allow the system to determine baud rates of received characters, the input can be optionally linked to a selected capture input. To enable this mode, the user must program the input capture module to detect the falling and rising edges of the Start bit.

18.7 A/D Conversion Speeds

The dsPIC30F 10-bit ADC specifications permit a maximum 1 Msps sampling rate. Table 18-1 summarizes the conversion speeds for the dsPIC30F 10-bit ADC and the required operating conditions.

The configuration guidelines give the required setup values for the conversion speeds above 500 ksps, since they require external VREF pins usage and there are some differences in the configuration procedure. Configuration details that are not critical to the conversion speed have been omitted.

Figure 18-2 depicts the recommended circuit for the conversion rates above 500 ksps.

		dsPlC	C30F 10-bi	t A/D Co	nverter Conversi	ion Rates
A/D Speed	TAD Minimum	Sampling Time Min	Rs Max	Vdd	Temperature	A/D Channels Configuration
Up to 1 Msps ⁽¹⁾	83.33 ns	12 Tad	500Ω	4.5V to 5.5V	-40°C to +85°C	ANX CH1, CH2 or CH3 ANX CH0 S/H ADC
Up to 750 ksps ⁽¹⁾	95.24 ns	2 TAD	500Ω	4.5V to 5.5V	-40°C to +85°C	ANX CHX S/H ADC
Up to 600 ksps ⁽¹⁾	138.89 ns	12 Tad	500Ω	3.0V to 5.5V	-40°C to +125°C	ANX CH1, CH2 or CH3 S/H S/H S/H ADC
Up to 500 ksps	153.85 ns	1 Tad	5.0 kΩ	4.5V to 5.5V	-40°C to +125°C	ANX CHX ANX OF VREF- ANX OF VREF-
Up to 300 ksps	256.41 ns	1 Tad	5.0 kΩ	3.0V to 5.5V	-40°C to +125°C	ANX CHX ANX OF VREF- ANX OF VREF- ANX OF VREF-

TABLE 18-1: 10-BIT A/D CONVERSION RATE PARAMETERS

Note 1: External VREF- and VREF+ pins must be used for correct operation. See Figure 18-2 for recommended circuit.

Table 19-5 shows the Reset conditions for the RCON Register. Since the control bits within the RCON register are R/W, the information in the table implies that all the bits are negated prior to the action specified in the condition column.

Condition	Program Counter	TRAPR	IOPUWR	EXTR	SWR	WDTO	IDLE	SLEEP	POR	BOR
Power-on Reset	0x000000	0	0	0	0	0	0	0	1	1
Brown-out Reset	0x000000	0	0	0	0	0	0	0	0	1
MCLR Reset during normal operation	0x000000	0	0	1	0	0	0	0	0	0
Software Reset during normal operation	0x000000	0	0	0	1	0	0	0	0	0
MCLR Reset during Sleep	0x000000	0	0	1	0	0	0	1	0	0
MCLR Reset during Idle	0x000000	0	0	1	0	0	1	0	0	0
WDT Time-out Reset	0x000000	0	0	0	0	1	0	0	0	0
WDT Wake-up	PC + 2	0	0	0	0	1	0	1	0	0
Interrupt Wake-up from Sleep	PC + 2 ⁽¹⁾	0	0	0	0	0	0	1	0	0
Clock Failure Trap	0x000004	0	0	0	0	0	0	0	0	0
Trap Reset	0x000000	1	0	0	0	0	0	0	0	0
Illegal Operation Trap	0x000000	0	1	0	0	0	0	0	0	0

TABLE 19-5:	INITIALIZATION CONDITION FOR RCON REGISTER CASE 1

Note 1: When the wake-up is due to an enabled interrupt, the PC is loaded with the corresponding interrupt vector.

Table 19-6 shows a second example of the bit conditions for the RCON Register. In this case, it is not assumed the user has set/cleared specific bits prior to action specified in the condition column.

TABLE 19-6: INITIALIZATION CONDITION FOR RCON REGISTER CASE 2

Condition	Program Counter	TRAPR	IOPUWR	EXTR	SWR	WDTO	IDLE	SLEEP	POR	BOR
Power-on Reset	0x000000	0	0	0	0	0	0	0	1	1
Brown-out Reset	0x000000	u	u	u	u	u	u	u	0	1
MCLR Reset during normal operation	0x000000	u	u	1	0	0	0	0	u	u
Software Reset during normal operation	0x000000	u	u	0	1	0	0	0	u	u
MCLR Reset during Sleep	0x000000	u	u	1	u	0	0	1	u	u
MCLR Reset during Idle	0x000000	u	u	1	u	0	1	0	u	u
WDT Time-out Reset	0x000000	u	u	0	0	1	0	0	u	u
WDT Wake-up	PC + 2	u	u	u	u	1	u	1	u	u
Interrupt Wake-up from Sleep	PC + 2 ⁽¹⁾	u	u	u	u	u	u	1	u	u
Clock Failure Trap	0x000004	u	u	u	u	u	u	u	u	u
Trap Reset	0x000000	1	u	u	u	u	u	u	u	u
Illegal Operation Reset	0x000000	u	1	u	u	u	u	u	u	u

Legend: u = unchanged

Note 1: When the wake-up is due to an enabled interrupt, the PC is loaded with the corresponding interrupt vector.

	_E 20-2:	INSIR	UCTION SET OVERVIEV	(CONTINUED)			
Base Instr #	Assembly Mnemonic		Assembly Syntax	Description	# of word s	# of cycles	Status Flags Affected
11	BTSS	BTSS	f,#bit4	Bit Test f, Skip if Set	1	1 (2 or 3)	None
		BTSS	Ws,#bit4	Bit Test Ws, Skip if Set	1	1 (2 or 3)	None
12	BTST	BTST	f,#bit4	Bit Test f	1	1	Z
		BTST.C	Ws.#bit4	Bit Test Ws to C	1	1	с
		BTST.Z	Ws,#bit4	Bit Test Ws to Z	1	1	Z
		BTST.C	Ws,Wb	Bit Test Ws <wb> to C</wb>	1	1	с
		BTST.Z	Ws.Wb	Bit Test Ws <wb> to Z</wb>	1	1	Z
13	BTSTS	BTSTS	f.#bit4	Bit Test then Set f	1	1	z
		BTSTS C	Ws.#bit4	Bit Test Ws to C, then Set	1	1	 С
		BTSTS Z	Ws #bit4	Bit Test Ws to 7, then Set	1	1	7
14	CALL	CALL	1i+23	Call subroutine	2	2	None
17	CADD	CALL	11023 Wn	Call indirect subroutine	1	2	None
15	CLP	CLR	f	f = 0x0000	1	1	None
15	CIK	CIR	L	W/REG = 0×0000	1	1	None
		CIR	WREG	W(EG = 0x0000	1	1	None
		CLR	WS		1	1	
16	OI DHIDE	CLR	ACC, WX, WXd, Wy, Wyd, AWB	Clear Watehdag Timer	1	1	WDTO Sloop
10	CLRWDI	CLRWDT	с.		1	1	N 7
17	COM	COM	I Compa		1	1	N,Z
		COM	Í,WREG		1	1	N,Z
		COM	Ws,Wd	Wd = WS	1	1	N,Z
18	CP	CP	f		1	1	C,DC,N,OV,Z
		CP	Wb,#lit5	Compare Wb with lit5	1	1	C,DC,N,OV,Z
		CP	Wb,Ws	Compare Wb with Ws (Wb - Ws)	1	1	C,DC,N,OV,Z
19	CP0	CP0	f	Compare f with 0x0000	1	1	C,DC,N,OV,Z
		CP0	Ws	Compare Ws with 0x0000	1	1	C,DC,N,OV,Z
20	CPB	CPB	f	Compare f with WREG, with Borrow	1	1	C,DC,N,OV,Z
		CPB	Wb,#lit5	Compare Wb with lit5, with Borrow	1	1	C,DC,N,OV,Z
		CPB	Wb,Ws	Compare Wb with Ws, with Borrow (Wb - Ws - C)	1	1	C,DC,N,OV,Z
21	CPSEQ	CPSEQ	Wb, Wn	Compare Wb with Wn, skip if =	1	1 (2 or 3)	None
22	CPSGT	CPSGT	Wb, Wn	Compare Wb with Wn, skip if >	1	1 (2 or 3)	None
23	CPSLT	CPSLT	Wb, Wn	Compare Wb with Wn, skip if <	1	1 (2 or 3)	None
24	CPSNE	CPSNE	Wb, Wn	Compare Wb with Wn, skip if ≠	1	1 (2 or 3)	None
25	DAW	DAW	Wn	Wn = decimal adjust Wn	1	1	С
26	DEC	DEC	f	f = f - 1	1	1	C,DC,N,OV,Z
		DEC	f,WREG	WREG = f -1	1	1	C,DC,N,OV,Z
		DEC	Ws,Wd	Wd = Ws - 1	1	1	C,DC,N,OV,Z
27	DEC2	DEC2	f	f = f - 2	1	1	C,DC,N,OV,Z
		DEC2	f,WREG	WREG = f -2	1	1	C.DC.N.OV.Z
		DEC2	Ws.Wd	Wd = Ws - 2	1	1	C.DC.N.OV.Z
28	DIST	DIST	#1i+14	Disable Interrupts for k instruction cycles	1	1	None
29	DTV	DTV.S	Wm . Wn	Signed 16/16-bit Integer Divide	1	18	N.Z.C. OV
20	211	DIV SD	Wm Wn	Signed 32/16-bit Integer Divide	1	18	NZC OV
		DTV II	Wm Wn	Unsigned 16/16-bit Integer Divide	1	18	NZC OV
		DIV.U	Wm Wn	Unsigned 32/16-bit Integer Divide	1	18	NZC OV
30	DIVE	DIVE	Wm Wn	Signed 16/16-bit Fractional Divide	1	18	NZC OV
31	DO	DO	#lit14 Evpr	Do code to PC+Expr lit14 ± 1 times	2	2	None
51	00	D0	HILLII, BAPI	Do code to PC+Expr. $(W/n) + 1$ times	2	2	None
32	ED	ED	Wm*Wm,Acc,Wx,Wy,Wxd	Euclidean Distance (no accumulate)	1	1	OA,OB,OAB,
33	EDAC	EDAC	Wm*Wm,Acc,Wx,Wy,Wxd	Euclidean Distance	1	1	SA,SB,SAB OA,OB,OAB, SA,SB,SAB

TABLE 20-2: INSTRUCTION SET OVERVIEW (CONTINUED)

Base Instr #	Assembly Mnemonic		Assembly Syntax	Description	# of word s	# of cycles	Status Flags Affected
52	NEG	NEG	Acc	Negate Accumulator	1	1	OA,OB,OAB, SA SB SAB
		NEG	f	$f = \overline{f} + 1$	1	1	C.DC.N.OV.Z
		NEG	f,WREG	WREG = \overline{f} + 1	1	1	C.DC.N.OV.Z
		NEG	Ws,Wd	Wd = Ws + 1	1	1	C.DC.N.OV.Z
53	NOP	NOP	,	No Operation	1	1	None
		NOPR		No Operation	1	1	None
54	POP	POP	f	Pop f from Top-of-Stack (TOS)	1	1	None
		POP	Wdo	Pop from Top-of-Stack (TOS) to Wdo	1	1	None
		POP.D	Wnd	Pop from Top-of-Stack (TOS) to W(nd):W(nd + 1)	1	2	None
		POP.S		Pop Shadow Registers	1	1	All
55	PUSH	PUSH	f	Push f to Top-of-Stack (TOS)	1	1	None
		PUSH	Wso	Push Wso to Top-of-Stack (TOS)	1	1	None
		PUSH.D	Wns	Push W(ns):W(ns + 1) to Top-of-Stack (TOS)	1	2	None
		PUSH.S		Push Shadow Registers	1	1	None
56	PWRSAV	PWRSAV	#lit1	Go into Sleep or Idle mode	1	1	WDTO,Sleep
57	RCALL	RCALL	Expr	Relative Call	1	2	None
		RCALL	Wn	Computed Call	1	2	None
58	REPEAT	REPEAT	#lit14	Repeat Next Instruction lit14 + 1 times	1	1	None
		REPEAT	Wn	Repeat Next Instruction (Wn) + 1 times	1	1	None
59	RESET	RESET		Software device Reset	1	1	None
60	RETFIE	RETFIE		Return from interrupt	1	3 (2)	None
61	RETLW	RETLW	#lit10,Wn	Return with literal in Wn	1	3 (2)	None
62	RETURN	RETURN		Return from Subroutine	1	3 (2)	None
63	RLC	RLC	f	f = Rotate Left through Carry f	1	1	C,N,Z
		RLC	f,WREG	WREG = Rotate Left through Carry f	1	1	C,N,Z
		RLC	Ws,Wd	Wd = Rotate Left through Carry Ws	1	1	C,N,Z
64	RLNC	RLNC	f	f = Rotate Left (No Carry) f	1	1	N,Z
		RLNC	f,WREG	WREG = Rotate Left (No Carry) f	1	1	N,Z
		RLNC	Ws,Wd	Wd = Rotate Left (No Carry) Ws	1	1	N,Z
65	RRC	RRC	f	f = Rotate Right through Carry f	1	1	C,N,Z
		RRC	f,WREG	WREG = Rotate Right through Carry f	1	1	C,N,Z
		RRC	Ws,Wd	Wd = Rotate Right through Carry Ws	1	1	C,N,Z
66	RRNC	RRNC	f	f = Rotate Right (No Carry) f	1	1	N,Z
		RRNC	f,WREG	WREG = Rotate Right (No Carry) f	1	1	N,Z
		RRNC	Ws,Wd	Wd = Rotate Right (No Carry) Ws	1	1	N,Z
67	SAC	SAC	Acc,#Slit4,Wdo	Store Accumulator	1	1	None
		SAC.R	Acc,#Slit4,Wdo	Store Rounded Accumulator	1	1	None
68	SE	SE	Ws,Wnd	Wnd = sign extended Ws	1	1	C,N,Z
69	SETM	SETM	f	f = 0xFFFF	1	1	None
		SETM	WREG	WREG = 0xFFFF	1	1	None
		SETM	Ws	Ws = 0xFFFF	1	1	None
70	SFTAC	SFTAC	Acc,Wn	Arithmetic Shift Accumulator by (Wn)	1	1	OA,OB,OAB, SA,SB,SAB
		SFTAC	Acc,#Slit6	Arithmetic Shift Accumulator by Slit6	1	1	OA,OB,OAB, SA,SB,SAB
71	SL	SL	f	f = Left Shift f	1	1	C,N,OV,Z
		SL	f,WREG	WREG = Left Shift f	1	1	C,N,OV,Z
		SL	Ws,Wd	Wd = Left Shift Ws	1	1	C,N,OV,Z
		SL	Wb,Wns,Wnd	Wnd = Left Shift Wb by Wns	1	1	N,Z
		SL	Wb,#lit5,Wnd	Wnd = Left Shift Wb by lit5	1	1	N,Z

TABLE 20-2: INSTRUCTION SET OVERVIEW (CONTINUED)

21.0 DEVELOPMENT SUPPORT

The PIC[®] microcontrollers and dsPIC[®] digital signal controllers are supported with a full range of software and hardware development tools:

- Integrated Development Environment
- MPLAB[®] IDE Software
- Compilers/Assemblers/Linkers
 - MPLAB C Compiler for Various Device Families
 - HI-TECH C for Various Device Families
 - MPASM[™] Assembler
 - MPLINK[™] Object Linker/ MPLIB[™] Object Librarian
 - MPLAB Assembler/Linker/Librarian for Various Device Families
- Simulators
 - MPLAB SIM Software Simulator
- Emulators
 - MPLAB REAL ICE™ In-Circuit Emulator
- In-Circuit Debuggers
 - MPLAB ICD 3
 - PICkit[™] 3 Debug Express
- Device Programmers
 - PICkit[™] 2 Programmer
 - MPLAB PM3 Device Programmer
- Low-Cost Demonstration/Development Boards, Evaluation Kits, and Starter Kits

21.1 MPLAB Integrated Development Environment Software

The MPLAB IDE software brings an ease of software development previously unseen in the 8/16/32-bit microcontroller market. The MPLAB IDE is a Windows[®] operating system-based application that contains:

- A single graphical interface to all debugging tools
 - Simulator
 - Programmer (sold separately)
 - In-Circuit Emulator (sold separately)
 - In-Circuit Debugger (sold separately)
- · A full-featured editor with color-coded context
- A multiple project manager
- Customizable data windows with direct edit of contents
- High-level source code debugging
- Mouse over variable inspection
- Drag and drop variables from source to watch windows
- Extensive on-line help
- Integration of select third party tools, such as IAR C Compilers

The MPLAB IDE allows you to:

- · Edit your source files (either C or assembly)
- One-touch compile or assemble, and download to emulator and simulator tools (automatically updates all project information)
- Debug using:
 - Source files (C or assembly)
 - Mixed C and assembly
 - Machine code

MPLAB IDE supports multiple debugging tools in a single development paradigm, from the cost-effective simulators, through low-cost in-circuit debuggers, to full-featured emulators. This eliminates the learning curve when upgrading to tools with increased flexibility and power.

22.1 DC Characteristics

TABLE 22-1: OPERATING MIPS VS. VOLTAGE

Vpp Banga	Tomp Dongo	Max MIPS					
VDD Range	Temp Range	dsPIC30F2010-30I	dsPIC30F2010-20E				
4.5-5.5V	-40°C to 85°C	30	_				
4.5-5.5V	-40°C to 125°C	—	20				
3.0-3.6V	-40°C to 85°C	20	—				
3.0-3.6V	-40°C to 125°C	—	15				
2.5-3.0V	-40°C to 85°C	10	—				

TABLE 22-2: THERMAL OPERATING CONDITIONS

Rating	Symbol	Min	Тур	Max	Unit
dsPIC30F2010-30I					
Operating Junction Temperature Range	TJ	-40	—	+125	°C
Operating Ambient Temperature Range	TA	-40	—	+85	°C
dsPIC30F2010-20E					
Operating Junction Temperature Range	TJ	-40	—	+150	°C
Operating Ambient Temperature Range	TA	-40	—	+125	°C
$\begin{array}{l} \mbox{Power Dissipation:} \\ \mbox{Internal chip power dissipation:} \\ P_{\rm INT} &= V_{\rm DD} \times \left({\rm I}_{\rm DD} - \sum {\rm I}_{\rm OH} \right) \\ \mbox{I/O Pin power dissipation:} \\ P_{\rm I/O} &= \sum (\{ V_{\rm DD} - V_{\rm OH} \} \times {\rm I}_{\rm OH}) + \sum (V_{\rm OL} \times {\rm I}_{\rm OL}) \end{array}$	PD		Pint + Pi/c)	W
Maximum Allowed Power Dissipation	PDMAX	(TJ - TA)/ $ heta$ J	IA	W

TABLE 22-3: THERMAL PACKAGING CHARACTERISTICS

Characteristic	Symbol	Тур	Max	Unit	Notes
Package Thermal Resistance, 28-pin SOIC (SO)	θja	48.3	_	°C/W	1
Package Thermal Resistance, 28-pin QFN	θја	33.7	—	°C/W	1
Package Thermal Resistance, 28-pin SPDIP (SP)	θја	42	—	°C/W	1

Note 1: Junction to ambient thermal resistance, Theta-ja (θ_{JA}) numbers are achieved by package simulations.

TABLE 22-10: ELECTRICAL CHARACTERISTICS: BOR

DC CHARACTERISTICS		Standard Operating Conditions: 2.5V to 5.5V (unless otherwise stated) Operating temperature -40°C ≤TA ≤+85°C for Industrial -40°C ≤TA ≤+125°C for Extended						
Param No.	Symbol	Character	Min	Typ ⁽¹⁾	Max	Units	Conditions	
BO10	VBOR	BOR Voltage ⁽²⁾ on VDD transition high to	BORV = 11 ⁽³⁾				V	Not in operating range
		low	BORV = 10	2.6	_	2.71	V	—
			BORV = 01	4.1		4.4	V	—
			BORV = 00	4.58	_	4.73	V	—
BO15	VBHYS			_	5	_	mV	_

Note 1: Data in "Typ" column is at 5V, 25°C unless otherwise stated. Parameters are for design guidance only and are not tested.

2: These parameters are characterized but not tested in manufacturing.

3: 11 values not in usable operating range.

TABLE 22-11: DC CHARACTERISTICS: PROGRAM AND EEPROM

DC CHARACTERISTICS			Standard Operating Conditions: 2.5V to 5.5V (unless otherwise stated) Operating temperature -40°C ≤TA ≤+85°C for Industrial -40°C ≤TA ≤+125°C for Extended				
Param No.	Symbol	Characteristic	Min	Typ ⁽¹⁾	Max	Units	Conditions
		Data EEPROM Memory ⁽²⁾					
D120	ED	Byte Endurance	100K	1M	_	E/W	-40° C ≤TA ≤+85°C
D121	Vdrw	VDD for Read/Write	Vmin	_	5.5	V	Using EECON to read/write VMIN = Minimum operating voltage
D122	TDEW	Erase/Write Cycle Time	0.8	2	2.6	ms	RTSP
D123	Tretd	Characteristic Retention	40	100	—	Year	Provided no other specifications are violated
D124	IDEW	IDD During Programming		10	30	mA	Row Erase
		Program Flash Memory ⁽²⁾					
D130	Eр	Cell Endurance	10K	100K	_	E/W	-40° C ≤TA ≤+85°C
D131	Vpr	VDD for Read	Vmin	_	5.5	V	VMIN = Minimum operating voltage
D132	VEB	VDD for Bulk Erase	4.5		5.5	V	
D133	VPEW	VDD for Erase/Write	3.0		5.5	V	
D134	TPEW	Erase/Write Cycle Time	0.8	2	2.6	ms	RTSP
D135	TRETD	Characteristic Retention	40	100	—	Year	Provided no other specifications are violated
D137	IPEW	IDD During Programming	—	10	30	mA	Row Erase
D138	lев	IDD During Programming	—	10	30	mA	Bulk Erase

Note 1: Data in "Typ" column is at 5V, 25°C unless otherwise stated.

2: These parameters are characterized but not tested in manufacturing.

AC CHARACTERISTICS		Standard Operating Conditions: 2.7V to 5.5V (unless otherwise stated) Operating temperature -40°C ≤TA ≤+85°C for Industrial -40°C ≤TA ≤+125°C for Extended					
Param No.	Symbol	Characteristic	Min. Typ Max. Units Conditions				
AD24	EOFF	Offset Error	±1	±2	±3	LSb	Vinl = AVss = Vrefl = 0V, AVdd = Vrefh = 5V
AD24A	EOFF	Offset Error	±1	±2	±3	LSb	VINL = AVSS = VREFL = 0V, AVDD = VREFH = 3V
AD25	—	Monotonicity ⁽²⁾	—			—	Guaranteed
	Dynamic Performance						
AD30	THD	Total Harmonic Distortion	—	-64	-67	dB	_
AD31	SINAD	Signal to Noise and Distortion	—	57	58	dB	—
AD32	SFDR	Spurious Free Dynamic Range		67	71	dB	_
AD33	Fnyq	Input Signal Bandwidth	—	—	500	kHz	
AD34	ENOB	Effective Number of Bits	9.29	9.41		bits	_

TABLE 22-38: 10-BIT HIGH-SPEED A/D MODULE SPECIFICATIONS (CONTINUED)

Note 1: Because the sample caps will eventually lose charge, clock rates below 10 kHz can affect linearity performance, especially at elevated temperatures.

2: The A/D conversion result never decreases with an increase in the input voltage, and has no missing codes.

3: Measurements were taken with external VREF+ and VREF- used as the ADC voltage references.

dsPIC30F2010

FIGURE 22-24: 10-BIT HIGH-SPEED A/D CONVERSION TIMING CHARACTERISTICS (CHPS = 01, SIMSAM = 0, ASAM = 0, SSRC = 000)

Enable Bits88
Fault States88
Modes
Cycle-by-Cycle88
Latched88
PWM Operation During CPU Idle Mode89
PWM Operation During CPU Sleep Mode 89
PWM Output and Polarity Control 88
Output Pin Control88
PWM Output Override87
Complementary Output Mode87
Synchronization87
PWM Period
PWM Special Event Trigger 89
Postscaler 89
PWM Time Base
Continuous Up/Down Counting Modes
Double Update Mode 84
Free Running Mode83
Postscaler84
Prescaler
Single-Shot Mode83
PWM Update Lockout

Q

QEA/QEB Input Characteristics	169
QEI Module	
External Clock Timing Requirements	165
Index Pulse Timing Characteristics	170
Index Pulse Timing Requirements	170
Operation During CPU Idle Mode	78
Operation During CPU Sleep Mode	77
Register Map	79
Timer Operation During CPU Idle Mode	78
Timer Operation During CPU Sleep Mode	77
Quadrature Decoder Timing Requirements	169
Quadrature Encoder Interface (QEI) Module	75
Quadrature Encoder Interface Interrupts	78
Quadrature Encoder Interface Logic	76

R

Reader Response	
Reset	121, 127
Reset Sequence	
Reset Sources	
Reset Timing Characteristics	
Reset Timing Requirements	161
Resets	
BOR, Programmable	129
POR	127
Operating without FSCM and PWRT	129
POR with Long Crystal Start-up Time	129
RTSP Operation	44

S

Serial Peripheral	Interface.	See SPI
-------------------	------------	---------

Simple Capture Event Mode	
Capture Buffer Operation	68
Capture Prescaler	68
Hall Sensor Mode	68
Input Capture in CPU Idle Mode	69
Timer2 and Timer3 Selection Mode	
Simple OC/PWM Mode Timing Requirements	
Simple Output Compare Match Mode	72
Simple Output Compare Match Mode	72

Simple PWM Mode	72
Input Pin Fault Protection	72
Period	73
Single Pulse PWM Operation	87
Software Simulator (MPLAB SIM)	145
Software Stack Pointer, Frame Pointer	12
CALL Stack Frame	27
SPI	91
SPI Mode	
Slave Select Synchronization	93
SPI1 Register Map	94
SPI Module	91
Framed SPI Support	92
Operating Function Description	91
SDOx Disable	91
Timing Characteristics	
Master Mode (CKE = 0)	171
Master Mode (CKE = 1)	172
Slave Mode (CKE = 1) 173	, 174
Timing Requirements	
Master Mode (CKE = 0)	171
Master Mode (CKE = 1)	172
Slave Mode (CKE = 0)	173
Slave Mode (CKE = 1)	175
Word and Byte Communication	91
SPI Operation During CPU Idle Mode	93
SPI Operation During CPU Sleep Mode	93
STATUS Register	12
Subtracter	16
Data Space Write Saturation	18
Overflow and Saturation	16
Round Logic	17
Write Back	17
Symbols used in Opcode Descriptions	136
System Integration	121
Overview	121
Register Map	133

Т

Temperature and Voltage Specifications	
AC	156
DC	148
Timer1 Module	57
16-bit Asynchronous Counter Mode	57
16-bit Synchronous Counter Mode	57
16-bit Timer Mode	57
Gate Operation	58
Interrupt	59
Operation During Sleep Mode	58
Prescaler	58
Real-Time Clock	59
RTC Interrupts	59
RTC Oscillator Operation	59
Register Map	60
Timer2 and Timer3 Selection Mode	72
Timer2/3 Module	61
32-bit Synchronous Counter Mode	61
32-bit Timer Mode	61
ADC Event Trigger	64
Gate Operation	64
Interrupt	64
Operation During Sleep Mode	64
Register Map	65
Timer Prescaler	64

PRODUCT IDENTIFICATION SYSTEM

To order or obtain information, e.g., on pricing or delivery, refer to the factory or the listed sales office.

