



#### Welcome to E-XFL.COM

#### What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

#### Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

#### Details

| Product Status             | Not For New Designs                                                     |
|----------------------------|-------------------------------------------------------------------------|
| Core Processor             | HC08                                                                    |
| Core Size                  | 8-Bit                                                                   |
| Speed                      | 8MHz                                                                    |
| Connectivity               | LINbus, SCI, SPI                                                        |
| Peripherals                | LVD, POR, PWM                                                           |
| Number of I/O              | 21                                                                      |
| Program Memory Size        | 16KB (16K x 8)                                                          |
| Program Memory Type        | FLASH                                                                   |
| EEPROM Size                | -                                                                       |
| RAM Size                   | 1K x 8                                                                  |
| Voltage - Supply (Vcc/Vdd) | 3V ~ 5.5V                                                               |
| Data Converters            | A/D 8x10b                                                               |
| Oscillator Type            | Internal                                                                |
| Operating Temperature      | -40°C ~ 125°C (TA)                                                      |
| Mounting Type              | Surface Mount                                                           |
| Package / Case             | 32-LQFP                                                                 |
| Supplier Device Package    | 32-LQFP (7x7)                                                           |
| Purchase URL               | https://www.e-xfl.com/product-detail/nxp-semiconductors/mc68908gr16mfje |

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong



| 4.4    | I/O Signals                                  | 67        |
|--------|----------------------------------------------|-----------|
| 4.4.1  | Crystal Amplifier Input Pin (OSC1)           | 67        |
| 4.4.2  | Crystal Amplifier Output Pin (OSC2)          | 67        |
| 4.4.3  | External Filter Capacitor Pin (CGMXFC)       | 67        |
| 4.4.4  | PLL Analog Power Pin (V <sub>DDA</sub> )     | <b>68</b> |
| 4.4.5  | PLL Analog Ground Pin (V <sub>SSA</sub> )    | <b>68</b> |
| 4.4.6  | Oscillator Enable Signal (SIMOSCEN)          | 68        |
| 4.4.7  | Oscillator Stop Mode Enable Bit (OSCSTOPENB) | 68        |
| 4.4.8  | Crystal Output Frequency Signal (CGMXCLK)    | 68        |
| 4.4.9  | CGM Base Clock Output (CGMOUT)               | 68        |
| 4.4.10 | CGM CPU Interrupt (CGMINT)                   | 68        |
| 4.5    | CGM Registers                                | 69        |
| 4.5.1  | PLL Control Register                         | 70        |
| 4.5.2  | PLL Bandwidth Control Register               | 72        |
| 4.5.3  | PLL Multiplier Select Register High          | 73        |
| 4.5.4  | PLL Multiplier Select Register Low           | 73        |
| 4.5.5  | PLL VCO Range Select Register                | 74        |
| 4.5.6  | PLL Reference Divider Select Register        | 74        |
| 4.6    | Interrupts                                   | 75        |
| 4.7    | Special Modes                                | 75        |
| 4.7.1  | Wait Mode                                    | 75        |
| 4.7.2  | Stop Mode                                    | 76        |
| 4.7.3  | CGM During Break Interrupts                  | 76        |
| 4.8    | Acquisition/Lock Time Specifications         | 76        |
| 4.8.1  | Acquisition/Lock Time Definitions            | 76        |
| 4.8.2  | Parametric Influences on Reaction Time       | 77        |
| 4.8.3  | Choosing a Filter                            | 77        |
|        |                                              |           |

# Chapter 5 Configuration Register (CONFIG)

| 5.1 | Introduction           | 79 |
|-----|------------------------|----|
| 5.2 | Functional Description | 79 |

## Chapter 6 Computer Operating Properly (COP) Module

| 6.1   | Introduction           | 83 |
|-------|------------------------|----|
| 6.2   | Functional Description | 83 |
| 6.3   | I/O Signals            | 84 |
| 6.3.1 | CGMXCLK                | 84 |
| 6.3.2 | STOP Instruction       | 84 |
| 6.3.3 | COPCTL Write           | 84 |
| 6.3.4 | Power-On Reset.        | 84 |
| 6.3.5 | Internal Reset.        | 84 |
| 6.3.6 | Reset Vector Fetch     | 84 |
| 6.3.7 | COPD (COP Disable).    | 85 |
|       |                        |    |



16-BIT MEMORY ADDRESS

START ADDRESS OF FLASH 1 1 FLBPR VALUE 0 0 0 0 0 0 0

Figure 2-6. FLASH Block Protect Start Address

| BPR[7:0]                  | Addresses of Protect Range                                                        |
|---------------------------|-----------------------------------------------------------------------------------|
| \$00                      | The entire FLASH memory is protected.                                             |
| \$01 ( <b>0000 0001</b> ) | \$C040 (11 <b>00 0000 01</b> 00 0000) — \$FFFF                                    |
| \$02 ( <b>0000 0010</b> ) | \$C080 (11 <b>00 0000 10</b> 00 0000) — \$FFFF                                    |
| \$03 ( <b>0000 0011</b> ) | \$C0C0 (11 <b>00 0000 11</b> 00 0000) — \$FFFF                                    |
| \$04 ( <b>0000 0100</b> ) | \$C100 (11 <b>00 0001 00</b> 00 0000) — \$FFFF                                    |
|                           | and so on                                                                         |
| \$FC ( <b>1111 1100</b> ) | \$FF00 (11 <b>11 1111 00</b> 00 0000) — FFFF                                      |
| \$FD ( <b>1111 1101</b> ) | \$FF40 (11 <b>11 1111 01</b> 00 0000) — \$FFFF<br>FLBPR and vectors are protected |
| \$FE (1111 1110)          | \$FF80 (11 <b>11 1111 10</b> 00 0000) — FFFF<br>Vectors are protected             |
| \$FF                      | The entire FLASH memory is not protected.                                         |

### Table 2-2. Examples of Protect Address Ranges

### 2.6.2 Wait Mode

Putting the MCU into wait mode while the FLASH is in read mode does not affect the operation of the FLASH memory directly, but there will not be any memory activity since the CPU is inactive.

The WAIT instruction should not be executed while performing a program or erase operation on the FLASH, otherwise the operation will discontinue, and the FLASH will be on standby mode.

### 2.6.3 Stop Mode

Putting the MCU into stop mode while the FLASH is in read mode does not affect the operation of the FLASH memory directly, but there will not be any memory activity since the CPU is inactive.

The STOP instruction should not be executed while performing a program or erase operation on the FLASH, otherwise the operation will discontinue, and the FLASH will be on standby mode

NOTE

Standby mode is the power saving mode of the FLASH module in which all internal control signals to the FLASH are inactive and the current consumption of the FLASH is at a minimum.



## Chapter 3 Analog-to-Digital Converter (ADC)

### 3.1 Introduction

This section describes the 10-bit analog-to-digital converter (ADC).

### 3.2 Features

Features of the ADC module include:

- Eight channels with multiplexed input
- · Linear successive approximation with monotonicity
- 10-bit resolution
- Single or continuous conversion
- Conversion complete flag or conversion complete interrupt
- Selectable ADC clock
- Left or right justified result
- Left justified sign data mode

### 3.3 Functional Description

The ADC provides eight pins for sampling external sources at pins PTB7/KBD7–PTB0/KBD0. An analog multiplexer allows the single ADC converter to select one of eight ADC channels as ADC voltage in  $(V_{ADIN})$ .  $V_{ADIN}$  is converted by the successive approximation register-based analog-to-digital converter. When the conversion is completed, ADC places the result in the ADC data register and sets a flag or generates an interrupt. See Figure 3-2.

### 3.3.1 ADC Port I/O Pins

PTB7/AD7–PTB0/AD0 are general-purpose I/O (input/output) pins that share with the ADC channels. The channel select bits define which ADC channel/port pin will be used as the input signal. The ADC overrides the port I/O logic by forcing that pin as input to the ADC. The remaining ADC channels/port pins are controlled by the port I/O logic and can be used as general-purpose I/O. Writes to the port register or data direction register (DDR) will not have any affect on the port pin that is selected by the ADC. A read of a port pin in use by the ADC will return a 0.



#### I/O Registers

### 3.7.4 ADC Voltage Reference Low Pin (V<sub>REFL</sub>)

The ADC analog portion uses  $V_{REFL}$  as its lower voltage reference pin. By default, connect the  $V_{REFL}$  pin to the same voltage potential as  $V_{SS}$ . External filtering is often necessary to ensure a clean  $V_{REFL}$  for good results. Any noise present on this pin will be reflected and possibly magnified in A/D conversion values.

### NOTE

For maximum noise immunity, route  $V_{REFL}$  carefully and, if not connected to  $V_{SS}$ , place bypass capacitors as close as possible to the package. Routing  $V_{REFH}$  close and parallel to  $V_{REFL}$  may improve common mode noise rejection.

V<sub>SSAD</sub> and V<sub>REFL</sub> are double-bonded on the MC68HC908GR16.

### 3.7.5 ADC Voltage In (V<sub>ADIN</sub>)

V<sub>ADIN</sub> is the input voltage signal from one of the eight ADC channels to the ADC module.

### 3.8 I/O Registers

These I/O registers control and monitor ADC operation:

- ADC status and control register (ADSCR)
- ADC data register (ADRH and ADRL)
- ADC clock register (ADCLK)

### 3.8.1 ADC Status and Control Register

Function of the ADC status and control register (ADSCR) is described here.



### Figure 3-4. ADC Status and Control Register (ADSCR)

### COCO — Conversions Complete Bit

In non-interrupt mode (AIEN = 0), COCO is a read-only bit that is set at the end of each conversion. COCO will stay set until cleared by a read of the ADC data register. Reset clears this bit.

In interrupt mode (AIEN = 1), COCO is a read-only bit that is not set at the end of a conversion. It always reads as a 0.

1 = Conversion completed (AIEN = 0)

0 = Conversion not completed (AIEN = 0) or CPU interrupt enabled (AIEN = 1)

NOTE

The write function of the COCO bit is reserved. When writing to the ADSCR register, always have a 0 in the COCO bit position.

MC68HC908GR16 Data Sheet, Rev. 5.0



Analog-to-Digital Converter (ADC)



#### **Clock Generator Module (CGM)**

When the tolerance on the bus frequency is tight, choose  $f_{RCLK}$  to an integer divisor of  $f_{BUSDES}$ , and R = 1. If  $f_{RCLK}$  cannot meet this requirement, use the following equation to solve for R with practical choices of  $f_{RCLK}$ , and choose the  $f_{RCLK}$  that gives the lowest R.

$$\mathbf{R} = round \left[ \mathbf{R}_{MAX} \times \left\{ \left( \frac{f_{VCLKDES}}{f_{RCLK}} \right) - integer \left( \frac{f_{VCLKDES}}{f_{RCLK}} \right) \right\} \right]$$

4. Select a VCO frequency multiplier, N.

$$N = round \left( \frac{R \times f_{VCLKDES}}{f_{RCLK}} \right)$$

Reduce N/R to the lowest possible R.

5. If N is  $< N_{max}$ , use P = 0. If N  $> N_{max}$ , choose P using this table:

| Current N Value                             | Р |
|---------------------------------------------|---|
| 0 < N ≤ N <sub>max</sub>                    | 0 |
| $N_{max} < N \le N_{max} \times 2$          | 1 |
| $N_{max} \times 2 < N \le N_{max} \times 4$ | 2 |
| $N_{max} \times 4 < N \le N_{max} \times 8$ | 3 |

Then recalculate N:

$$N = round \left( \frac{R \times f_{VCLKDES}}{f_{RCLK} \times 2^{P}} \right)$$

6. Calculate and verify the adequacy of the VCO and bus frequencies  $f_{VCLK}$  and  $f_{BUS}$ .

$$f_{VCLK} = (2^{P} \times N/R) \times f_{RCLK}$$
$$f_{BUS} = (f_{VCLK})/4$$

7. Select the VCO's power-of-two range multiplier E, according to this table:

| Frequency Range                          | E <sup>(1)</sup> |
|------------------------------------------|------------------|
| 0 < f <sub>VCLK</sub> < 8 MHz            | 0                |
| 8 MHz $\leq$ f <sub>VCLK</sub> < 16 MHz  | 1                |
| 16 MHz $\leq$ f <sub>VCLK</sub> < 32 MHz | 2                |

1. Do not program E to a value of 3.

8. Select a VCO linear range multiplier, L, where  $f_{NOM} = 38.4$  kHz

$$L = round \left(\frac{f_{VCLK}}{2^{E} \times f_{NOM}}\right)$$



#### **Configuration Register (CONFIG)**



Note: LVI5OR3 bit is only reset via POR (power-on reset)

### Figure 5-2. Configuration Register 1 (CONFIG1)

### TMBCLKSEL— Timebase Clock Select Bit

TMBCLKSEL enables an extra divide-by-128 prescaler in the timebase module. Setting this bit enables the extra prescaler and clearing this bit disables it. See Chapter 4 Clock Generator Module (CGM) for a more detailed description of the external clock operation.

1 = Enables extra divide-by-128 prescaler in timebase module

0 = Disables extra divide-by-128 prescaler in timebase module

### **OSCENINSTOP** — Oscillator Enable In Stop Mode Bit

OSCENINSTOP, when set, will enable oscillator to continue to generate clocks in stop mode. See Chapter 4 Clock Generator Module (CGM). This function is used to keep the timebase running while the reset of the MCU stops. See Chapter 17 Timebase Module (TBM). When clear, oscillator will cease to generate clocks while in stop mode. The default state for this option is clear, disabling the oscillator in stop mode.

1 = Oscillator enabled to operate during stop mode

0 = Oscillator disabled during stop mode (default)

### ESCIBDSRC — SCI Baud Rate Clock Source Bit

ESCIBDSRC controls the clock source used for the serial communications interface (SCI). The setting of this bit affects the frequency at which the SCI operates. See Chapter 14 Enhanced Serial Communications Interface (ESCI) Module.

1 = Internal data bus clock used as clock source for SCI (default)

0 = External oscillator used as clock source for SCI

### COPRS — COP Rate Select Bit

COPD selects the COP timeout period. Reset clears COPRS. See Chapter 6 Computer Operating Properly (COP) Module

1 = COP timeout period = 8176 CGMXCLK cycles

0 = COP timeout period = 262,128 CGMXCLK cycles

### LVISTOP — LVI Enable in Stop Mode Bit

When the LVIPWRD bit is clear, setting the LVISTOP bit enables the LVI to operate during stop mode. Reset clears LVISTOP.

1 = LVI enabled during stop mode

0 = LVI disabled during stop mode



### Z — Zero Flag

The CPU sets the zero flag when an arithmetic operation, logic operation, or data manipulation produces a result of \$00.

- 1 = Zero result
- 0 = Non-zero result

### C — Carry/Borrow Flag

The CPU sets the carry/borrow flag when an addition operation produces a carry out of bit 7 of the accumulator or when a subtraction operation requires a borrow. Some instructions — such as bit test and branch, shift, and rotate — also clear or set the carry/borrow flag.

1 = Carry out of bit 7

0 = No carry out of bit 7

### 7.4 Arithmetic/Logic Unit (ALU)

The ALU performs the arithmetic and logic operations defined by the instruction set.

Refer to the *CPU08 Reference Manual* (document order number CPU08RM/AD) for a description of the instructions and addressing modes and more detail about the architecture of the CPU.

### 7.5 Low-Power Modes

The WAIT and STOP instructions put the MCU in low power-consumption standby modes.

### 7.5.1 Wait Mode

The WAIT instruction:

- Clears the interrupt mask (I bit) in the condition code register, enabling interrupts. After exit from wait mode by interrupt, the I bit remains clear. After exit by reset, the I bit is set.
- Disables the CPU clock

### 7.5.2 Stop Mode

The STOP instruction:

- Clears the interrupt mask (I bit) in the condition code register, enabling external interrupts. After exit from stop mode by external interrupt, the I bit remains clear. After exit by reset, the I bit is set.
- Disables the CPU clock

After exiting stop mode, the CPU clock begins running after the oscillator stabilization delay.

### 7.6 CPU During Break Interrupts

If a break module is present on the MCU, the CPU starts a break interrupt by:

- · Loading the instruction register with the SWI instruction
- Loading the program counter with \$FFFC:\$FFFD or with \$FEFC:\$FEFD in monitor mode

The break interrupt begins after completion of the CPU instruction in progress. If the break address register match occurs on the last cycle of a CPU instruction, the break interrupt begins immediately.

A return-from-interrupt instruction (RTI) in the break routine ends the break interrupt and returns the MCU to normal operation if the break interrupt has been deasserted.



External Interrupt (IRQ)



## Chapter 9 Keyboard Interrupt Module (KBI)

### 9.1 Introduction

The keyboard interrupt module (KBI) provides eight independently maskable external interrupts which are accessible via PTA0–PTA7. When a port pin is enabled for keyboard interrupt function, an internal pullup device is also enabled on the pin.

### 9.2 Features

Features include:

- Eight keyboard interrupt pins with separate keyboard interrupt enable bits and one keyboard interrupt mask
- Hysteresis buffers
- Programmable edge-only or edge- and level- interrupt sensitivity
- Exit from low-power modes
- I/O (input/output) port bit(s) software configurable with pullup device(s) if configured as input port bit(s)

### 9.3 Functional Description

Writing to the KBIE7–KBIE0 bits in the keyboard interrupt enable register independently enables or disables each port A pin as a keyboard interrupt pin. Enabling a keyboard interrupt pin also enables its internal pullup device. A 0 applied to an enabled keyboard interrupt pin latches a keyboard interrupt request.

A keyboard interrupt is latched when one or more keyboard pins goes low after all were high. The MODEK bit in the keyboard status and control register controls the triggering mode of the keyboard interrupt.

- If the keyboard interrupt is edge-sensitive only, a falling edge on a keyboard pin does not latch an interrupt request if another keyboard pin is already low. To prevent losing an interrupt request on one pin because another pin is still low, software can disable the latter pin while it is low.
- If the keyboard interrupt is falling edge- and low-level sensitive, an interrupt request is present as long as any keyboard interrupt pin is low and the pin is keyboard interrupt enabled.



#### Keyboard Interrupt Module (KBI)

The vector fetch or software clear and the return of all enabled keyboard interrupt pins to 1 may occur in any order.

If the MODEK bit is clear, the keyboard interrupt pin is falling-edge-sensitive only. With MODEK clear, a vector fetch or software clear immediately clears the keyboard interrupt request.

Reset clears the keyboard interrupt request and the MODEK bit, clearing the interrupt request even if a keyboard interrupt pin stays at 0.

The keyboard flag bit (KEYF) in the keyboard status and control register can be used to see if a pending interrupt exists. The KEYF bit is not affected by the keyboard interrupt mask bit (IMASKK) which makes it useful in applications where polling is preferred.

To determine the logic level on a keyboard interrupt pin, use the data direction register to configure the pin as an input and read the data register.

### NOTE

Setting a keyboard interrupt enable bit (KBIEx) forces the corresponding keyboard interrupt pin to be an input, overriding the data direction register. However, the data direction register bit must be a 0 for software to read the pin.

### 9.4 Keyboard Initialization

When a keyboard interrupt pin is enabled, it takes time for the internal pullup to reach a 1. Therefore, a false interrupt can occur as soon as the pin is enabled.

To prevent a false interrupt on keyboard initialization:

- 1. Mask keyboard interrupts by setting the IMASKK bit in the keyboard status and control register.
- 2. Enable the KBI pins by setting the appropriate KBIEx bits in the keyboard interrupt enable register.
- 3. Write to the ACKK bit in the keyboard status and control register to clear any false interrupts.
- 4. Clear the IMASKK bit.

An interrupt signal on an edge-triggered pin can be acknowledged immediately after enabling the pin. An interrupt signal on an edge- and level-triggered interrupt pin must be acknowledged after a delay that depends on the external load.

Another way to avoid a false interrupt:

- 1. Configure the keyboard pins as outputs by setting the appropriate DDRA bits in data direction register A.
- 2. Write 1s to the appropriate port A data register bits.
- 3. Enable the KBI pins by setting the appropriate KBIEx bits in the keyboard interrupt enable register.

### 9.5 Low-Power Modes

The WAIT and STOP instructions put the microcontroller unit (MCU) in low power-consumption standby modes.

### 9.5.1 Wait Mode

The keyboard module remains active in wait mode. Clearing the IMASKK bit in the keyboard status and control register enables keyboard interrupt requests to bring the MCU out of wait mode.

#### MC68HC908GR16 Data Sheet, Rev. 5.0



#### **Resets and Interrupts**

#### ILAD — Illegal Address Reset Bit

- 1 = Last reset caused by an opcode fetch from an illegal address
- 0 = POR or read of SRSR since any reset

### MODRST — Monitor Mode Entry Module Reset Bit

- 1 = Last reset caused by forced monitor mode entry.
- 0 = POR or read of SRSR since any reset

#### LVI — Low-Voltage Inhibit Reset Bit

- 1 = Last reset caused by low-power supply voltage
- 0 = POR or read of SRSR since any reset

### 13.3 Interrupts

An interrupt temporarily changes the sequence of program execution to respond to a particular event. An interrupt does not stop the operation of the instruction being executed, but begins when the current instruction completes its operation.

### 13.3.1 Effects

An interrupt:

- Saves the CPU registers on the stack. At the end of the interrupt, the RTI instruction recovers the CPU registers from the stack so that normal processing can resume.
- Sets the interrupt mask (I bit) to prevent additional interrupts. Once an interrupt is latched, no other interrupt can take precedence, regardless of its priority.
- Loads the program counter with a user-defined vector address



1. High byte of index register is not stacked.

Figure 13-3. Interrupt Stacking Order

MC68HC908GR16 Data Sheet, Rev. 5.0



### 14.4.3.1 Character Length

The receiver can accommodate either 8-bit or 9-bit data. The state of the M bit in ESCI control register 1 (SCC1) determines character length. When receiving 9-bit data, bit R8 in ESCI control register 3 (SCC3) is the ninth bit (bit 8). When receiving 8-bit data, bit R8 is a copy of the eighth bit (bit 7).

### 14.4.3.2 Character Reception

During an ESCI reception, the receive shift register shifts characters in from the RxD pin. The ESCI data register (SCDR) is the read-only buffer between the internal data bus and the receive shift register.

After a complete character shifts into the receive shift register, the data portion of the character transfers to the SCDR. The ESCI receiver full bit, SCRF, in ESCI status register 1 (SCS1) becomes set, indicating that the received byte can be read. If the ESCI receive interrupt enable bit, SCRIE, in SCC2 is also set, the SCRF bit generates a receiver CPU interrupt request.

### 14.4.3.3 Data Sampling

The receiver samples the RxD pin at the RT clock rate. The RT clock is an internal signal with a frequency 16 times the baud rate. To adjust for baud rate mismatch, the RT clock is resynchronized at these times (see Figure 14-7):

- After every start bit
- After the receiver detects a data bit change from 1 to 0 (after the majority of data bit samples at RT8, RT9, and RT10 returns a valid 1 and the majority of the next RT8, RT9, and RT10 samples returns a valid 0)



To locate the start bit, data recovery logic does an asynchronous search for a logic 0 preceded by three 1s. When the falling edge of a possible start bit occurs, the RT clock begins to count to 16.

To verify the start bit and to detect noise, data recovery logic takes samples at RT3, RT5, and RT7. Table 14-2 summarizes the results of the start bit verification samples.



#### Enhanced Serial Communications Interface (ESCI) Module

#### **RE** — Receiver Enable Bit

Setting this read/write bit enables the receiver. Clearing the RE bit disables the receiver but does not affect receiver interrupt flag bits. Reset clears the RE bit.

1 = Receiver enabled

0 = Receiver disabled

### NOTE

Writing to the RE bit is not allowed when the enable ESCI bit (ENSCI) is clear. ENSCI is in ESCI control register 1.

#### RWU — Receiver Wakeup Bit

This read/write bit puts the receiver in a standby state during which receiver interrupts are disabled. The WAKE bit in SCC1 determines whether an idle input or an address mark brings the receiver out of the standby state and clears the RWU bit. Reset clears the RWU bit.

- 1 = Standby state
- 0 = Normal operation

### SBK — Send Break Bit

Setting and then clearing this read/write bit transmits a break character followed by a 1. The 1 after the break character guarantees recognition of a valid start bit. If SBK remains set, the transmitter continuously transmits break characters with no 1s between them. Reset clears the SBK bit.

1 = Transmit break characters

0 = No break characters being transmitted

### NOTE

Do not toggle the SBK bit immediately after setting the SCTE bit. Toggling SBK before the preamble begins causes the ESCI to send a break character instead of a preamble.

### 14.8.3 ESCI Control Register 3

ESCI control register 3 (SCC3):

- Stores the ninth ESCI data bit received and the ninth ESCI data bit to be transmitted.
- Enables these interrupts:
  - Receiver overrun
  - Noise error
  - Framing error
  - Parity error



Figure 14-12. ESCI Control Register 3 (SCC3)

### R8 — Received Bit 8

When the ESCI is receiving 9-bit characters, R8 is the read-only ninth bit (bit 8) of the received character. R8 is received at the same time that the SCDR receives the other 8 bits.



### Enhanced Serial Communications Interface (ESCI) Module

| PSSB[4:3:2:1:0] | Prescaler Divisor Fine Adjust (PDFA) |
|-----------------|--------------------------------------|
| 00000           | 0/32 = 0                             |
| 00001           | 1/32 = 0.03125                       |
| 00010           | 2/32 = 0.0625                        |
| 00011           | 3/32 = 0.09375                       |
| 00100           | 4/32 = 0.125                         |
| 00101           | 5/32 = 0.15625                       |
| 00110           | 6/32 = 0.1875                        |
| 00111           | 7/32 = 0.21875                       |
| 0 1 0 0 0       | 8/32 = 0.25                          |
| 01001           | 9/32 = 0.28125                       |
| 0 1 0 1 0       | 10/32 = 0.3125                       |
| 01011           | 11/32 = 0.34375                      |
| 01100           | 12/32 = 0.375                        |
| 01101           | 13/32 = 0.40625                      |
| 01110           | 14/32 = 0.4375                       |
| 01111           | 15/32 = 0.46875                      |
| 10000           | 16/32 = 0.5                          |
| 10001           | 17/32 = 0.53125                      |
| 10010           | 18/32 = 0.5625                       |
| 10011           | 19/32 = 0.59375                      |
| 10100           | 20/32 = 0.625                        |
| 10101           | 21/32 = 0.65625                      |
| 10110           | 22/32 = 0.6875                       |
| 10111           | 23/32 = 0.71875                      |
| 1 1 0 0 0       | 24/32 = 0.75                         |
| 1 1 0 0 1       | 25/32 = 0.78125                      |
| 1 1 0 1 0       | 26/32 = 0.8125                       |
| 1 1 0 1 1       | 27/32 = 0.84375                      |
| 1 1 1 0 0       | 28/32 = 0.875                        |
| 1 1 1 0 1       | 29/32 = 0.90625                      |
| 1 1 1 1 0       | 30/32 = 0.9375                       |
| 1 1 1 1 1       | 31/32 = 0.96875                      |

### Table 14-10. ESCI Prescaler Divisor Fine Adjust



### 18.9.3 TIM Counter Modulo Registers

The read/write TIM modulo registers contain the modulo value for the TIM counter. When the TIM counter reaches the modulo value, the overflow flag (TOF) becomes set, and the TIM counter resumes counting from \$0000 at the next timer clock. Writing to the high byte (TMODH) inhibits the TOF bit and overflow interrupts until the low byte (TMODL) is written. Reset sets the TIM counter modulo registers.





Address: T1MODL, \$0024 and T2MODL, \$002F

|                 | Bit 7 | 6 | 5 | 4 | 3 | 2 | 1 | Bit 0 |
|-----------------|-------|---|---|---|---|---|---|-------|
| Read:<br>Write: | Bit 7 | 6 | 5 | 4 | 3 | 2 | 1 | Bit 0 |
| Reset:          | 1     | 1 | 1 | 1 | 1 | 1 | 1 | 1     |

Figure 18-9. TIM Counter Modulo Register Low (TMODL)



### **18.9.4 TIM Channel Status and Control Registers**

Each of the TIM channel status and control registers:

- · Flags input captures and output compares
- Enables input capture and output compare interrupts
- Selects input capture, output compare, or PWM operation
- Selects high, low, or toggling output on output compare
- Selects rising edge, falling edge, or any edge as the active input capture trigger
- Selects output toggling on TIM overflow
- Selects 0% and 100% PWM duty cycle
- Selects buffered or unbuffered output compare/PWM operation



Figure 18-10. TIM Channel 0 Status and Control Register (TSC0)

MC68HC908GR16 Data Sheet, Rev. 5.0



**Electrical Specifications** 

### 20.3 Functional Operating Range

| Characteristic              | Symbol          | Value                | Unit |
|-----------------------------|-----------------|----------------------|------|
| Operating temperature range | T <sub>A</sub>  | -40 to +125          | °C   |
| Operating voltage range     | V <sub>DD</sub> | 5.0 ±10%<br>3.3 ±10% | V    |

### **20.4 Thermal Characteristics**

| Characteristic                                   | Symbol           | Value                                                                                     | Unit |
|--------------------------------------------------|------------------|-------------------------------------------------------------------------------------------|------|
| Thermal resistance<br>32-pin LQFP<br>48-pin LQFP | $\theta_{JA}$    | 95<br>95                                                                                  | °C/W |
| I/O pin power dissipation                        | P <sub>I/O</sub> | User determined                                                                           | W    |
| Power dissipation <sup>(1)</sup>                 | P <sub>D</sub>   | $\begin{split} P_D = (I_DD \times V_DD) + P_I/O = \\ K/(T_J + 273 \ ^\circC) \end{split}$ | W    |
| Constant <sup>(2)</sup>                          | к                | $P_{D} \times (T_{A} + 273 \text{ °C}) + P_{D}^{2} \times \theta_{JA}$                    | W/°C |
| Average junction temperature                     | TJ               | $T_A + (P_D \times \theta_JA)$                                                            | °C   |
| Maximum junction temperature                     | T <sub>JM</sub>  | 125                                                                                       | °C   |

Power dissipation is a function of temperature.
K is a constant unique to the device. K can be determined for a known T<sub>A</sub> and measured P<sub>D</sub>. With this value of K, P<sub>D</sub> and T<sub>J</sub> can be determined for any value of T<sub>A</sub>.



#### **Electrical Specifications**

| Characteristic <sup>(1)</sup>                                                                                 | Symbol              | Min                   | Typ <sup>(2)</sup> | Max                   | Unit |
|---------------------------------------------------------------------------------------------------------------|---------------------|-----------------------|--------------------|-----------------------|------|
| Monitor mode entry voltage                                                                                    | V <sub>TST</sub>    | V <sub>DD</sub> + 2.5 | _                  | V <sub>DD</sub> + 4.0 | V    |
| Low-voltage inhibit, trip falling voltage                                                                     | V <sub>TRIPF</sub>  | 3.9                   | 4.25               | 4.50                  | V    |
| Low-voltage inhibit, trip rising voltage                                                                      | V <sub>TRIPR</sub>  | 4.2                   | 4.35               | 4.60                  | V    |
| Low-voltage inhibit reset/recover hysteresis<br>(V <sub>TRIPF</sub> + V <sub>HYS</sub> = V <sub>TRIPR</sub> ) | V <sub>HYS</sub>    | _                     | 60                 | _                     | mV   |
| POR rearm voltage <sup>(8)</sup>                                                                              | V <sub>POR</sub>    | 0                     | _                  | 100                   | mV   |
| POR reset voltage <sup>(9)</sup>                                                                              | V <sub>PORRST</sub> | 0                     | 700                | 800                   | mV   |
| POR rise time ramp rate <sup>(10)</sup>                                                                       | R <sub>POR</sub>    | 0.035                 | _                  | _                     | V/ms |

1.  $V_{DD} = 5.0 \text{ Vdc} \pm 10\%$ ,  $V_{SS} = 0 \text{ Vdc}$ ,  $T_A = T_A$  (min) to  $T_A$  (max), unless otherwise noted 2. Typical values reflect average measurements at midpoint of voltage range, 25°C only.

3. Run (operating) I<sub>DD</sub> measured using external square wave clock source (f<sub>OSC</sub> = 32 MHz). All inputs 0.2 V from rail. No dc loads. Less than 100 pF on all outputs. C1 = 20 pF on OSC2. All ports configured as inputs. OSC2 capacitance linearly affects run I<sub>DD</sub>. Measured with all modules enabled.

4. Wait I<sub>DD</sub> measured using external square wave clock source (f<sub>OSC</sub> = 32 MHz). All inputs 0.2 V from rail. No dc loads. Less than 100 pF on all outputs. C<sub>L</sub> = 20 pF on OSC2. All ports configured as inputs. OSC2 capacitance linearly affects wait I<sub>DD</sub>. Measured with CGM and LVI enabled.

5. Stop  $I_{DD}$  is measured with OSC1 =  $V_{SS}$ .

6. Stop I<sub>DD</sub> with TBM enabled is measured using an external square wave clock source (f<sub>OSC</sub> = 32 MHz). All inputs 0.2 V from rail. No dc loads. Less than 100 pF on all outputs. All inputs configured as inputs.

7. Pullups and pulldowns are disabled. Port B leakage is specified in 20.10 5.0-Volt ADC Characteristics.

8. Maximum is highest voltage that POR is guaranteed.

9. Maximum is highest voltage that POR is possible.

10. If minimum V<sub>DD</sub> is not reached before the internal POR reset is released, RST must be driven low externally until minimum V<sub>DD</sub> is reached.



#### **Electrical Specifications**

| Characteristic <sup>(1)</sup>                                                                                 | Symbol              | Min                   | Typ <sup>(2)</sup> | Max                   | Unit |
|---------------------------------------------------------------------------------------------------------------|---------------------|-----------------------|--------------------|-----------------------|------|
| Monitor mode entry voltage                                                                                    | V <sub>TST</sub>    | V <sub>DD</sub> + 2.5 | _                  | V <sub>DD</sub> + 4.0 | V    |
| Low-voltage inhibit, trip falling voltage                                                                     | V <sub>TRIPF</sub>  | 2.35                  | 2.6                | 2.7                   | V    |
| Low-voltage inhibit, trip rising voltage                                                                      | V <sub>TRIPR</sub>  | 2.4                   | 2.66               | 2.8                   | V    |
| Low-voltage inhibit reset/recover hysteresis<br>(V <sub>TRIPF</sub> + V <sub>HYS</sub> = V <sub>TRIPR</sub> ) | V <sub>HYS</sub>    |                       | 100                | _                     | mV   |
| POR rearm voltage <sup>(8)</sup>                                                                              | V <sub>POR</sub>    | 0                     | _                  | 100                   | mV   |
| POR reset voltage <sup>(9)</sup>                                                                              | V <sub>PORRST</sub> | 0                     | 700                | 800                   | mV   |
| POR rise time ramp rate <sup>(10)</sup>                                                                       | R <sub>POR</sub>    | 0.035                 | _                  | _                     | V/ms |

1.  $V_{DD}$  = 3.3 Vdc ± 10%,  $V_{SS}$  = 0 Vdc,  $T_A = T_A$  (min) to  $T_A$  (max), unless otherwise noted 2. Typical values reflect average measurements at midpoint of voltage range, 25°C only.

3. Run (operating) I<sub>DD</sub> measured using external square wave clock source (f<sub>OSC</sub> = 16 MHz). All inputs 0.2 V from rail. No dc loads. Less than 100 pF on all outputs. C1 = 20 pF on OSC2. All ports configured as inputs. OSC2 capacitance linearly affects run I<sub>DD</sub>. Measured with all modules enabled.

4. Wait I<sub>DD</sub> measured using external square wave clock source (f<sub>OSC</sub> = 16 MHz). All inputs 0.2 V from rail. No dc loads. Less than 100 pF on all outputs. C<sub>L</sub> = 20 pF on OSC2. All ports configured as inputs. OSC2 capacitance linearly affects wait I<sub>DD</sub>. Measured with CGM and LVI enabled.

5. Stop  $I_{DD}$  is measured with OSC1 =  $V_{SS}$ .

6. Stop I<sub>DD</sub> with TBM enabled is measured using an external square wave clock source (f<sub>OSC</sub> = 16 MHz). All inputs 0.2 V from rail. No dc loads. Less than 100 pF on all outputs. All inputs configured as inputs.

7. Pullups and pulldowns are disabled.

8. Maximum is highest voltage that POR is guaranteed.

9. Maximum is highest voltage that POR is possible.

10. If minimum V<sub>DD</sub> is not reached before the internal POR reset is released, RST must be driven low externally until minimum V<sub>DD</sub> is reached.

### 20.10 5.0-Volt ADC Characteristics

\_\_\_\_\_

| Characteristic <sup>(1)</sup>                 | Symbol            | Min               | Max               | Unit                    | Comments                                                                                             |  |
|-----------------------------------------------|-------------------|-------------------|-------------------|-------------------------|------------------------------------------------------------------------------------------------------|--|
| Supply voltage                                | V <sub>DDAD</sub> | 4.5               | 5.5               | V                       | V <sub>DDAD</sub> should be tied to<br>the same potential as V <sub>DD</sub><br>via separate traces. |  |
| Input voltages                                | V <sub>ADIN</sub> | 0                 | V <sub>DDAD</sub> | V                       | V <sub>ADIN</sub> <= V <sub>DDAD</sub>                                                               |  |
| Resolution                                    | B <sub>AD</sub>   | 10                | 10                | Bits                    |                                                                                                      |  |
| Absolute accuracy                             | A <sub>AD</sub>   | -4                | +4                | Counts                  | Includes quantization                                                                                |  |
| ADC internal clock                            | f <sub>ADIC</sub> | 500 k             | 1.048 M           | Hz                      | $t_{AIC} = 1/f_{ADIC}$                                                                               |  |
| Conversion range                              | R <sub>AD</sub>   | V <sub>SSAD</sub> | V <sub>DDAD</sub> | V                       |                                                                                                      |  |
| Power-up time                                 | t <sub>ADPU</sub> | 16                | —                 | t <sub>AIC</sub> cycles |                                                                                                      |  |
| Conversion time                               | t <sub>ADC</sub>  | 16                | 17                | t <sub>AIC</sub> cycles |                                                                                                      |  |
| Sample time                                   | t <sub>ADS</sub>  | 5                 | —                 | t <sub>AIC</sub> cycles |                                                                                                      |  |
| Monotonicity                                  | M <sub>AD</sub>   | Guaranteed        |                   |                         |                                                                                                      |  |
| Zero input reading                            | Z <sub>ADI</sub>  | 000               | 003               | Hex                     | $V_{ADIN} = V_{SSA}$                                                                                 |  |
| Full-scale reading                            | F <sub>ADI</sub>  | 3FC               | 3FF               | Hex                     | $V_{ADIN} = V_{DDA}$                                                                                 |  |
| Input capacitance                             | C <sub>ADI</sub>  | _                 | 30                | pF                      | Not tested                                                                                           |  |
| V <sub>DDAD</sub> /V <sub>REFH</sub> current  | I <sub>VREF</sub> | _                 | 1.6               | mA                      |                                                                                                      |  |
| Absolute accuracy<br>(8-bit truncation mode)  | A <sub>AD</sub>   | -1                | +1                | LSB                     | Includes quantization                                                                                |  |
| Quantization error<br>(8-bit truncation mode) |                   |                   | +7/8<br>-1/8      | LSB                     |                                                                                                      |  |

1.  $V_{DD}$  = 5.0 Vdc  $\pm$  10%,  $V_{SS}$  = 0 Vdc,  $V_{DDAD/VREFH}$  = 5.0 Vdc  $\pm$  10%,  $V_{SSAD/}V_{REFL}$  = 0 Vdc