NXP USA Inc. - MC68908GR16CFJE Datasheet

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Not For New Designs
Core Processor	HC08
Core Size	8-Bit
Speed	8MHz
Connectivity	LINbus, SCI, SPI
Peripherals	LVD, POR, PWM
Number of I/O	21
Program Memory Size	16KB (16K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	1K x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 5.5V
Data Converters	A/D 8x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	32-LQFP
Supplier Device Package	32-LQFP (7x7)
Purchase URL	https://www.e-xfl.com/product-detail/nxp-semiconductors/mc68908gr16cfje

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

4.4	I/O Signals	67
4.4.1	Crystal Amplifier Input Pin (OSC1)	67
4.4.2	Crystal Amplifier Output Pin (OSC2)	67
4.4.3	External Filter Capacitor Pin (CGMXFC)	67
4.4.4	PLL Analog Power Pin (V _{DDA})	68
4.4.5	PLL Analog Ground Pin (V _{SSA})	68
4.4.6	Oscillator Enable Signal (SIMOSCEN)	68
4.4.7	Oscillator Stop Mode Enable Bit (OSCSTOPENB)	68
4.4.8	Crystal Output Frequency Signal (CGMXCLK)	68
4.4.9	CGM Base Clock Output (CGMOUT)	68
4.4.10	CGM CPU Interrupt (CGMINT)	68
4.5	CGM Registers	69
4.5.1	PLL Control Register	70
4.5.2	PLL Bandwidth Control Register	72
4.5.3	PLL Multiplier Select Register High	73
4.5.4	PLL Multiplier Select Register Low	73
4.5.5	PLL VCO Range Select Register	74
4.5.6	PLL Reference Divider Select Register	74
4.6	Interrupts	75
4.7	Special Modes	75
4.7.1	Wait Mode	75
4.7.2	Stop Mode	76
4.7.3	CGM During Break Interrupts	76
4.8	Acquisition/Lock Time Specifications	76
4.8.1	Acquisition/Lock Time Definitions	76
4.8.2	Parametric Influences on Reaction Time	77
4.8.3	Choosing a Filter	77

Chapter 5 Configuration Register (CONFIG)

5.1	Introduction	79
5.2	Functional Description	79

Chapter 6 Computer Operating Properly (COP) Module

6.1	Introduction	83
6.2	Functional Description	83
6.3	I/O Signals	84
6.3.1	CGMXCLK	84
6.3.2	STOP Instruction	84
6.3.3	COPCTL Write	84
6.3.4	Power-On Reset.	84
6.3.5	Internal Reset.	84
6.3.6	Reset Vector Fetch	84
6.3.7	COPD (COP Disable).	85

Memory

Addr.	Register Name		Bit 7	6	5	4	3	2	1	Bit 0
\$FF7E	FLASH Block Protect Register (FLBPR) ⁽³⁾	Read: Write:	BPR7	BPR6	BPR5	BPR4	BPR3	BPR2	BPR1	BPR0
	See page 44.	Reset:		Unaffected by reset						
3. Non-volatil	e FLASH register									
COP Control Register			Low byte of reset vector							
\$FFFF	Write:	Writing clears COP counter (any value)								
	See page 85.	Reset:	Unaffected by reset							
				= Unimplem	ented	R	= Reserved	U = Una	ffected	

Figure 2-2. Control, Status, and Data Registers (Sheet 8 of 8)

Figure 3-2. ADC Block Diagram

3.3.2 Voltage Conversion

When the input voltage to the ADC equals V_{REFH} , the ADC converts the signal to \$3FF (full scale). If the input voltage equals V_{REFL} , the ADC converts it to \$000. Input voltages between V_{REFH} and V_{REFL} are a straight-line linear conversion.

NOTE

The ADC input voltage must always be greater than V_{SSAD} and less than V_{DDAD} .

Connect the V_{DDAD} pin to the same voltage potential as the V_{DD} pin, and connect the V_{SSAD} pin to the same voltage potential as the V_{SS} pin.

The V_{DDAD} pin should be routed carefully for maximum noise immunity.

is used when compatibility with 8-bit ADC designs are required. No interlocking between ADRH and ADRL is present.

NOTE

Quantization error is affected when only the most significant eight bits are used as a result. See Figure 3-3.

Figure 3-3. Bit Truncation Mode Error

3.4 Monotonicity

The conversion process is monotonic and has no missing codes.

3.5 Interrupts

When the AIEN bit is set, the ADC module is capable of generating CPU interrupts after each ADC conversion. A CPU interrupt is generated if the COCO bit is a 0. The COCO bit is not used as a conversion complete flag when interrupts are enabled.

3.6 Low-Power Modes

The WAIT and STOP instruction can put the MCU in low power-consumption standby modes.

Analog-to-Digital Converter (ADC)

Port E is a 6-bit special-function port that shares two of its pins with the enhanced serial communications interface (ESCI) module.

12.6.1 Port E Data Register

The port E data register contains a data latch for each of the six port E pins.

Figure 12-17. Port E Data Register (PTE)

PTE5-PTE0 — Port E Data Bits

These read/write bits are software-programmable. Data direction of each port E pin is under the control of the corresponding bit in data direction register E. Reset has no effect on port E data.

NOTE

Data direction register E (DDRE) does not affect the data direction of port E pins that are being used by the ESCI module. However, the DDRE bits always determine whether reading port E returns the states of the latches or the states of the pins. See Table 12-6.

RxD — SCI Receive Data Input

The PTE1/RxD pin is the receive data input for the ESCI module. When the enable SCI bit, ENSCI, is clear, the ESCI module is disabled, and the PTE1/RxD pin is available for general-purpose I/O. See Chapter 14 Enhanced Serial Communications Interface (ESCI) Module.

TxD — SCI Transmit Data Output

The PTE0/TxD pin is the transmit data output for the ESCI module. When the enable SCI bit, ENSCI, is clear, the ESCI module is disabled, and the PTE0/TxD pin is available for general-purpose I/O. See Chapter 14 Enhanced Serial Communications Interface (ESCI) Module.

Functional Description

Figure 14-4. SCI Data Formats

14.4.2 Transmitter

Figure 14-5 shows the structure of the SCI transmitter and the registers are summarized in Figure 14-3. The baud rate clock source for the ESCI can be selected via the configuration bit, ESCIBDSRC.

Figure 14-5. ESCI Transmitter

- ESCI prescaler register, SCPSC
- ESCI arbiter control register, SCIACTL
- ESCI arbiter data register, SCIADAT

14.8.1 ESCI Control Register 1

ESCI control register 1 (SCC1):

- Enables loop mode operation
- Enables the ESCI
- Controls output polarity
- Controls character length
- Controls ESCI wakeup method
- Controls idle character detection
- Enables parity function
- Controls parity type

Address: \$0013

	Bit 7	6	5	4	3	2	1	Bit 0
Read: Write:	LOOPS	ENSCI	TXINV	Μ	WAKE	ILTY	PEN	PTY
Reset:	0	0	0	0	0	0	0	0

Figure 14-10. ESCI Control Register 1 (SCC1)

LOOPS — Loop Mode Select Bit

This read/write bit enables loop mode operation. In loop mode the RxD pin is disconnected from the ESCI, and the transmitter output goes into the receiver input. Both the transmitter and the receiver must be enabled to use loop mode. Reset clears the LOOPS bit.

1 = Loop mode enabled

0 = Normal operation enabled

ENSCI — Enable ESCI Bit

This read/write bit enables the ESCI and the ESCI baud rate generator. Clearing ENSCI sets the SCTE and TC bits in ESCI status register 1 and disables transmitter interrupts. Reset clears the ENSCI bit.

1 = ESCI enabled

0 = ESCI disabled

TXINV — Transmit Inversion Bit

This read/write bit reverses the polarity of transmitted data. Reset clears the TXINV bit.

1 = Transmitter output inverted

0 = Transmitter output not inverted

NOTE

Setting the TXINV bit inverts all transmitted values including idle, break, start, and stop bits.

M — Mode (Character Length) Bit

This read/write bit determines whether ESCI characters are eight or nine bits long (See Table 14-5). The ninth bit can serve as a receiver wakeup signal or as a parity bit. Reset clears the M bit.

1 = 9-bit ESCI characters

0 = 8-bit ESCI characters

14.8.7 ESCI Baud Rate Register

The ESCI baud rate register (SCBR) together with the ESCI prescaler register selects the baud rate for both the receiver and the transmitter.

NOTE There are two prescalers available to adjust the baud rate. One in the ESCI baud rate register and one in the ESCI prescaler register.

Figure 14-17. ESCI Baud Rate Register (SCBR)

LINT — LIN Transmit Enable

This read/write bit selects the enhanced ESCI features for the local interconnect network (LIN) protocol as shown in Table 14-6.

LINR — LIN Receiver Bits

This read/write bit selects the enhanced ESCI features for the local interconnect network (LIN) protocol as shown in Table 14-6.

In LIN (version 1.2 and later) systems, the master node transmits a break character which will appear as 11.05-14.95 dominant bits to the slave node. A data character of 0x00 sent from the master might appear as 7.65-10.35 dominant bit times. This is due to the oscillator tolerance requirement that the slave node must be within $\pm 15\%$ of the master node's oscillator. Because a slave node cannot know if it is running faster or slower than the master node (prior to synchronization), the LINR bit allows the slave node to differentiate between a 0x00 character of 10.35 bits and a break character of 11.05 bits. The break symbol length must be verified in software in any case, but the LINR bit serves as a filter, preventing false detections of break characters that are really 0x00 data characters.

LINT	LINR	М	Functionality
0	0	Х	Normal ESCI functionality
0	1	0	11-bit break detect enabled for LIN receiver
0	1	1	12-bit break detect enabled for LIN receiver
1	0	0	13-bit generation enabled for LIN transmitter
1	0	1	14-bit generation enabled for LIN transmitter
1	1	0	11-bit break detect/13-bit generation enabled for LIN
1	1	1	12-bit break detect/14-bit generation enabled for LIN

Table 14-6. ESCI LIN Control Bits

Enhanced Serial Communications Interface (ESCI) Module

SCP1 and SCP0 — ESCI Baud Rate Register Prescaler Bits

These read/write bits select the baud rate register prescaler divisor as shown in Table 14-7. Reset clears SCP1 and SCP0.

SCP[1:0]	Baud Rate Register Prescaler Divisor (BPD)
0 0	1
0 1	3
1 0	4
1 1	13

Table 14-7. ESCI Baud Rate Prescaling

SCR2–SCR0 — ESCI Baud Rate Select Bits

These read/write bits select the ESCI baud rate divisor as shown in Table 14-8. Reset clears SCR2–SCR0.

SCR[2:1:0]	Baud Rate Divisor (BD)
0 0 0	1
001	2
010	4
011	8
100	16
101	32
1 1 0	64
111	128

Table 14-8. ESCI Baud Rate Selection

14.8.8 ESCI Prescaler Register

The ESCI prescaler register (SCPSC) together with the ESCI baud rate register selects the baud rate for both the receiver and the transmitter.

NOTE There are two prescalers available to adjust the baud rate. One in the ESCI baud rate register and one in the ESCI prescaler register.

Figure 14-18. ESCI Prescaler Register (SCPSC)

System Integration Module (SIM)

Setting the BCFE bit enables the clearing mechanisms. Once cleared in break mode, a flag remains cleared even when break mode is exited. Status flags with a 2-step clearing mechanism — for example, a read of one register followed by the read or write of another — are protected, even when the first step is accomplished prior to entering break mode. Upon leaving break mode, execution of the second step will clear the flag as normal.

15.6 Low-Power Modes

Executing the WAIT or STOP instruction puts the MCU in a low power-consumption mode for standby situations. The SIM holds the CPU in a non-clocked state. The operation of each of these modes is described in the following subsections. Both STOP and WAIT clear the interrupt mask (I) in the condition code register, allowing interrupts to occur.

15.6.1 Wait Mode

In wait mode, the CPU clocks are inactive while the peripheral clocks continue to run. Figure 15-16 shows the timing for wait mode entry.

A module that is active during wait mode can wakeup the CPU with an interrupt if the interrupt is enabled. Stacking for the interrupt begins one cycle after the WAIT instruction during which the interrupt occurred. In wait mode, the CPU clocks are inactive. Refer to the wait mode subsection of each module to see if the module is active or inactive in wait mode. Some modules can be programmed to be active in wait mode.

Wait mode also can be exited by a reset (or break in emulation mode). A break interrupt during wait mode sets the SIM break stop/wait bit, SBSW, in the SIM break status register (SBSR). If the COP disable bit, COPD, in the mask option register is 0, then the computer operating properly module (COP) is enabled and remains active in wait mode.

Note: Previous data can be operand data or the WAIT opcode, depending on the last instruction.

Figure 15-16. Wait Mode Entry Timing

Figure 15-17 and Figure 15-18 show the timing for WAIT recovery.

IAB	\$6E0B	\$6E0C \$00FF	\$00FE	\$00FD X \$00FC X	
IDB	\$A6 X \$A6 X \$A6	X \$01 X \$0)B X \$6E	XX	
EXITSTOPWAIT					

Serial Peripheral Interface (SPI) Module

Serial Peripheral Interface (SPI) Module

16.12.1 MISO (Master In/Slave Out)

MISO is one of the two SPI module pins that transmits serial data. In full duplex operation, the MISO pin of the master SPI module is connected to the MISO pin of the slave SPI module. The master SPI simultaneously receives data on its MISO pin and transmits data from its MOSI pin.

Slave output data on the MISO pin is enabled only when the SPI is configured as a slave. The SPI is configured as a slave when its SPMSTR bit is 0 and its \overline{SS} pin is at 0. To support a multiple-slave system, a 1 on the \overline{SS} pin puts the MISO pin in a high-impedance state.

When enabled, the SPI controls data direction of the MISO pin regardless of the state of the data direction register of the shared I/O port.

16.12.2 MOSI (Master Out/Slave In)

MOSI is one of the two SPI module pins that transmits serial data. In full-duplex operation, the MOSI pin of the master SPI module is connected to the MOSI pin of the slave SPI module. The master SPI simultaneously transmits data from its MOSI pin and receives data on its MISO pin.

When enabled, the SPI controls data direction of the MOSI pin regardless of the state of the data direction register of the shared I/O port.

16.12.3 SPSCK (Serial Clock)

The serial clock synchronizes data transmission between master and slave devices. In a master MCU, the SPSCK pin is the clock output. In a slave MCU, the SPSCK pin is the clock input. In full-duplex operation, the master and slave MCUs exchange a byte of data in eight serial clock cycles.

When enabled, the SPI controls data direction of the SPSCK pin regardless of the state of the data direction register of the shared I/O port.

16.12.4 SS (Slave Select)

The \overline{SS} pin has various functions depending on the current state of the SPI. For an SPI configured as a slave, the \overline{SS} is used to select a slave. For CPHA = 0, the \overline{SS} is used to define the start of a transmission. (See 16.5 Transmission Formats.) Since it is used to indicate the start of a transmission, the \overline{SS} must be toggled high and low between each byte transmitted for the CPHA = 0 format. However, it can remain low between transmissions for the CPHA = 1 format. See Figure 16-13.

Figure 16-13. CPHA/SS Timing

When an SPI is configured as a slave, the \overline{SS} pin is always configured as an input. It cannot be used as a general-purpose I/O regardless of the state of the MODFEN control bit. However, the MODFEN bit can still prevent the state of the \overline{SS} from creating a MODF error. See 16.13.2 SPI Status and Control Register.

18.4.4 Pulse Width Modulation (PWM)

By using the toggle-on-overflow feature with an output compare channel, the TIM can generate a PWM signal. The value in the TIM counter modulo registers determines the period of the PWM signal. The channel pin toggles when the counter reaches the value in the TIM counter modulo registers. The time between overflows is the period of the PWM signal.

As Figure 18-4 shows, the output compare value in the TIM channel registers determines the pulse width of the PWM signal. The time between overflow and output compare is the pulse width. Program the TIM to clear the channel pin on output compare if the state of the PWM pulse is 1. Program the TIM to set the pin if the state of the PWM pulse is 0.

The value in the TIM counter modulo registers and the selected prescaler output determines the frequency of the PWM output. The frequency of an 8-bit PWM signal is variable in 256 increments. Writing \$00FF (255) to the TIM counter modulo registers produces a PWM period of 256 times the internal bus clock period if the prescaler select value is \$000. See 18.9.1 TIM Status and Control Register.

Figure 18-4. PWM Period and Pulse Width

The value in the TIM channel registers determines the pulse width of the PWM output. The pulse width of an 8-bit PWM signal is variable in 256 increments. Writing \$0080 (128) to the TIM channel registers produces a duty cycle of 128/256 or 50%.

18.4.4.1 Unbuffered PWM Signal Generation

Any output compare channel can generate unbuffered PWM pulses as described in 18.4.4 Pulse Width Modulation (PWM). The pulses are unbuffered because changing the pulse width requires writing the new pulse width value over the old value currently in the TIM channel registers.

An unsynchronized write to the TIM channel registers to change a pulse width value could cause incorrect operation for up to two PWM periods. For example, writing a new value before the counter reaches the old value but after the counter reaches the new value prevents any compare during that PWM period. Also, using a TIM overflow interrupt routine to write a new, smaller pulse width value may cause the compare to be missed. The TIM may pass the new value before it is written.

Use the following methods to synchronize unbuffered changes in the PWM pulse width on channel x:

• When changing to a shorter pulse width, enable channel x output compare interrupts and write the new value in the output compare interrupt routine. The output compare interrupt occurs at the end of the current pulse. The interrupt routine has until the end of the PWM period to write the new value.

Development Support

19.3.1.5 Break Signal

A start bit (0) followed by nine 0 bits is a break signal. When the monitor receives a break signal, it drives the PTA0 pin high for the duration of two bits and then echoes back the break signal.

Figure 19-14. Break Transaction

19.3.1.6 Baud Rate

The communication baud rate is controlled by the crystal frequency or external clock and the state of the PTB4 pin (when \overline{IRQ} is set to V_{TST}) upon entry into monitor mode. If monitor mode was entered with V_{DD} on \overline{IRQ} and the reset vector blank, then the baud rate is independent of PTB4.

Table 19-1 also lists external frequencies required to achieve a standard baud rate of 9600 bps. The effective baud rate is the bus frequency divided by 256. If using a crystal as the clock source, be aware of the upper frequency limit that the internal clock module can handle. See 20.7 5.0-Volt Control Timing or 20.8 3.3-Volt Control Timing for this limit.

19.3.1.7 Commands

The monitor ROM firmware uses these commands:

- READ (read memory)
- WRITE (write memory)
- IREAD (indexed read)
- IWRITE (indexed write)
- READSP (read stack pointer)
- RUN (run user program)

The monitor ROM firmware echoes each received byte back to the PTA0 pin for error checking. An 11-bit delay at the end of each command allows the host to send a break character to cancel the command. A delay of two bit times occurs before each echo and before READ, IREAD, or READSP data is returned. The data returned by a read command appears after the echo of the last byte of the command.

NOTE

Wait one bit time after each echo before sending the next byte.

20.3 Functional Operating Range

Characteristic	Symbol	Value	Unit
Operating temperature range	T _A	-40 to +125	°C
Operating voltage range	V _{DD}	5.0 ±10% 3.3 ±10%	V

20.4 Thermal Characteristics

Characteristic	Symbol	Value	Unit
Thermal resistance 32-pin LQFP 48-pin LQFP	θ_{JA}	95 95	°C/W
I/O pin power dissipation	P _{I/O}	User determined	W
Power dissipation ⁽¹⁾	P _D	$\begin{split} P_D = (I_DD \times V_DD) + P_I/O = \\ K/(T_J + 273 \ ^\circC) \end{split}$	W
Constant ⁽²⁾	к	$P_{D} \times (T_{A} + 273 \text{ °C}) + P_{D}^{2} \times \theta_{JA}$	W/°C
Average junction temperature	TJ	$T_A + (P_D \times \theta_J_A)$	°C
Maximum junction temperature	T _{JM}	125	°C

Power dissipation is a function of temperature.
K is a constant unique to the device. K can be determined for a known T_A and measured P_D. With this value of K, P_D and T_J can be determined for any value of T_A.

Characteristic ⁽¹⁾	Symbol	Min	Typ ⁽²⁾	Max	Unit
Monitor mode entry voltage	V _{TST}	V _{DD} + 2.5	_	V _{DD} + 4.0	V
Low-voltage inhibit, trip falling voltage	V _{TRIPF}	2.35	2.6	2.7	V
Low-voltage inhibit, trip rising voltage	V _{TRIPR}	2.4	2.66	2.8	V
Low-voltage inhibit reset/recover hysteresis (V _{TRIPF} + V _{HYS} = V _{TRIPR})	V _{HYS}		100	_	mV
POR rearm voltage ⁽⁸⁾	V _{POR}	0	_	100	mV
POR reset voltage ⁽⁹⁾	V _{PORRST}	0	700	800	mV
POR rise time ramp rate ⁽¹⁰⁾	R _{POR}	0.035	_	_	V/ms

1. V_{DD} = 3.3 Vdc ± 10%, V_{SS} = 0 Vdc, $T_A = T_A$ (min) to T_A (max), unless otherwise noted 2. Typical values reflect average measurements at midpoint of voltage range, 25°C only.

3. Run (operating) I_{DD} measured using external square wave clock source (f_{OSC} = 16 MHz). All inputs 0.2 V from rail. No dc loads. Less than 100 pF on all outputs. C1 = 20 pF on OSC2. All ports configured as inputs. OSC2 capacitance linearly affects run I_{DD}. Measured with all modules enabled.

4. Wait I_{DD} measured using external square wave clock source (f_{OSC} = 16 MHz). All inputs 0.2 V from rail. No dc loads. Less than 100 pF on all outputs. C_L = 20 pF on OSC2. All ports configured as inputs. OSC2 capacitance linearly affects wait I_{DD}. Measured with CGM and LVI enabled.

5. Stop I_{DD} is measured with OSC1 = V_{SS} .

6. Stop I_{DD} with TBM enabled is measured using an external square wave clock source (f_{OSC} = 16 MHz). All inputs 0.2 V from rail. No dc loads. Less than 100 pF on all outputs. All inputs configured as inputs.

7. Pullups and pulldowns are disabled.

8. Maximum is highest voltage that POR is guaranteed.

9. Maximum is highest voltage that POR is possible.

10. If minimum V_{DD} is not reached before the internal POR reset is released, RST must be driven low externally until minimum V_{DD} is reached.

20.9 Clock Generation Module Characteristics

20.9.1 CGM Component Specifications

Characteristic	Symbol	Min	Тур	Max	Unit
External clock	f _{XCLK}	30	32.768	100	kHz
Crystal load capacitance ⁽¹⁾	CL	—	12.5	_	pF
Crystal fixed capacitance ⁽²⁾	C ₁	—	15	-	pF
Crystal tuning capacitance	C ₂	—	15	_	pF
Feedback bias resistor	R _B	1	10	22	MΩ
Series resistor ⁽³⁾	R _S	100	330	470	kΩ

1. Crystal manufacturer value

Capacitor on OSC1 pin. Does not include parasitic capacitance due to package, pin, and board.
Capacitor on OSC2 pin. Does not include parasitic capacitance due to package, pin, and board.

20.9.2 CGM Electrical Specifications

Description	Symbol	Min	Тур	Max	Unit
Operating voltage	V _{DD}	3.0		5.5	V
Operating temperature	Т	-40	25	125	°C
Crystal reference frequency	f _{RCLK}	30	32.768	100	kHz
Range nominal multiplier	f _{NOM}	—	38.4	—	kHz
VCO center-of-range frequency ⁽¹⁾	f _{VRS}	38.4 k	_	40.0 M	Hz
Medium-voltage VCO center-of-range frequency ⁽²⁾	f _{VRS}	38.4 k	-	40.0 M	Hz
VCO range linear range multiplier	L	1		255	
VCO power-of-two range multiplier	2 ^E	1		4	
VCO multiply factor	N	1		4095	
VCO prescale multiplier	2 ^P	1	1	8	
Reference divider factor	R	1	1	15	
VCO operating frequency	f _{VCLK}	38.4 k		40.0 M	Hz
Bus operating frequency ⁽¹⁾	f _{BUS}	—	_	8.2	MHz
Bus frequency @ medium voltage ⁽²⁾	f _{BUS}	—		4.1	MHz
Manual acquisition time	t _{Lock}	—		50	ms
Automatic lock time	t _{Lock}	—	_	50	ms
PLL jitter ⁽³⁾	fJ	0	_	f _{RCLK} x 0.025% x 2 ^P N/4	Hz
External clock input frequency PLL disabled	fosc	dc		32.8 M	Hz
External clock input frequency PLL enabled	fosc	30 k	—	1.5 M	Hz

1. 5.0 V \pm 10% V_{DD} 2. 3.3 V \pm 10% V_{DD} 3. Deviation of average bus frequency over 2 ms. N = VCO multiplier.

DETAIL G

SECTION F-F ROTATED 90°CW 32 PLACES

© FREESCALE SEMICONDUCTOR, INC. All RIGHTS RESERVED.	MECHANICAL OUTLINE		PRINT VERSION NOT TO SCAL	
TITLE: LOW PROFILE QUAD FLAT PACK (LQFP) 32 LEAD, 0.8 PITCH (7 X 7 X 1.4)		DOCUMENT NE]: 98ASH70029A	RE∨∶C
		CASE NUMBER: 873A-04 01 APR 2		
		STANDARD: JEDEC MS-026 BBA		