

Welcome to E-XFL.COM

Understanding Embedded - Microprocessors

Embedded microprocessors are specialized computing chips designed to perform specific tasks within an embedded system. Unlike general-purpose microprocessors found in personal computers, embedded microprocessors are tailored for dedicated functions within larger systems, offering optimized performance, efficiency, and reliability. These microprocessors are integral to the operation of countless electronic devices, providing the computational power necessary for controlling processes, handling data, and managing communications.

Applications of **Embedded - Microprocessors**

Embedded microprocessors are utilized across a broad spectrum of applications, making them indispensable in

Details

Product Status	Active
Core Processor	PowerPC e300c3
Number of Cores/Bus Width	1 Core, 32-Bit
Speed	400MHz
Co-Processors/DSP	Security; SEC 3.3
RAM Controllers	DDR, DDR2
Graphics Acceleration	No
Display & Interface Controllers	-
Ethernet	10/100/1000Mbps (2)
SATA	-
USB	USB 2.0 + PHY (1)
Voltage - I/O	1.8V, 2.5V, 3.3V
Operating Temperature	0°C ~ 105°C (TA)
Security Features	Cryptography, Random Number Generator
Package / Case	620-BBGA Exposed Pad
Supplier Device Package	620-PBGA (29x29)
Purchase URL	https://www.e-xfl.com/pro/item?MUrl=&PartUrl=kmpc8314evragda

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

MPC8314E Features

2.9 Dual Enhanced Three-Speed Ethernet Controllers (eTSECs)

The eTSECs include the following features:

- Two SGMII/RGMII/MII/RMII/RTBI interfaces
- Two controllers designed to comply with IEEE Std 802.3TM, IEEE 802.3uTM, IEEE 802.3xTM, IEEE 802.3auTM, IEEE 802.3auTM, IEEE 802.3abTM, and IEEE Std 1588TM
- Support for Wake-on-Magic Packet[™], a method to bring the device from standby to full operating mode
- MII management interface for external PHY control and status.

2.10 Integrated Programmable Interrupt Controller (IPIC)

The integrated programmable interrupt controller (IPIC) provides a flexible solution for general-purpose interrupt control. The IPIC programming model is compatible with the MPC8260 interrupt controller and supports external and internal discrete interrupt sources. Interrupts can also be redirected to an external interrupt controller.

2.11 Power Management Controller (PMC)

The MPC8314E supports a range of power management states that significantly lower power consumption under the control of the power management controller. The PMC includes the following features:

- Provides power management when the device is used in both PCI host and agent modes
- PCI Power Management 1.2 D0, D1, D2, D3hot, and D3cold states
- PME generation in PCI agent mode, PME detection in PCI host mode
- Wake-up from Ethernet (magic packet), USB, GPIO, and PCI (PME input as host) while in the D1, D2 and D3hot states
- A new low-power standby power management state called D3warm
 - The PMC, one Ethernet port, and the GTM block remain powered via a split power supply controlled through an external power switch
 - Wake-up events include Ethernet (magic packet), GTM, GPIO, or IRQ inputs and cause the device to transition back to normal operation
 - PCI agent mode is not be supported in D3warm state
- PCI Express-based PME events are not supported

2.12 Serial Peripheral Interface (SPI)

The serial peripheral interface (SPI) allows the MPC8314E to exchange data between other PowerQUICC family chips, Ethernet PHYs for configuration, and peripheral devices such as EEPROMs, real-time clocks, A/D converters, and ISDN devices.

The SPI is a full-duplex, synchronous, character-oriented channel that supports a four-wire interface (receive, transmit, clock, and slave select). The SPI block consists of transmitter and receiver sections, an independent baud-rate generator, and a control unit.

2.13 DMA Controller, I²C, DUART, Enhanced Local Bus Controller (eLBC), and Timers

The integrated four-channel DMA controller includes the following features:

- Allows chaining (both extended and direct) through local memory-mapped chain descriptors (accessible by local masters)
- Misaligned transfer capability for source/destination address
- Supports external DREQ, DACK and DONE signals

There is one I^2C controller. This synchronous, multi-master buses can be connected to additional devices for expansion and system development.

The DUART supports full-duplex operation and is compatible with the PC16450 and PC16550 programming models. 16-byte FIFOs are supported for both the transmitter and the receiver.

The eLBC port allows connections with a wide variety of external DSPs and ASICs. Three separate state machines share the same external pins and can be programmed separately to access different types of devices. The general-purpose chip select machine (GPCM) controls accesses to asynchronous devices using a simple handshake protocol. The three user programmable machines (UPMs) can be programmed to interface to synchronous devices or custom ASIC interfaces. Each chip select can be configured so that the associated chip interface can be controlled by the GPCM or UPM controller. Both may exist in the same system. The local bus can operate at up to 66 MHz.

The system timers include the following features: periodic interrupt timer, real time clock, software watchdog timer, and two general-purpose timer blocks.

3 Electrical Characteristics

This section provides the AC and DC electrical specifications and thermal characteristics for the MPC8314E, which is currently targeted to these specifications. Some of these specifications are independent of the I/O cell, but they are included for complete reference. These are not purely I/O buffer design specifications.

3.1 **Overall DC Electrical Characteristics**

This section covers the ratings, conditions, and other characteristics.

3.1.1 Absolute Maximum Ratings

This table provides the absolute maximum ratings.

Characteristic	Symbol	Max Value	Unit	Note
Core supply voltage	VDD	-0.3 to 1.26	V	_
PLL supply voltage	AVDD	-0.3 to 1.26	V	
DDR1 DRAM I/O supply voltage	GVDD	-0.3 to 2.7	V	

Electrical Characteristics

Table 2. Recommended Operating Conditions (continued)

|--|

Note:

- 1. The NVDDx_ON are static power supplies and can be connected together.
- 2. The NVDDx_OFF are switchable power supplies and can be connected together.
- 3. Minimum Temperature is specified with T_A ;maximum temperature is specified with T_J .
- 4. All Power rails must be connected and power applied to the MPC8314 even if the IP interfaces are not used.
- 5. All I/O pins should be interfaced with peripherals operating at same voltage level.
- 6. This voltage is the input to the filter discussed in Section 25.2, "PLL Power Supply Filtering" and not necessarily the voltage at the AVDD pin.
- 7. All 1V power supplies should be derived from the same source.

This figure shows the undershoot and overshoot voltages at the interfaces of the MPC8314E.

1. $t_{\mbox{interface}}$ refers to the clock period associated with the bus clock interface.

Figure 2. Overshoot/Undershoot Voltage for GVDD/NVDD/LVDD

3.1.3 Output Driver Characteristics

This table provides information on the characteristics of the output driver strengths. The values are preliminary estimates.

Driver Type	Output Impedance (Ω)	Supply Voltage
Local bus interface utilities signals	42	NVDD = 3.3 V
PCI signals	25	
DDR signal ¹	18	GVDD = 2.5 V
DDR2 signal 1	18	GVDD = 1.8 V

Table 3. Output Drive Capability

NP

DDR and DDR2 SDRAM

Table 9. RESET Initialization Timing Specifications (continued)

Note:

- 1. t_{PCI_SYNC_IN} is the clock period of the input clock applied to PCI_SYNC_IN. When the device is In PCI host mode the primary clock is applied to the SYS_CLK_IN input, and PCI_SYNC_IN period depends on the value of CFG_SYS_CLKIN_DIV.
- t_{SYS_CLK_IN} is the clock period of the input clock applied to SYS_CLK_IN. It is only valid when the device is in PCI host mode.
 POR configuration signals consists of CFG_RESET_SOURCE[0:3] and CFG_SYS_CLKIN_DIV.
- 3. POR configuration signals consists of CFG_RESE1_SOURCE[U:3] and CFG_SYS_CLKIN_DIV.
- 4. The parameter names CFG_SYS_CLKIN_DIV and CFG_CLKIN_DIV are used interchangeably in this document.

This table provides the PLL lock times.

Table 10. PLL Lock Times

Parameter/Condition	Min	Max	Unit	Note
System PLL lock times	—	100	μS	_
e300 core PLL lock times	—	100	μS	
SerDes (SGMII/PCI Exp Phy) PLL lock times	—	100	μS	
USB phy PLL lock times	—	100	μS	_

7 DDR and DDR2 SDRAM

This section describes the DC and AC electrical specifications for the DDR SDRAM interface of the MPC8314E. Note that DDR SDRAM is GVDD(typ) = 2.5 V and DDR2 SDRAM is GVDD(typ) = 1.8 V.

7.1 DDR and DDR2 SDRAM DC Electrical Characteristics

This table provides the recommended operating conditions for the DDR2 SDRAM component(s) of the MPC8314E when GVDD(typ) = 1.8 V.

Parameter/Condition	Symbol	Min	Мах	Unit	Note
I/O supply voltage	GVDD	1.7	1.9	V	1
I/O reference voltage	MVREF	$0.49 \times GVDD$	$0.51 \times \text{GVDD}$	V	2
I/O termination voltage	V _{TT}	MVREF – 0.04	MVREF + 0.04	V	3
Input high voltage	V _{IH}	MVREF+ 0.125	GVDD + 0.3	V	—
Input low voltage	V _{IL}	-0.3	MVREF - 0.125	V	—
Output leakage current	I _{OZ}	-9.9	9.9	μA	4
Output high current (V _{OUT} = 1.420 V, GVDD= 1.7V)	I _{OH}	-13.4	—	mA	—
Output low current (V _{OUT} = 0.280 V)	I _{OL}	13.4	—	mA	

Table 11. DDR2 SDRAM DC Electrical Characteristics for GVDD(typ) = 1.8 V

Note:

1. GVDD is expected to be within 50 mV of the DRAM GVDD at all times.

- MVREF is expected to be equal to 0.5 × GVDD, and to track GVDD DC variations as measured at the receiver. Peak-to-peak noise on MVREF may not exceed ±2% of the DC value.
- 3. V_{TT} is not applied directly to the device. It is the supply to which far end signal termination is made and is expected to be equal to MVREF. This rail should track variations in the DC level of MVREF.

4. Output leakage is measured with all outputs disabled, $0 V \le V_{OUT} \le GVDD$.

DDR and DDR2 SDRAM

This table provides the DDR2 capacitance when GVDD(typ) = 1.8 V.

Table 12. DDR2 SDRAM Capacitance for GVDD(typ) = 1.8 V

Parameter/Condition	Symbol	Min	Max	Unit	Note
Input/output capacitance: DQ, DQS	C _{IO}	6	8	pF	1
Delta input/output capacitance: DQ, DQS	C _{DIO}	_	0.5	pF	1

Note:

1. This parameter is sampled. GVDD = 1.8 V \pm 0.090 V, f = 1 MHz, T_A = 25°C, V_{OUT} = GVDD/2, V_{OUT} (peak-to-peak) = 0.2 V.

This table provides the recommended operating conditions for the DDR SDRAM component(s) of the MPC8314E when GVDD(typ) = 2.5 V.

Table 13. DDR SDRAM DC Electrical Characteristics for GVDD(typ) = 2.5 V

Parameter/Condition	Symbol	Min	Мах	Unit	Note
I/O supply voltage	GVDD	2.3	2.7	V	1
I/O reference voltage	MVREF	0.49 imes GVDD	$0.51 \times GVDD$	V	2
I/O termination voltage	V _{TT}	MVREF – 0.04	MVREF + 0.04	V	3
Input high voltage	V _{IH}	MVREF + 0.15	GVDD + 0.3	V	_
Input low voltage	V _{IL}	-0.3	MVREF – 0.15	V	_
Output leakage current	I _{OZ}	-9.9	-9.9	μΑ	4
Output high current (V _{OUT} = 1.95 V, GVDD = 2.3V)	I _{ОН}	-16.2	—	mA	_
Output low current (V _{OUT} = 0.35 V)	I _{OL}	16.2	_	mA	_

Note:

1. GVDD is expected to be within 50 mV of the DRAM GVDD at all times.

2. MVREF is expected to be equal to 0.5 × GVDD, and to track GVDD DC variations as measured at the receiver. Peak-to-peak noise on MVREF may not exceed ±2% of the DC value.

3. V_{TT} is not applied directly to the device. It is the supply to which far end signal termination is made and is expected to be equal to MVREF. This rail should track variations in the DC level of MVREF.

4. Output leakage is measured with all outputs disabled, 0 V \leq V_{OUT} \leq GVDD.

This table provides the DDR capacitance when GVDD(typ) = 2.5 V.

Table 14. DDR SDRAM Capacitance for GVDD(typ) = 2.5 V Interface

Parameter/Condition	Symbol	Min	Max	Unit	Note
Input/output capacitance: DQ,DQS	C _{IO}	6	8	pF	1
Delta input/output capacitance: DQ, DQS	C _{DIO}	—	0.5	pF	1

Note:

1. This parameter is sampled. GVDD = $2.5 \text{ V} \pm 0.125 \text{ V}$, f = 1 MHz, T_A = 25° C, V_{OUT} = GVDD/2, V_{OUT} (peak-to-peak) = 0.2 V.

This table provides the current draw characteristics for MV_{REF} .

Table 15. Current Draw Characteristics for MV_{REF}

Parameter / Condition	Symbol	Min	Мах	Unit	Note
Current draw for MV _{REF}	I _{MVREF}	—	500	μΑ	1

Ethernet: Three-Speed Ethernet, MII Management

Table 30. MII Management DC Electrical Characteristics Powered at 3.3 V (continued)

Parameter	Symbol	Conditions		Min	Мах	Unit
Input low current	ΙL	NVDD = Max	V _{IN} = 0.5 V	-600		μA

Note:

1. The symbol V_{IN} , in this case, represents the NV_{IN} symbol referenced in Table 1 and Table 2.

9.3.2 MII Management AC Electrical Specifications

This table provides the MII management AC timing specifications.

Table 31. MII Management AC Timing Specifications

At recommended operating conditions with NVDD is 3.3 V ± 300 mv

Parameter/Condition	Symbol ¹	Min	Тур	Max	Unit	Note
MDC frequency	f _{MDC}	—	2.5	—	MHz	2
MDC period	t _{MDC}	—	400	—	ns	—
MDC clock pulse width high	t _{MDCH}	32	—	—	ns	—
MDC to MDIO delay	t _{MDKHDX}	10	—	170	ns	3
MDIO to MDC setup time	t _{MDDVKH}	5	—	—	ns	—
MDIO to MDC hold time	t _{MDDXKH}	0	—	—	ns	—
MDC rise time	t _{MDCR}	—	—	10	ns	—
MDC fall time	t _{MDHF}	—	—	10	ns	—

Note:

The symbols used for timing specifications herein follow the pattern of t_{(first two letters of functional block)(signal)(state)(reference)(state)} for inputs and t_{(first two letters of functional block)(reference)(state)(signal)(state)} for outputs. For example, t_{MDKHDX} symbolizes management data timing (MD) for the time t_{MDC} from clock reference (K) high (H) until data outputs (D) are invalid (X) or data hold time. Also, t_{MDDVKH} symbolizes management data timing (MD) with respect to the time data input signals (D) reach the valid state (V) relative to the t_{MDC} clock reference (K) going to the high (H) state or setup time. For rise and fall times, the latter convention is used with the appropriate letter: R (rise) or F (fall).

2. This parameter is dependent on the csb_clk speed (that is, for a csb_clk of 133 MHz, the maximum frequency is 4.16 MHz and the minimum frequency is 0.593 MHz).

3. This parameter is dependent on the csb_clk speed (that is, for a csb_clk of 133 MHz, the delay is 60 ns).

This figure shows the MII management AC timing diagram.

Figure 16. MII Management Interface Timing Diagram

9.4 1588 Timer Specifications

This section describes the DC and AC electrical specifications for the 1588 timer.

9.4.1 1588 Timer DC Specifications

This table provides the 1588 timer DC specifications.

Table 32. GPIO DC Electrical Characteristics

Characteristic	Symbol	Condition	Min	Мах	Unit
Output high voltage	V _{OH}	I _{OH} = -8.0 mA	2.4	—	V
Output low voltage	V _{OL}	l _{OL} = 8.0 mA		0.5	V
Output low voltage	V _{OL}	I _{OL} = 3.2 mA		0.4	V
Input high voltage	V _{IH}		2.0	NVDD + 0.3	V
Input low voltage	V _{IL}	—	-0.3	0.8	V
Input current	I _{IN}	$0~V \leq V_{IN} \leq NVDD$	_	± 5	μA

9.4.2 1588 Timer AC Specifications

This table provides the 1588 timer AC specifications.

Table	33.	1588	Timer	AC	S	pecifications
					-	

Parameter	Symbol	Min	Max	Unit	Note
Timer clock cycle time	t _{TMRCK}	0	70	MHz	1
Input setup to timer clock	t _{TMRCKS}	—	—	—	2, 3
Input hold from timer clock	t _{TMRCKH}	—	—	—	2, 3
Output clock to output valid	t _{GCLKNV}	0	6	ns	
Timer alarm to output valid	t _{TMRAL}	_	_	_	2

Parameter	Symbol	Min	Тур	Мах	Unit	Note
Supply Voltage	XCOREVDD	0.95	1.0	1.05	V	—
Output high voltage	VOH		_	XCOREVDD _{-Typ} /2+ V _{OD} _{-max} /2	mV	1
Output low voltage	VOL	XCOREVDD _{-Typ} /2- V _{OD} _{-max} /2	_	—	mV	1
Output ringing	V _{RING}	—	_	10	%	—
		323	500	725		Equalization setting: 1.0x
		296	459	665		Equalization setting: 1.09x
		269	417	604		Equalization setting: 1.2x
Output differential voltage ^{2, 3, 5}	V _{OD}	243	376	545	Unit V mV mV % mV mV mV mV mV mV mV mV mV mV	Equalization setting: 1.33x
		215	333	483		Equalization setting: 1.5x
		189	n Typ Max 5 1.0 1.05 $-$ XCOREVDDTyp/2+ V _{OD}]-max/2 DTyp/2- max/2 $ -$ 10 3 500 725 6 459 665 9 417 604 3 376 545 5 333 483 9 292 424 2 250 362 5 500 575 0 - 60 - 10 - - 25 - - 25 -		Equalization setting: 1.71x	
		162	250	362		Equalization setting: 2.0x
Output offset voltage	V _{OS}	425	500	575	mV	1, 4
Output impedance (single-ended)	R _O	40	_	60	Ω	—
Mismatch in a pair	ΔR_{O}	_		10	%	—
Change in V_{OD} between "0" and "1"	$\Delta V_{OD} $	—		25	mV	—
Change in V _{OS} between "0" and "1"	ΔV_{OS}	—	—	25	mV	—
Output current on short to GND	I _{SA} , I _{SB}	_	_	40	mA	—

Note:

1. This will not align to DC-coupled SGMII. XCOREVDD_{-Typ}=1.0V.

2. $|V_{OD}| = |V_{TXn} - V_{TXn}|$. $|V_{OD}|$ is also referred as output differential peak voltage. $V_{TX-DIFFp-p} = 2^*|V_{OD}|$. 3. The $|V_{OD}|$ value shown in the table assumes the following transmit equalization setting in the TXEQA (for SerDes lane A) or TXEQE (for SerDes lane E) bit field of MPC8315E's SerDes Control Register 0:

• The LSbits (bit [1:3]) of the above bit field is set based on the equalization setting shown in table.

V_{OS} is also referred to as output common mode voltage.
 The |V_{OD}| value shown in the Typ column is based on the condition of XCOREVDD._{Typ}=1.0V, no common mode offset variation (V_{OS} = 500 mV), SerDes transmitter is terminated with 100-Ω differential load between TX[n] and TX[n].

Ethernet: Three-Speed Ethernet, MII Management

Figure 17. 4-Wire AC-Coupled SGMII Serial Link Connection Example

Figure 18. SGMII Transmitter DC Measurement Circuit

Table 36. SGMII DO	CReceiver Elec	ctrical Characteristics
--------------------	----------------	-------------------------

Parameter		Symbol	Min	Тур	Max	Unit	Note
Supply Voltage		XCOREVDD	0.95	1.0	1.05	V	—
DC Input voltage range		—		N/A	—	1	
Input differential voltage	EQ = 0	V _{RX_DIFFp-p}	100	—	1200	mV	2, 4
	EQ = 1		175	—			
Loss of signal threshold	EQ = 0	VLOS	30	—	100	mV	3, 4
	EQ = 1]	65	—	175		

Parameter	Symbol	Min	Тур	Max	Unit	Note
Input AC common mode voltage	V _{CM_ACp-p}	_	—	100	mV	5
Receiver differential input impedance	Z _{RX_DIFF}	80	100	120	Ω	—
Receiver common mode input impedance	Z _{RX_CM}	20	—	35	Ω	—
Common mode input voltage	V _{CM}	_	V _{xcorevss}	_	V	6

Table 36. SGMII DC Receiver Electrical Characteristics (continued)

Note:

- 1. Input must be externally AC-coupled.
- 2. V_{RX DIFED-D} is also referred to as peak to peak input differential voltage
- 3. The concept of this parameter is equivalent to the Electrical Idle Detect Threshold parameter in PCI Express. Refer to PCI Express Differential Receiver (RX) Input Specifications section for further explanation.
- 4. The EQ shown in the table refers to the RXEQA or RXEQE bit field of MPC8315E's SerDes Control Register 0.
- 5. V_{CM ACp-p} is also referred to as peak to peak AC common mode voltage.
- 6. On-chip termination to XCOREVSS.

9.5.4 SGMII AC Timing Specifications

This section describes the SGMII transmit and receive AC timing specifications. Transmitter and receiver characteristics are measured at the transmitter outputs (TX[n] and $\overline{TX}[n]$) or at the receiver inputs (RX[n] and $\overline{RX}[n]$) as depicted in Figure 20 respectively.

9.5.4.1 SGMII Transmit AC Timing Specifications

This table provides the SGMII transmit AC timing targets. A source synchronous clock is not provided.

Table 37. SGMII Transmit AC Timing Specifications

Parameter	Symbol	Min	Тур	Max	Unit	Note
Deterministic Jitter	JD	—		0.17	UI p-p	—
Total Jitter	JT	—	—	0.35	UI p-p	—
Unit Interval	UI	799.92	800	800.08	ps	—
V _{OD} fall time (80%-20%)	tfall	50	—	120	ps	—
V _{OD} rise time (20%-80%)	t _{rise}	50	—	120	ps	—

At recommended operating conditions with XCOREVDD = $1.0V \pm 5\%$.

Note:

1. Each UI is 800 ps \pm 100 ppm.

9.5.4.2 SGMII Receive AC Timing Specifications

This table provides the SGMII receive AC timing specifications. Source synchronous clocking is not supported. Clock is recovered from the data. Figure 19 shows the SGMII Receiver Input Compliance Mask eye diagram.

Ethernet: Three-Speed Ethernet, MII Management

Table 38. SGMII Receive AC Timing Specifications

At recommended operating conditions with XCOREVDD = $1.0V \pm 5\%$.

Parameter	Symbol	Min	Тур	Max	Unit	Note
Deterministic Jitter Tolerance	JD	0.37	—	_	UI p-p	1
Combined Deterministic and Random Jitter Tolerance	JDR	0.55	—	_	UI p-p	1
Sinusoidal Jitter Tolerance	JSIN	0.1	—	_	UI p-p	1
Total Jitter Tolerance	JT	0.65	—	_	UI p-p	1
Bit Error Ratio	BER	—	—	10 ⁻¹²		
Unit Interval	UI	799.92	800	800.08	ps	2
AC Coupling Capacitor	C _{TX}	5	—	200	nF	3

Note:

1. Measured at receiver.

2. Each UI is 800 ps ± 100 ppm.

The external AC coupling capacitor is required. It's recommended to be placed near the device transmitter outputs.
 Refer to RapidIOTM 1x/4x LP Serial Physical Layer Specification for interpretation of jitter specifications.

Figure 19. SGMII Receiver Input Compliance Mask

Figure 25. Local Bus Signals, GPCM/UPM Signals for LCRR[CLKDIV] = 2

PCI

Table 50. PCI AC Timing Specifications at 66 MHz (continued)

Parameter	Symbol ¹	Min	Max	Unit	Note
Input hold from clock	t _{PCIXKH}	0		ns	2, 4

Note:

Note that the symbols used for timing specifications herein follow the pattern of t_{(first two letters of functional block)(signal)(state)} (reference)(state) for inputs and t_(first two letters of functional block)(reference)(state)(signal)(state) for outputs. For example, t_{PCIVKH} symbolizes PCI timing (PC) with respect to the time the input signals (I) reach the valid state (V) relative to the PCI_SYNC_IN clock, t_{SYS}, reference (K) going to the high (H) state or setup time. Also, t_{PCRHFV} symbolizes PCI timing (PC) with respect to the time hard reset (R) went high (H) relative to the frame signal (F) going to the valid (V) state.

2. See the timing measurement conditions in the PCI 2.3 Local Bus Specifications.

- 3. For purposes of active/float timing measurements, the Hi-Z or off state is defined to be when the total current delivered through the component pin is less than or equal to the leakage current specification.
- 4. Input timings are measured at the pin.

This table shows the PCI AC Timing Specifications at 33 MHz.

Tabla	E 1		^	Timina	Specifications	at 3	22 ML	ı.,
Table	51.	FUI	AC	rinning	Specifications	au	ээ ійг	12

Parameter	Symbol ¹	Min	Мах	Unit	Note
Clock to output valid	t _{PCKHOV}	—	11	ns	2
Output hold from clock	t _{PCKHOX}	2	—	ns	2
Clock to output high impedance	t _{PCKHOZ}	—	14	ns	2, 3
Input setup to clock	t _{PCIVKH}	4.0	—	ns	2, 4
Input hold from clock	t _{PCIXKH}	0	—	ns	2, 4

Note:

 Note that the symbols used for timing specifications follow the pattern of t_{(first two letters of functional block)(signal)(state)} (reference)(state) for inputs and t_(first two letters of functional block)(reference)(state)(signal)(state) for outputs. For example, t_{PCIVKH} symbolizes PCI timing (PC) with respect to the time the input signals (I) reach the valid state (V) relative to the PCI_SYNC_IN clock, t_{SYS}, reference (K) going to the high (H) state or setup time. Also, t_{PCRHFV} symbolizes PCI timing (PC) with respect to the time hard reset (R) went high (H) relative to the frame signal (F) going to the valid (V) state.

2. See the timing measurement conditions in the PCI 2.3 Local Bus Specifications.

- 3. For purposes of active/float timing measurements, the Hi-Z or off state is defined to be when the total current delivered through the component pin is less than or equal to the leakage current specification.
- 4. Input timings are measured at the pin.

This figure provides the AC test load for PCI.

Figure 34. PCI AC Test Load

This table provides the TDM AC timing specifications.

Table 65. TDM AC Timing specifications

Parameter/Condition	Symbol	Min	Мах	Unit
TDMxRCK/TDMxTCK	t _{DM}	20.0	—	ns
TDMxRCK/TDMxTCK high pulse width	t _{DM_HIGH}	8.0	—	ns
TDMxRCK/TDMxTCK low pulse width	t _{DM_LOW}	8.0	—	ns
TDMxRCK/TDMxTCK rise time (20% to 80%)	t _{DMKH}	1.0	4.0	ns
TDMxRCK/TDMxTCK fall time (80% to 20%)	t _{DMKL}	1.0	4.0	ns
TDM all input setup time	t _{DMIVKH}	3.0	—	ns
TDMxRD hold time	t _{DMRDIXKH}	3.5	—	ns
TDMxTFS/TDMxRFS input hold time	t _{DMFSIXKH}	2.0	—	ns
TDMxTCK High to TDMxTD output active	t _{DM_OUTAC}	4.0	—	ns
TDMxTCK High to TDMxTD output valid	t _{DMTKHOV}	—	14.0	ns
TDMxTD hold time	t _{DMTKHOX}	2.0	—	ns
TDMxTCK High to TDMxTD output high impedance	t _{DM_OUTHI}	—	10.0	ns
TDMxTFS/TDMxRFS output valid	t _{DMFSKHOV}	—	13.5	ns
TDMxTFS/TDMxRFS output hold time	t _{DMFSKHOX}	2.5	—	ns

Note:

The symbols used for timing specifications herein follow the pattern of t<sub>(first two letters of functional block)(signal)(state) (reference)(state) for inputs and t_{(first two letters of functional block)(reference)(state)(signal)(state)} for outputs. For example, t_{TDMIVKH} symbolizes TDM timing (DM) with respect to the time the input signals (I) reach the valid state (V) relative to the TDM Clock, t_{TC}, reference (K) going to the high (H) state or setup time. Also, output signals (O), hold (X).
</sub>

2. Output values are based on 30 pF capacitive load.

 Inputs are referenced to the sampling that the TDM is programmed to use. Outputs are referenced to the programming edge they are programmed to use. Use of the rising edge or falling edge as a reference is programmable. TDMxTCK and TDMxRCK are shown using the rising edge.

This figure shows the TDM receive signal timing.

Package and Pin Listings

This figure shows the TDM transmit signal timing.

5

22 Package and Pin Listings

This section details package parameters, pin assignments, and dimensions. The MPC8314E is available in a thermally enhanced plastic ball grid array (TEPBGA II), see Section 22.1, "Package Parameters for the MPC8314E TEPBGA II," and Section 22.2, "Mechanical Dimensions of the TEPBGA II," for information on the TEPBGA II.

22.1 Package Parameters for the MPC8314E TEPBGA II

The package parameters are as provided in the following list. The package type is 29 mm \times 29 mm, TEPBGA II.

$29 \text{ mm} \times 29 \text{ mm}$
620
1 mm
2.23 mm
96.5 Sn/3.5 Ag (VR package)
0.6 mm

Package and Pin Listings

Table 66. MPC8314E TEPBGA II Pinout Listing

Signal	Package Pin Number	Pin Type	Power Supply	Note
	DDR Memory Controller Interface			
MEMC_MDQ[0]	AF16	I/O	GVDD	_
MEMC_MDQ[1]	AE17	I/O	GVDD	_
MEMC_MDQ[2]	AH17	I/O	GVDD	_
MEMC_MDQ[3]	AG17	I/O	GVDD	—
MEMC_MDQ[4]	AG18	I/O	GVDD	—
MEMC_MDQ[5]	AH18	I/O	GVDD	_
MEMC_MDQ[6]	AD18	I/O	GVDD	_
MEMC_MDQ[7]	AF19	I/O	GVDD	_
MEMC_MDQ[8]	AH19	I/O	GVDD	_
MEMC_MDQ[9]	AD19	I/O	GVDD	_
MEMC_MDQ[10]	AG20	I/O	GVDD	—
MEMC_MDQ[11]	AH20	I/O	GVDD	_
MEMC_MDQ[12]	AH21	I/O	GVDD	_
MEMC_MDQ[13]	AE21	I/O	GVDD	_
MEMC_MDQ[14]	AH22	I/O	GVDD	—
MEMC_MDQ[15]	AD21	I/O	GVDD	_
MEMC_MDQ[16]	AG10	I/O	GVDD	-
MEMC_MDQ[17]	AH9	I/O	GVDD	-
MEMC_MDQ[18]	AH8	I/O	GVDD	_
MEMC_MDQ[19]	AD11	I/O	GVDD	
MEMC_MDQ[20]	AH7	I/O	GVDD	-
MEMC_MDQ[21]	AG7	I/O	GVDD	-
MEMC_MDQ[22]	AF8	I/O	GVDD	
MEMC_MDQ[23]	AD10	I/O	GVDD	
MEMC_MDQ[24]	AE9	I/O	GVDD	_
MEMC_MDQ[25]	AH6	I/O	GVDD	—
MEMC_MDQ[26]	AH5	I/O	GVDD	—
MEMC_MDQ[27]	AG6	I/O	GVDD	_
MEMC_MDQ[28]	AH4	I/O	GVDD	—
MEMC_MDQ[29]	AE6	I/O	GVDD	_
MEMC_MDQ[30]	AD8	I/O	GVDD	—
MEMC_MDQ[31]	AF5	I/O	GVDD	_
MEMC_MDM0	AE18	0	GVDD	_
MEMC_MDM1	AE20	0	GVDD	—
MEMC_MDM2	AE10	0	GVDD	—

Package and Pin Listings

Table 66	MPC8314F TI	FPBGA II Pino	ut Listina ((continued)
			ut Listing ((continucu)

Signal	Package Pin Number	Pin Type	Power Supply	Note			
LGPL1/LFALE	AA28	0	NVDD3_OFF	—			
LGPL2/LFRE/LOE	Y25	0	NVDD3_OFF	11			
LGPL3/LFWP	Y24	0	NVDD3_OFF	—			
LGPL4/LGTA/LUPWAIT/LFRB	AA26	I/O	NVDD3_OFF	2			
LGPL5	AF22	0	NVDD3_OFF	11			
LCLK0	AH25	0	NVDD3_OFF	10			
LCLK1	AD24	0	NVDD3_OFF	10			
	DUART						
UART_SOUT1/MSRCID0 (DDR ID)/LSRCID0	C15	0	NVDD2_OFF	_			
UART_SIN1/MSRCID1 (DDR ID)/LSRCID1	B16	I/O	NVDD2_OFF	—			
UART_CTS[1]/MSRCID2 (DDR ID)/LSRCID2	D16	I/O	NVDD2_OFF	—			
UART_RTS[1]/MSRCID3 (DDR ID)/LSRCID3	B17	0	NVDD2_OFF	—			
UART_SOUT2/MSRCID4 (DDR ID)/LSRCID4	A16	0	NVDD2_OFF	—			
UART_SIN2/MDVAL (DDR ID)/LDVAL	C16	I/O	NVDD2_OFF	—			
UART_CTS[2]	A17	I	NVDD2_OFF	—			
UART_RTS[2]	A18	0	NVDD2_OFF	—			
	I ² C interface			•			
IIC_SDA/CKSTOP_OUT	N1	I/O	NVDD4_OFF	2			
IIC_SCL/CKSTOP_IN	N2	I/O	NVDD4_OFF	2			
	Interrupts			•			
MCP_OUT	W1	0	NVDD1_OFF	2			
IRQ[0]/MCP_IN	Y3	I	NVDD1_OFF	—			
IRQ[1]	E1	I	NVDD1_ON	—			
IRQ[2]	Α7	I	NVDD1_ON	_			
IRQ[3]	AA1	I	NVDD1_OFF	_			
IRQ[4]	Y5	I	NVDD1_OFF	_			
IRQ[5]/CORE_SRESET_IN	AA2	I	NVDD1_OFF	—			
IRQ[6] /CKSTOP_OUT	AA4	I/O	NVDD1_OFF	—			
IRQ[7]/CKSTOP_IN	AA5	I	NVDD1_OFF	—			
Configuration							
CFG_CLKIN_DIV	A5	I	NVDD1_ON	11			
EXT_PWR_CTRL	D3	0	NVDD1_ON	11			
PMC_PWR_OK	D4	I	_	11			

Package and Pin Listings

Signal	Package Pin Number	Pin Type	Power Supply	Note
GPIO_1/DMA_DACK1/GTM1_TIN2/GTM2_ TIN1	A4	I/O	NVDD1_ON	-
GPIO_2/DMA_DONE1/GTM1_TGATE2/GT M2_TGATE1	КЗ	I/O	NVDD4_OFF	_
GPIO_3/GTM1_TIN3/GTM2_TIN4	K1	I/O	NVDD4_OFF	_
GPIO_4/GTM1_TGATE3/GTM2_TGATE4	K2	I/O	NVDD4_OFF	
GPIO_5/GTM1_TOUT3/GTM2_TOUT1	L5	I/O	NVDD4_OFF	
GPIO_6/GTM1_TIN4/GTM2_TIN3	L3	I/O	NVDD4_OFF	_
GPIO_7/GTM1_TGATE4/GTM2_TGATE3	L1	I/O	NVDD4_OFF	
GPIO_8/USBDR_DRIVE_VBUS/GTM1_TI N1/GTM2_TIN2	M1	I/O	NVDD4_OFF	-
GPIO_9/USBDR_PWRFAULT/GTM1_TGAT E1/GTM2_TGATE2	M2	I/O	NVDD4_OFF	_
GPIO_10/USBDR_PCTL0/GTM1_TOUT2/ GTM2_TOUT1	M5	I/O	NVDD4_OFF	-
GPIO_11/USBDR_PCTL1/GTM1_TOUT4/ GTM2_TOUT3	M4	I/O	NVDD4_OFF	-
	SPI	11		-
SPIMOSI/GPIO_15	W3	I/O	NVDD1_OFF	—
SPIMISO/GPIO_16	W4	I/O	NVDD1_OFF	_
SPICLK	Y1	I/O	NVDD1_OFF	_
SPISEL/GPIO_17	W2	I/O	NVDD1_OFF	—
	Power and Ground Supplies			
GVDD	Y11, Y12, Y14, Y15, Y17, AC8, AC11, AC14, AC17, AD6, AD9, AD17, AE8, AE13, AE19, AF10, AF15, AF21, AG2, AG3, AG8, AG13, AG19, AH2	I	_	_
LVDD1_OFF	H6, J3, L6, L9, M9	I	_	—
LVDD2_ON	C11, D9, E10, F11, J12	I	_	—
NVDD1_OFF	U9, V9, W10, Y4, Y6, AA3, AB4	I	_	-
NVDD1_ON	B1, B2, C1, D5, E7, F5, F9, J11, K10	I	—	—
NVDD2_OFF	B22, B27, C19, E16, F15, F18, F21, F25, H25, J17, J18, J23, L20, M20	I	_	-
NVDD2_ON	L26, N19	I	—	-
NVDD3_OFF	U20, V20, V23, V26, W19, Y18, Y26, AA23, AA25, AC20, AC25, AD23, AE25, AG25, AG27, T27, U27	Ι	_	—
NVDD4_OFF	K4, L2, M6, N10	I		—

Table 66. MPC8314E TEPBGA II Pinout Listing (continued)

System Design Information

This circuit is intended to filter noise in the PLLs resonant frequency range from a 500 kHz to 10 MHz range. It should be built with surface mount capacitors with minimum Effective Series Inductance (ESL). Consistent with the recommendations of Dr. Howard Johnson in *High Speed Digital Design: A Handbook of Black Magic* (Prentice Hall, 1993), multiple small capacitors of equal value are recommended over a single large value capacitor.

Each circuit should be placed as close as possible to the specific AV_{DD} pin being supplied to minimize noise coupled from nearby circuits. It should be possible to route directly from the capacitors to the AV_{DD} pin, which is on the periphery of package, without the inductance of vias. Note that the RC filter results in lower voltage level on AVDD. This does not imply that the DC specification can be relaxed.

This figure shows the PLL power supply filter circuit.

Figure 61. PLL Power Supply Filter Circuit

25.3 Decoupling Recommendations

Due to large address and data buses, and high operating frequencies, the device can generate transient power surges and high frequency noise in its power supply, especially while driving large capacitive loads. This noise must be prevented from reaching other components in the MPC8314E system, and the MPC8314E itself requires a clean, tightly regulated source of power. Therefore, it is recommended that the system designer place at least one decoupling capacitor at each VDD, NVDD, GVDD, and LVDD pins of the device. These decoupling capacitors should receive their power from separate VDD, NVDD, GVDD, GVDD, and GND power planes in the PCB, utilizing thick and short traces to minimize inductance. Capacitors may be placed directly under the device using a standard escape pattern. Others may surround the part.

These capacitors should have a value of 0.01 or 0.1 μ F. Only ceramic SMT (surface mount technology) capacitors should be used to minimize lead inductance, preferably 0402 or 0603 sizes.

In addition, it is recommended that there be several bulk storage capacitors distributed around the PCB, feeding the VDD, NVDD, GVDD, and LVDD planes, to enable quick recharging of the smaller chip capacitors. These bulk capacitors should have a low ESR (equivalent series resistance) rating to ensure the quick response time necessary. They should also be connected to the power and ground planes through two vias to minimize inductance. Suggested bulk capacitors— $100-330 \mu F$ (AVX TPS tantalum or Sanyo OSCON).

25.4 Connection Recommendations

To ensure reliable operation, it is highly recommended to connect unused inputs to an appropriate signal level. Unused active low inputs should be tied to NVDD, GVDD, or LVDD as required. Unused active high inputs should be connected to GND. All NC (no-connect) signals must remain unconnected.

How to Reach Us:

Home Page: www.freescale.com

Web Support: http://www.freescale.com/support

USA/Europe or Locations Not Listed:

Freescale Semiconductor, Inc. Technical Information Center, EL516 2100 East Elliot Road Tempe, Arizona 85284 1-800-521-6274 or +1-480-768-2130 www.freescale.com/support

Europe, Middle East, and Africa:

Freescale Halbleiter Deutschland GmbH Technical Information Center Schatzbogen 7 81829 Muenchen, Germany +44 1296 380 456 (English) +46 8 52200080 (English) +49 89 92103 559 (German) +33 1 69 35 48 48 (French) www.freescale.com/support

Japan:

Freescale Semiconductor Japan Ltd. Headquarters ARCO Tower 15F 1-8-1, Shimo-Meguro, Meguro-ku Tokyo 153-0064 Japan 0120 191014 or +81 3 5437 9125 support.japan@freescale.com

Asia/Pacific:

Freescale Semiconductor China Ltd. Exchange Building 23F No. 118 Jianguo Road Chaoyang District Beijing 100022 China +86 10 5879 8000 support.asia@freescale.com

For Literature Requests Only:

Freescale Semiconductor Literature Distribution Center 1-800 441-2447 or +1-303-675-2140 Fax: +1-303-675-2150 LDCForFreescaleSemiconductor @hibbertgroup.com Information in this document is provided solely to enable system and software implementers to use Freescale Semiconductor products. There are no express or implied copyright licenses granted hereunder to design or fabricate any integrated circuits or integrated circuits based on the information in this document.

Freescale Semiconductor reserves the right to make changes without further notice to any products herein. Freescale Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Freescale Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters which may be provided in Freescale Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. Freescale Semiconductor does not convey any license under its patent rights nor the rights of others. Freescale Semiconductor products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Freescale Semiconductor product could create a situation where personal injury or death may occur. Should Buyer purchase or use Freescale Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold Freescale Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Freescale Semiconductor was negligent regarding the design or manufacture of the part.

Freescale and the Freescale logo are trademarks of Freescale Semiconductor, Inc. Reg. U.S. Pat. & Tm. Off. QorlQ is a trademark of Freescale Semiconductor, Inc. All other product or service names are the property of their respective owners. The Power Architecture and Power.org word marks and the Power and Power.org logos and related marks are trademarks and service marks licensed by Power.org. © 2011 Freescale Semiconductor, Inc.

Document Number: MPC8314EEC Rev. 2 11/2011

