# E·XFL



#### Welcome to E-XFL.COM

#### Understanding Embedded - Microprocessors

Embedded microprocessors are specialized computing chips designed to perform specific tasks within an embedded system. Unlike general-purpose microprocessors found in personal computers, embedded microprocessors are tailored for dedicated functions within larger systems, offering optimized performance, efficiency, and reliability. These microprocessors are integral to the operation of countless electronic devices, providing the computational power necessary for controlling processes, handling data, and managing communications.

#### Applications of **Embedded - Microprocessors**

Embedded microprocessors are utilized across a broad spectrum of applications, making them indispensable in

#### Details

| Product Status                  | Active                                                                |
|---------------------------------|-----------------------------------------------------------------------|
| Core Processor                  | PowerPC e300c3                                                        |
| Number of Cores/Bus Width       | 1 Core, 32-Bit                                                        |
| Speed                           | 266MHz                                                                |
| Co-Processors/DSP               | -                                                                     |
| RAM Controllers                 | DDR, DDR2                                                             |
| Graphics Acceleration           | No                                                                    |
| Display & Interface Controllers | -                                                                     |
| Ethernet                        | 10/100/1000Mbps (2)                                                   |
| SATA                            | -                                                                     |
| USB                             | USB 2.0 + PHY (1)                                                     |
| Voltage - I/O                   | 1.8V, 2.5V, 3.3V                                                      |
| Operating Temperature           | 0°C ~ 105°C (TA)                                                      |
| Security Features               | -                                                                     |
| Package / Case                  | 620-BBGA Exposed Pad                                                  |
| Supplier Device Package         | 620-HBGA (29x29)                                                      |
| Purchase URL                    | https://www.e-xfl.com/product-detail/nxp-semiconductors/mpc8314vradda |

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

**Electrical Characteristics** 

|                                                                          | Characteristic                                                                                        | Symbol                                  | Max Value                      | Unit | Note |
|--------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|-----------------------------------------|--------------------------------|------|------|
| DDR2 DRAM I/O s                                                          | supply voltage                                                                                        | GVDD                                    | -0.3 to 1.9                    | V    | —    |
| PCI, local bus, DU,<br>management, I <sup>2</sup> C,<br>JTAG I/O voltage | ART, system control and power<br>Ethernet management, 1588 timer and                                  | NVDD                                    | -0.3 to 3.6                    | V    | 7    |
| USB, and eTSEC                                                           | /O voltage                                                                                            | LVDD                                    | -0.3 to 2.75 or<br>-0.3 to 3.6 | V    | 6, 8 |
| PHY voltage                                                              | USB PHY                                                                                               | USB_PLL_PWR1                            | -0.3 to 1.26                   | V    | _    |
|                                                                          |                                                                                                       | USB_PLL_PWR3,<br>USB_VDDA_BIAS,<br>VDDA | -0.3 to 3.6                    | V    | Ι    |
|                                                                          | SERDES PHY                                                                                            | XCOREVDD,<br>XPADVDD,<br>SDAVDD         | -0.3 to 1.26                   | V    | _    |
| Input voltage                                                            | DDR DRAM signals                                                                                      | MV <sub>IN</sub>                        | -0.3 to (GVDD + 0.3)           | V    | 2, 4 |
|                                                                          | DDR DRAM reference                                                                                    | MVREF                                   | -0.3 to (GVDD + 0.3)           | V    | 2, 4 |
|                                                                          | eTSEC signals                                                                                         | LV <sub>IN</sub>                        | -0.3 to (LVDD + 0.3)           | V    | 3, 4 |
|                                                                          | Local bus, DUART, SYS_CLK_IN, system control and power management, I <sup>2</sup> C, and JTAG signals | NV <sub>IN</sub>                        | -0.3 to (NVDD + 0.3)           | V    | 3, 4 |
|                                                                          | PCI                                                                                                   | NV <sub>IN</sub>                        | -0.3 to (NVDD + 0.3)           | V    | 5    |
| Storage temperatu                                                        | re range                                                                                              | T <sub>STG</sub>                        | -55 to150                      | °C   | —    |

## Table 1. Absolute Maximum Ratings <sup>1</sup> (continued)

Note:

- 1. Functional and tested operating conditions are given in Table 2. Absolute maximum ratings are stress ratings only, and functional operation at the maximums is not guaranteed. Stresses beyond those listed may affect device reliability or cause permanent damage to the device.
- 2. Caution: MV<sub>IN</sub> must not exceed GVDD by more than 0.3 V. This limit may be exceeded for a maximum of 20 ms during power-on reset and power-down sequences.
- 3. **Caution:** (N,L)V<sub>IN</sub> must not exceed (N,L)VDD by more than 0.3 V. This limit may be exceeded for a maximum of 20 ms during power-on reset and power-down sequences.
- 4. (M,N,L)V<sub>IN</sub> and MVREF may overshoot/undershoot to a voltage and for a maximum duration as shown in Figure 2.
- 5. NV<sub>IN</sub> on the PCI interface may overshoot/undershoot according to the PCI Electrical Specification for 3.3-V operation, as shown in Figure 2.
- 6. The max value of supply voltage should be selected based on the RGMII mode.
- 7. NVDD means NVDD1\_OFF, NVDD1\_ON, NVDD2\_OFF, NVDD2\_ON, NVDD3\_OFF, NVDD4\_OFF
- 8. LVDD means LVDD1\_OFF and LVDD2\_ON



#### DDR and DDR2 SDRAM

This table provides the DDR2 capacitance when GVDD(typ) = 1.8 V.

### Table 12. DDR2 SDRAM Capacitance for GVDD(typ) = 1.8 V

| Parameter/Condition                     | Symbol           | Min | Max | Unit | Note |
|-----------------------------------------|------------------|-----|-----|------|------|
| Input/output capacitance: DQ, DQS       | C <sub>IO</sub>  | 6   | 8   | pF   | 1    |
| Delta input/output capacitance: DQ, DQS | C <sub>DIO</sub> | _   | 0.5 | pF   | 1    |

Note:

1. This parameter is sampled. GVDD = 1.8 V  $\pm$  0.090 V, f = 1 MHz, T<sub>A</sub> = 25°C, V<sub>OUT</sub> = GVDD/2, V<sub>OUT</sub> (peak-to-peak) = 0.2 V.

This table provides the recommended operating conditions for the DDR SDRAM component(s) of the MPC8314E when GVDD(typ) = 2.5 V.

### Table 13. DDR SDRAM DC Electrical Characteristics for GVDD(typ) = 2.5 V

| Parameter/Condition                                             | Symbol          | Min             | Мах                | Unit | Note |
|-----------------------------------------------------------------|-----------------|-----------------|--------------------|------|------|
| I/O supply voltage                                              | GVDD            | 2.3             | 2.7                | V    | 1    |
| I/O reference voltage                                           | MVREF           | 0.49 	imes GVDD | $0.51 \times GVDD$ | V    | 2    |
| I/O termination voltage                                         | V <sub>TT</sub> | MVREF – 0.04    | MVREF + 0.04       | V    | 3    |
| Input high voltage                                              | V <sub>IH</sub> | MVREF + 0.15    | GVDD + 0.3         | V    | _    |
| Input low voltage                                               | V <sub>IL</sub> | -0.3            | MVREF – 0.15       | V    | _    |
| Output leakage current                                          | I <sub>OZ</sub> | -9.9            | -9.9               | μΑ   | 4    |
| Output high current (V <sub>OUT</sub> = 1.95 V,<br>GVDD = 2.3V) | I <sub>ОН</sub> | -16.2           | —                  | mA   | _    |
| Output low current (V <sub>OUT</sub> = 0.35 V)                  | I <sub>OL</sub> | 16.2            | _                  | mA   | _    |

Note:

1. GVDD is expected to be within 50 mV of the DRAM GVDD at all times.

2. MVREF is expected to be equal to 0.5 × GVDD, and to track GVDD DC variations as measured at the receiver. Peak-to-peak noise on MVREF may not exceed ±2% of the DC value.

3. V<sub>TT</sub> is not applied directly to the device. It is the supply to which far end signal termination is made and is expected to be equal to MVREF. This rail should track variations in the DC level of MVREF.

4. Output leakage is measured with all outputs disabled, 0 V  $\leq$  V\_{OUT}  $\leq$  GVDD.

This table provides the DDR capacitance when GVDD(typ) = 2.5 V.

### Table 14. DDR SDRAM Capacitance for GVDD(typ) = 2.5 V Interface

| Parameter/Condition                     | Symbol           | Min | Max | Unit | Note |
|-----------------------------------------|------------------|-----|-----|------|------|
| Input/output capacitance: DQ,DQS        | C <sub>IO</sub>  | 6   | 8   | pF   | 1    |
| Delta input/output capacitance: DQ, DQS | C <sub>DIO</sub> | —   | 0.5 | pF   | 1    |

Note:

1. This parameter is sampled. GVDD =  $2.5 \text{ V} \pm 0.125 \text{ V}$ , f = 1 MHz, T<sub>A</sub> =  $25^{\circ}$ C, V<sub>OUT</sub> = GVDD/2, V<sub>OUT</sub> (peak-to-peak) = 0.2 V.

This table provides the current draw characteristics for  $MV_{REF}$ .

### Table 15. Current Draw Characteristics for MV<sub>REF</sub>

| Parameter / Condition              | Symbol             | Min | Мах | Unit | Note |
|------------------------------------|--------------------|-----|-----|------|------|
| Current draw for MV <sub>REF</sub> | I <sub>MVREF</sub> | —   | 500 | μΑ   | 1    |



#### DDR and DDR2 SDRAM

#### Table 19. DDR SDRAM Input AC Timing Specifications

At recommended operating conditions with GVDD of (2.5V  $\pm$  200 mV)

| Controller Skew for MDQS—MDQ | t <sub>CISKEW</sub> |       |      | ps | 1, 2 |
|------------------------------|---------------------|-------|------|----|------|
| 266 MHz                      |                     | -750  | 750  |    |      |
| 200 MHz                      |                     | -1250 | 1250 |    |      |

#### Note:

 t<sub>CISKEW</sub> represents the total amount of skew consumed by the controller between MDQS[n] and any corresponding bit to be captured with MDQS[n]. This should be subtracted from the total timing budget.

 The amount of skew that can be tolerated from MDQS to a corresponding MDQ signal is called t<sub>DISKEW</sub>. This can be determined by the following equation: t<sub>DISKEW</sub> =+/-(T/4 – abs(t<sub>CISKEW</sub>)) where T is the clock period and abs(t<sub>CISKEW</sub>) is the absolute value of t<sub>CISKEW</sub>.

This figure shows the DDR SDRAM input AC timing for the tolerated MDQS to MDQ skew (t<sub>DISKEW</sub>)



Figure 5. Timing Diagram for t<sub>DISKEW</sub>

## 7.2.2 DDR and DDR2 SDRAM Output AC Timing Specifications

### Table 20. DDR and DDR2 SDRAM Output AC Timing Specifications

At recommended operating conditions

| Parameter                                                       | Symbol <sup>1</sup> | Min          | Мах | Unit | Note |
|-----------------------------------------------------------------|---------------------|--------------|-----|------|------|
| MCK[n] cycle time at MCK[n]/MCK[n] crossing                     | t <sub>MCK</sub>    | 7.5          | 10  | ns   | 2    |
| ADDR/CMD output setup with respect to MCK<br>266 MHz<br>200 MHz | t <sub>DDKHAS</sub> | 2.9<br>3.5   | —   | ns   | 3    |
| ADDR/CMD output hold with respect to MCK<br>266 MHz<br>200 MHz  | t <sub>DDKHAX</sub> | 3.15<br>4.20 |     | ns   | 3    |
| MCS[n] output setup with respect to MCK<br>266 MHz<br>200 MHz   | t <sub>DDKHCS</sub> | 3.15<br>4.20 |     | ns   | 3    |



Ethernet: Three-Speed Ethernet, MII Management

## 9.2.2 RMII AC Timing Specifications

This section describes the RMII transmit and receive AC timing specifications.

## 9.2.2.1 RMII Transmit AC Timing Specifications

This section describes the RMII transmit and receive AC timing specifications. This table provides the RMII transmit AC timing specifications.

## Table 27. RMII Transmit AC Timing Specifications

At recommended operating conditions with LVDD of 3.3 V  $\pm$  300 mv

| Parameter/Condition                                                    | Symbol <sup>1</sup>                 | Min | Тур | Мах | Unit |
|------------------------------------------------------------------------|-------------------------------------|-----|-----|-----|------|
| REF_CLK clock                                                          | t <sub>RMX</sub>                    | _   | 20  | —   | ns   |
| REF_CLK duty cycle                                                     | t <sub>RMXH/</sub> t <sub>RMX</sub> | 35  | -   | 65  | %    |
| REF_CLK to RMII data TXD[1:0], TX_EN delay                             | t <sub>RMTKHDX</sub>                | 2   | _   | 10  | ns   |
| REF_CLK data clock rise V <sub>IL</sub> (min) to V <sub>IH</sub> (max) | t <sub>RMXR</sub>                   | 1.0 | _   | 4.0 | ns   |
| REF_CLK data clock fall $V_{IH}(max)$ to $V_{IL}(min)$                 | t <sub>RMXF</sub>                   | 1.0 |     | 4.0 | ns   |

Note:

The symbols used for timing specifications herein follow the pattern of t<sub>(first three letters of functional block)(signal)(state) (reference)(state)</sub> for inputs and t<sub>(first two letters of functional block)(reference)(state)(signal)(state)</sub> for outputs. For example, t<sub>RMTKHDX</sub> symbolizes RMII transmit timing (RMT) for the time t<sub>RMX</sub> clock reference (K) going high (H) until data outputs (D) are invalid (X). Note that, in general, the clock reference symbol representation is based on two to three letters representing the clock of a particular functional. For example, the subscript of t<sub>RMX</sub> represents the RMII(RM) reference (X) clock. For rise and fall times, the latter convention is used with the appropriate letter: R (rise) or F (fall).

This figure shows the RMII transmit AC timing diagram.



Figure 12. RMII Transmit AC Timing Diagram

## 9.2.2.2 RMII Receive AC Timing Specifications

This table provides the RMII receive AC timing specifications.

## Table 28. RMII Receive AC Timing Specifications

At recommended operating conditions with LVDD of 3.3 V  $\pm$  300 mv

| Parameter/Condition  | Symbol <sup>1</sup>                 | Min | Тур | Max | Unit |
|----------------------|-------------------------------------|-----|-----|-----|------|
| REF_CLK clock period | t <sub>RMX</sub>                    | _   | 20  | -   | ns   |
| REF_CLK duty cycle   | t <sub>RMXH</sub> /t <sub>RMX</sub> | 35  |     | 65  | %    |



This figure shows the MII management AC timing diagram.



Figure 16. MII Management Interface Timing Diagram

## 9.4 1588 Timer Specifications

This section describes the DC and AC electrical specifications for the 1588 timer.

## 9.4.1 1588 Timer DC Specifications

This table provides the 1588 timer DC specifications.

**Table 32. GPIO DC Electrical Characteristics** 

| Characteristic      | Symbol          | ymbol Condition             |      | Мах        | Unit |
|---------------------|-----------------|-----------------------------|------|------------|------|
| Output high voltage | V <sub>OH</sub> | I <sub>OH</sub> = -8.0 mA   | 2.4  | —          | V    |
| Output low voltage  | V <sub>OL</sub> | l <sub>OL</sub> = 8.0 mA    |      | 0.5        | V    |
| Output low voltage  | V <sub>OL</sub> | I <sub>OL</sub> = 3.2 mA    |      | 0.4        | V    |
| Input high voltage  | V <sub>IH</sub> |                             | 2.0  | NVDD + 0.3 | V    |
| Input low voltage   | V <sub>IL</sub> | —                           | -0.3 | 0.8        | V    |
| Input current       | I <sub>IN</sub> | $0~V \leq V_{IN} \leq NVDD$ | _    | ± 5        | μA   |

## 9.4.2 1588 Timer AC Specifications

This table provides the 1588 timer AC specifications.

| Table | 33. | 1588 | Timer | AC | S | pecifications |
|-------|-----|------|-------|----|---|---------------|
|       |     |      |       |    | - |               |

| Parameter                    | Symbol              | Min | Max | Unit | Note |
|------------------------------|---------------------|-----|-----|------|------|
| Timer clock cycle time       | t <sub>TMRCK</sub>  | 0   | 70  | MHz  | 1    |
| Input setup to timer clock   | t <sub>TMRCKS</sub> | —   | —   | —    | 2, 3 |
| Input hold from timer clock  | t <sub>TMRCKH</sub> | —   | —   | —    | 2, 3 |
| Output clock to output valid | t <sub>GCLKNV</sub> | 0   | 6   | ns   |      |
| Timer alarm to output valid  | t <sub>TMRAL</sub>  | _   | _   | _    | 2    |

Ethernet: Three-Speed Ethernet, MII Management



Figure 17. 4-Wire AC-Coupled SGMII Serial Link Connection Example



Figure 18. SGMII Transmitter DC Measurement Circuit

| Table 36. SGMII DO | CReceiver Elec | ctrical Characteristics |
|--------------------|----------------|-------------------------|
|--------------------|----------------|-------------------------|

| Parameter                  |        | Symbol                  | Min  | Тур | Max  | Unit | Note |
|----------------------------|--------|-------------------------|------|-----|------|------|------|
| Supply Voltage             |        | XCOREVDD                | 0.95 | 1.0 | 1.05 | V    | —    |
| DC Input voltage range     |        | —                       |      | N/A |      | —    | 1    |
| Input differential voltage | EQ = 0 | V <sub>RX_DIFFp-p</sub> | 100  | —   | 1200 | mV   | 2, 4 |
|                            | EQ = 1 |                         | 175  | —   |      |      |      |
| Loss of signal threshold   | EQ = 0 | VLOS                    | 30   | —   | 100  | mV   | 3, 4 |
|                            | EQ = 1 | ]                       | 65   | —   | 175  |      |      |







Figure 25. Local Bus Signals, GPCM/UPM Signals for LCRR[CLKDIV] = 2





## 12.2 JTAG AC Timing Specifications

This section describes the AC electrical specifications for the IEEE 1149.1 (JTAG) interface. This table provides the JTAG AC timing specifications as defined in Figure 28 through Figure 31.

## Table 46. JTAG AC Timing Specifications (Independent of SYS\_CLK\_IN)<sup>1</sup>

At recommended operating conditions (see Table 2)

| Parameter                                                                  | Symbol <sup>2</sup>                        | Min      | Max      | Unit | Note |
|----------------------------------------------------------------------------|--------------------------------------------|----------|----------|------|------|
| JTAG external clock frequency of operation                                 | f <sub>JTG</sub>                           | 0        | 33.3     | MHz  | —    |
| JTAG external clock cycle time                                             | t <sub>JTG</sub>                           | 30       | —        | ns   | —    |
| JTAG external clock pulse width measured at 1.4 V                          | t <sub>JTKHKL</sub>                        | 15       | —        | ns   | —    |
| JTAG external clock rise and fall times                                    | t <sub>JTGR</sub> , t <sub>JTGF</sub>      | 0        | 2        | ns   | —    |
| TRST assert time                                                           | t <sub>TRST</sub>                          | 25       | —        | ns   | 3    |
| Input setup times:<br>Boundary-scan data<br>TMS, TDI                       | t <sub>JTDVKH</sub><br>t <sub>JTIVKH</sub> | 4<br>4   | _        | ns   | 4    |
| Input hold times:<br>Boundary-scan data<br>TMS, TDI                        | t <sub>JTDXKH</sub><br>t <sub>JTIXKH</sub> | 10<br>10 | _        | ns   | 4    |
| Valid times:<br>Boundary-scan data<br>TDO                                  | t <sub>JTKLDV</sub><br>t <sub>JTKLOV</sub> | 2<br>2   | 11<br>11 | ns   | 5    |
| Output hold times:<br>Boundary-scan data<br>TDO                            | t <sub>jtkldx</sub><br>t <sub>jtklox</sub> | 2<br>2   | _        | ns   | 5    |
| JTAG external clock to output high impedance:<br>Boundary-scan data<br>TDO | t <sub>jtkldz</sub><br>t <sub>jtkloz</sub> | 2<br>2   | 19<br>9  | ns   | 5, 6 |

Note:

 All outputs are measured from the midpoint voltage of the falling/rising edge of t<sub>TCLK</sub> to the midpoint of the signal in question. The output timings are measured at the pins. All output timings assume a purely resistive 50-Ω load (see Table 27). Time-of-flight delays must be added for trace lengths, vias, and connectors in the system.

- 2. The symbols used for timing specifications herein follow the pattern of t<sub>(first two letters of functional block)(signal)(state)</sub> (reference)(state) for inputs and t<sub>(first two letters of functional block)</sub>(reference)(state)(signal)(state) for outputs. For example, t<sub>JTDVKH</sub> symbolizes JTAG device timing (JT) with respect to the time data input signals (D) reaching the valid state (V) relative to the t<sub>JTG</sub> clock reference (K) going to the high (H) state or setup time. Also, t<sub>JTDXKH</sub> symbolizes JTAG timing (JT) with respect to the time data input signals (D) went invalid (X) relative to the t<sub>JTG</sub> clock reference (K) going to the high (H) state. Note that, in general, the clock reference symbol representation is based on three letters representing the clock of a particular functional. For rise and fall times, the latter convention is used with the appropriate letter: R (rise) or F (fall).
- 3. TRST is an asynchronous level sensitive signal. The setup time is for test purposes only.
- 4. Non-JTAG signal input timing with respect to t<sub>TCLK</sub>.
- 5. Non-JTAG signal output timing with respect to t<sub>TCLK</sub>.
- 6. Guaranteed by design and characterization.



This figure provides the test access port timing diagram.



Figure 31. Test Access Port Timing Diagram

# 13 I<sup>2</sup>C

This section describes the DC and AC electrical characteristics for the I<sup>2</sup>C interface of the MPC8314E.

## 13.1 I<sup>2</sup>C DC Electrical Characteristics

This table provides the DC electrical characteristics for the  $I^2C$  interface.

Table 47. I<sup>2</sup>C DC Electrical Characteristics

At recommended operating conditions with NVDD of 3.3 V  $\pm$  300 mv

| Parameter                                                                                     | Symbol              | Min                   | Max                      | Unit | Note |
|-----------------------------------------------------------------------------------------------|---------------------|-----------------------|--------------------------|------|------|
| Input high voltage level                                                                      | V <sub>IH</sub>     | $0.7 \times NVDD$     | NVDD + 0.3               | V    | _    |
| Input low voltage level                                                                       | V <sub>IL</sub>     | -0.3                  | 0.3 	imes NVDD           | V    | —    |
| Low level output voltage                                                                      | V <sub>OL</sub>     | 0                     | $0.2 \times \text{NVDD}$ | V    | 1    |
| High level output voltage                                                                     | V <sub>OH</sub>     | 0.8 	imes NVDD        | NVDD + 0.3               | V    | —    |
| Output fall time from $V_{IH}(min)$ to $V_{IL}(max)$ with a bus capacitance from 10 to 400 pF | t <sub>I2KLKV</sub> | $20 + 0.1 \times C_B$ | 250                      | ns   | 2    |
| Pulse width of spikes which must be suppressed by the input filter                            | t <sub>I2KHKL</sub> | 0                     | 50                       | ns   | 3    |
| Capacitance for each I/O pin                                                                  | CI                  | —                     | 10                       | pF   | —    |
| Input current (0 V $\leq$ V <sub>IN</sub> $\leq$ NVDD)                                        | I <sub>IN</sub>     | —                     | ± 5                      | μΑ   | 4    |

Note:

- 1. Output voltage (open drain or open collector) condition = 3 mA sink current.
- 2.  $C_B$  = capacitance of one bus line in pF.
- 3. See the MPC8315E PowerQUICC II Pro Integrated Host Processor Family Reference Manual for information on the digital filter used.
- 4. I/O pins obstruct the SDA and SCL lines if NVDD is switched off.

### High-Speed Serial Interfaces (HSSI)

The Differential Output Voltage (or Swing) of the transmitter,  $V_{OD}$ , is defined as the difference of the two complimentary output voltages:  $V_{TXn} - V_{\overline{TXn}}$ . The  $V_{OD}$  value can be either positive or negative.

## 3. Differential Input Voltage, V<sub>ID</sub> (or Differential Input Swing):

The Differential Input Voltage (or Swing) of the receiver,  $V_{ID}$ , is defined as the difference of the two complimentary input voltages:  $V_{RXn} - V_{\overline{RXn}}$ . The  $V_{ID}$  value can be either positive or negative.

## 4. Differential Peak Voltage, V<sub>DIFFp</sub>

The peak value of the differential transmitter output signal or the differential receiver input signal is defined as Differential Peak Voltage,  $V_{DIFFp} = |A - B|$  Volts.

## 5. Differential Peak-to-Peak, V<sub>DIFFp-p</sub>

Because the differential output signal of the transmitter and the differential input signal of the receiver each range from A – B to –(A – B) Volts, the peak-to-peak value of the differential transmitter output signal or the differential receiver input signal is defined as Differential Peak-to-Peak Voltage,  $V_{DIFFp-p} = 2*V_{DIFFp} = 2*|(A - B)|$  Volts, which is twice of differential swing in amplitude, or twice of the differential peak. For example, the output differential peak-peak voltage can also be calculated as  $V_{TX-DIFFp-p} = 2*|V_{OD}|$ .

## 6. Differential Waveform

The differential waveform is constructed by subtracting the inverting signal ( $\overline{TXn}$ , for example) from the non-inverting signal (TXn, for example) within a differential pair. There is only one signal trace curve in a differential waveform. The voltage represented in the differential waveform is not referenced to ground. Refer to Figure 46 as an example for differential waveform.

## 7. Common Mode Voltage, V<sub>cm</sub>

The Common Mode Voltage is equal to one half of the sum of the voltages between each conductor of a balanced interchange circuit and ground. In this example, for SerDes output,  $V_{cm_out} = (V_{TXn} + V_{TXn})/2 = (A + B)/2$ , which is the arithmetic mean of the two complimentary output voltages within a differential pair. In a system, the common mode voltage may often differ from one component's output to the other's input. Sometimes, it may be even different between the receiver input and driver output circuits within the same component. It's also referred as the DC offset in some occasion.



#### High-Speed Serial Interfaces (HSSI)

assumes that the LVPECL clock driver's output impedance is  $50\Omega$ . R1 is used to DC-bias the LVPECL outputs prior to AC-coupling. Its value could be ranged from  $140\Omega$  to  $240\Omega$  depending on clock driver vendor's requirement. R2 is used together with the SerDes reference clock receiver's  $50-\Omega$  termination resistor to attenuate the LVPECL output's differential peak level such that it meets the MPC8315E SerDes reference clock's differential input amplitude requirement (between 200mV and 800mV differential peak). For example, if the LVPECL output's differential peak is 900mV and the desired SerDes reference clock input amplitude is selected as 600mV, the attenuation factor is 0.67, which requires R2 =  $25\Omega$ . Please consult clock driver chip manufacturer to verify whether this connection scheme is compatible with a particular clock driver chip.



Figure 44. AC-Coupled Differential Connection with LVPECL Clock Driver (Reference Only)

This figure shows the SerDes reference clock connection reference circuits for a single-ended clock driver. It assumes the DC levels of the clock driver are compatible with MPC8315E SerDes reference clock input's DC requirement.



Figure 45. Single-Ended Connection (Reference Only)



### **Table 57. Timers Input AC Timing Specifications**

| Characteristic | Symbol <sup>1</sup> | Min | Unit |
|----------------|---------------------|-----|------|
| Noto           |                     |     |      |

Note:

Timers inputs and outputs are asynchronous to any visible clock. Timers outputs should be synchronized before use by any
external synchronous logic. Timers input are required to be valid for at least t<sub>TIWID</sub> ns to ensure proper operation.

This figure provides the AC test load for the Timers.



Figure 52. Timers AC Test Load

## 18 GPIO

This section describes the DC and AC electrical specifications for the GPIO of the MPC8314E.

## **18.1 GPIO DC Electrical Characteristics**

This table provides the DC electrical characteristics for the GPIO.

| Characteristic      | Symbol          | Condition                     | Min  | Max        | Unit |
|---------------------|-----------------|-------------------------------|------|------------|------|
| Output high voltage | V <sub>OH</sub> | I <sub>OH</sub> = -8.0 mA     | 2.4  | —          | V    |
| Output low voltage  | V <sub>OL</sub> | I <sub>OL</sub> = 8.0 mA      | —    | 0.5        | V    |
| Output low voltage  | V <sub>OL</sub> | I <sub>OL</sub> = 3.2 mA      | —    | 0.4        | V    |
| Input high voltage  | V <sub>IH</sub> | —                             | 2.1  | NVDD + 0.3 | V    |
| Input low voltage   | V <sub>IL</sub> | —                             | -0.3 | 0.8        | V    |
| Input current       | I <sub>IN</sub> | $0 \ V \leq V_{IN} \leq NVDD$ | —    | ± 5        | μΑ   |

## 18.2 GPIO AC Timing Specifications

This table provides the GPIO input and output AC timing specifications.

## Table 59. GPIO Input AC Timing Specifications

| Characteristic                  | Symbol <sup>1</sup> | Min | Unit |
|---------------------------------|---------------------|-----|------|
| GPIO inputs—minimum pulse width | t <sub>PIWID</sub>  | 20  | ns   |

Note:

1. GPIO inputs and outputs are asynchronous to any visible clock. GPIO outputs should be synchronized before use by any external synchronous logic. GPIO inputs are required to be valid for at least t<sub>PIWID</sub> ns to ensure proper operation.



IPIC

This figure provides the AC test load for the GPIO.



## 19 IPIC

This section describes the DC and AC electrical specifications for the external interrupt pins of the MPC8314E.

## **19.1 IPIC DC Electrical Characteristics**

This table provides the DC electrical characteristics for the external interrupt pins.

| Characteristic      | Symbol          | Condition                 | Min  | Max        | Unit |
|---------------------|-----------------|---------------------------|------|------------|------|
| Input high voltage  | V <sub>IH</sub> | —                         | 2.1  | NVDD + 0.3 | V    |
| Input low voltage   | V <sub>IL</sub> | —                         | -0.3 | 0.8        | V    |
| Input current       | I <sub>IN</sub> | —                         | _    | ±5         | μA   |
| Output high voltage | V <sub>OH</sub> | I <sub>OH</sub> = -8.0 mA | 2.4  | —          | V    |
| Output low voltage  | V <sub>OL</sub> | I <sub>OL</sub> = 8.0 mA  | _    | 0.5        | V    |
| Output low voltage  | V <sub>OL</sub> | I <sub>OL</sub> = 3.2 mA  | _    | 0.4        | V    |

## Table 60. IPIC DC Electrical Characteristics

## 19.2 IPIC AC Timing Specifications

This table provides the IPIC input and output AC timing specifications.

## Table 61. IPIC Input AC Timing Specifications

| Characteristic                  | Symbol <sup>1</sup> | Min | Unit |
|---------------------------------|---------------------|-----|------|
| IPIC inputs—minimum pulse width | t <sub>PIWID</sub>  | 20  | ns   |

Note:

IPIC inputs and outputs are asynchronous to any visible clock. IPIC outputs should be synchronized before use by any
external synchronous logic. IPIC inputs are required to be valid for at least t<sub>PIWID</sub> ns to ensure proper operation when
working in edge triggered mode.

## 20 SPI

This section describes the DC and AC electrical specifications for the SPI of the MPC8314E.



This figure shows the SPI timing in slave mode (external clock).



Note: The clock edge is selectable on SPI.



This figure shows the SPI timing in master mode (internal clock).



Figure 56. SPI AC Timing in Master Mode (Internal Clock) Diagram

## 21 TDM

This section describes the DC and AC electrical specifications for the TDM of the MPC8314E.

## 21.1 TDM DC Electrical Characteristics

This table provides the DC electrical characteristics TDM.

Table 64. TDM DC Electrical Characteristics

| Characteristic      | Symbol          | Condition                     | Min  | Мах        | Unit |
|---------------------|-----------------|-------------------------------|------|------------|------|
| Output high voltage | V <sub>OH</sub> | I <sub>OH</sub> = -8.0 mA     | 2.4  | —          | V    |
| Output low voltage  | V <sub>OL</sub> | I <sub>OL</sub> = 8.0 mA      | —    | 0.5        | V    |
| Output low voltage  | V <sub>OL</sub> | I <sub>OL</sub> = 3.2 mA      | —    | 0.4        | V    |
| Input high voltage  | V <sub>IH</sub> | —                             | 2.1  | NVDD + 0.3 | V    |
| Input low voltage   | V <sub>IL</sub> | —                             | -0.3 | 0.8        | V    |
| Input current       | I <sub>IN</sub> | $0 \ V \leq V_{IN} \leq NVDD$ | —    | ± 5        | μA   |



This table provides the TDM AC timing specifications.

Table 65. TDM AC Timing specifications

| Parameter/Condition                          | Symbol                | Min  | Max  | Unit |
|----------------------------------------------|-----------------------|------|------|------|
| TDMxRCK/TDMxTCK                              | t <sub>DM</sub>       | 20.0 | —    | ns   |
| TDMxRCK/TDMxTCK high pulse width             | t <sub>DM_HIGH</sub>  | 8.0  | —    | ns   |
| TDMxRCK/TDMxTCK low pulse width              | t <sub>DM_LOW</sub>   | 8.0  | —    | ns   |
| TDMxRCK/TDMxTCK rise time (20% to 80%)       | t <sub>DMKH</sub>     | 1.0  | 4.0  | ns   |
| TDMxRCK/TDMxTCK fall time (80% to 20%)       | t <sub>DMKL</sub>     | 1.0  | 4.0  | ns   |
| TDM all input setup time                     | t <sub>DMIVKH</sub>   | 3.0  | —    | ns   |
| TDMxRD hold time                             | t <sub>DMRDIXKH</sub> | 3.5  | —    | ns   |
| TDMxTFS/TDMxRFS input hold time              | t <sub>DMFSIXKH</sub> | 2.0  | —    | ns   |
| TDMxTCK High to TDMxTD output active         | t <sub>DM_OUTAC</sub> | 4.0  | —    | ns   |
| TDMxTCK High to TDMxTD output valid          | t <sub>DMTKHOV</sub>  | —    | 14.0 | ns   |
| TDMxTD hold time                             | t <sub>DMTKHOX</sub>  | 2.0  | —    | ns   |
| TDMxTCK High to TDMxTD output high impedance | t <sub>DM_OUTHI</sub> | —    | 10.0 | ns   |
| TDMxTFS/TDMxRFS output valid                 | t <sub>DMFSKHOV</sub> | —    | 13.5 | ns   |
| TDMxTFS/TDMxRFS output hold time             | t <sub>DMFSKHOX</sub> | 2.5  | —    | ns   |

Note:

The symbols used for timing specifications herein follow the pattern of t<sub>(first two letters of functional block)(signal)(state) (reference)(state) for inputs and t<sub>(first two letters of functional block)(reference)(state)(signal)(state)</sub> for outputs. For example, t<sub>TDMIVKH</sub> symbolizes TDM timing (DM) with respect to the time the input signals (I) reach the valid state (V) relative to the TDM Clock, t<sub>TC</sub>, reference (K) going to the high (H) state or setup time. Also, output signals (O), hold (X).
</sub>

2. Output values are based on 30 pF capacitive load.

 Inputs are referenced to the sampling that the TDM is programmed to use. Outputs are referenced to the programming edge they are programmed to use. Use of the rising edge or falling edge as a reference is programmable. TDMxTCK and TDMxRCK are shown using the rising edge.

This figure shows the TDM receive signal timing.







| Signal       | Package Pin Number | Pin Type | Power<br>Supply | Note |
|--------------|--------------------|----------|-----------------|------|
| MEMC_MDM3    | AF6                | 0        | GVDD            | —    |
| MEMC_MDQS[0] | AF17               | I/O      | GVDD            | —    |
| MEMC_MDQS[1] | AG21               | I/O      | GVDD            | —    |
| MEMC_MDQS[2] | AG9                | I/O      | GVDD            | —    |
| MEMC_MDQS[3] | AF7                | I/O      | GVDD            | —    |
| MEMC_MBA[0]  | AH16               | 0        | GVDD            | —    |
| MEMC_MBA[1]  | AH15               | 0        | GVDD            | —    |
| MEMC_MBA[2]  | AG15               | 0        | GVDD            | —    |
| MEMC_MA0     | AD15               | 0        | GVDD            | —    |
| MEMC_MA1     | AE15               | 0        | GVDD            | _    |
| MEMC_MA2     | AH14               | 0        | GVDD            | —    |
| MEMC_MA3     | AG14               | 0        | GVDD            | —    |
| MEMC_MA4     | AF14               | 0        | GVDD            | —    |
| MEMC_MA5     | AE14               | 0        | GVDD            | —    |
| MEMC_MA6     | AH13               | 0        | GVDD            | —    |
| MEMC_MA7     | AH12               | 0        | GVDD            | _    |
| MEMC_MA8     | AF13               | 0        | GVDD            | —    |
| MEMC_MA9     | AD13               | 0        | GVDD            | —    |
| MEMC_MA10    | AG12               | 0        | GVDD            | _    |
| MEMC_MA11    | AH11               | 0        | GVDD            | —    |
| MEMC_MA12    | AH10               | 0        | GVDD            | —    |
| MEMC_MA13    | AE12               | 0        | GVDD            | —    |
| MEMC_MA14    | AF11               | 0        | GVDD            | —    |
| MEMC_MWE     | AE5                | 0        | GVDD            | —    |
| MEMC_MRAS    | AD7                | 0        | GVDD            | —    |
| MEMC_MCAS    | AG4                | 0        | GVDD            | —    |
| MEMC_MCS[0]  | AH3                | 0        | GVDD            | —    |
| MEMC_MCS[1]  | AD5                | 0        | GVDD            | —    |
| MEMC_MCKE    | AE4                | 0        | GVDD            | 3    |
| MEMC_MCK[0]  | AF4                | 0        | GVDD            | —    |
| MEMC_MCK[0]  | AF3                | 0        | GVDD            | —    |
| MEMC_MCK[1]  | AF1                | 0        | GVDD            | —    |
| MEMC_MCK[1]  | AE1                | 0        | GVDD            | —    |
| MEMC_MODT[0] | AE3                | 0        | GVDD            | —    |
| MEMC_MODT[1] | AD4                | 0        | GVDD            | —    |
| MEMC_MVREF   | AD12               | I        | GVDD            | —    |

## Table 66. MPC8314E TEPBGA II Pinout Listing (continued)



Package and Pin Listings

| Signal                          | Package Pin Number | Pin Type | Power<br>Supply | Note |
|---------------------------------|--------------------|----------|-----------------|------|
| PCI_AD[23]                      | C22                | I/O      | NVDD2_OFF       | -    |
| PCI_AD[24]                      | E19                | I/O      | NVDD2_OFF       | —    |
| PCI_AD[25]                      | A22                | I/O      | NVDD2_OFF       | —    |
| PCI_AD[26]                      | C20                | I/O      | NVDD2_OFF       | —    |
| PCI_AD[27]                      | B21                | I/O      | NVDD2_OFF       | -    |
| PCI_AD[28]                      | D19                | I/O      | NVDD2_OFF       | —    |
| PCI_AD[29]                      | A19                | I/O      | NVDD2_OFF       | —    |
| PCI_AD[30]                      | A21                | I/O      | NVDD2_OFF       | —    |
| PCI_AD[31]                      | B19                | I/O      | NVDD2_OFF       | —    |
| PCI_C/BE[0]                     | H24                | I/O      | NVDD2_OFF       | —    |
| PCI_C/BE[1]                     | C27                | I/O      | NVDD2_OFF       | —    |
| PCI_C/BE[2]                     | A25                | I/O      | NVDD2_OFF       | —    |
| PCI_C/BE[3]                     | E21                | I/O      | NVDD2_OFF       | —    |
| PCI_PAR                         | G24                | I/O      | NVDD2_OFF       | —    |
| PCI_FRAME                       | C28                | I/O      | NVDD2_OFF       | 5    |
| PCI_TRDY                        | A24                | I/O      | NVDD2_OFF       | 5    |
| PCI_IRDY                        | D25                | I/O      | NVDD2_OFF       | 5    |
| PCI_STOP                        | D23                | I/O      | NVDD2_OFF       | 5    |
| PCI_DEVSEL                      | E22                | I/O      | NVDD2_OFF       | 5    |
| PCI_IDSEL                       | D26                | I        | NVDD2_OFF       | —    |
| PCI_SERR                        | C25                | I/O      | NVDD2_OFF       | 5    |
| PCI_PERR                        | D21                | I/O      | NVDD2_OFF       | 5    |
| PCI_REQ0                        | E18                | I/O      | NVDD2_OFF       | —    |
| PCI_REQ1/CPCI_HS_ES             | C18                | I        | NVDD2_OFF       | —    |
| PCI_REQ2                        | E17                | I        | NVDD2_OFF       | —    |
| PCI_GNT0                        | B20                | I/O      | NVDD2_OFF       | —    |
| PCI_GNT1/CPCI_HS_LED            | D17                | 0        | NVDD2_OFF       | —    |
| PCI_GNT2/CPCI_HS_ENUM           | E15                | 0        | NVDD2_OFF       | —    |
| M66EN                           | L24                | I        | NVDD2_OFF       | —    |
| PCI_CLK0                        | E23                | 0        | NVDD2_OFF       | —    |
| PCI_CLK1                        | F24                | 0        | NVDD2_OFF       | —    |
| PCI_CLK2                        | E25                | 0        | NVDD2_OFF       | —    |
| PCI_PME                         | B23                | I/O      | NVDD2_OFF       | 2    |
|                                 | ETSEC1/_USBULPI    |          |                 |      |
| GPIO_24/TSEC1_COL/USBDR_TXDRXD0 | J1                 | I/O      | LVDD1_OFF       | _    |
| GPIO_25/TSEC1_CRS/USBDR_TXDRXD1 | H1                 | I/O      | LVDD1 OFF       |      |

## Table 66. MPC8314E TEPBGA II Pinout Listing (continued)



## 24.2 Thermal Management Information

For the following sections,  $P_D = (VDD \times I_{DD}) + P_{I/O}$  where  $P_{I/O}$  is the power dissipation of the I/O drivers.

# 24.2.1 Estimation of Junction Temperature with Junction-to-Ambient Thermal Resistance

An estimation of the chip junction temperature, T<sub>J</sub>, can be obtained from the equation:

 $T_{J} = T_{A} + (R_{\theta JA} \times P_{D})$ where:  $T_{J} = \text{junction temperature (°C)}$  $T_{A} = \text{ambient temperature for the package (°C)}$  $R_{\theta JA} = \text{junction to ambient thermal resistance (°C/W)}$  $P_{D} = \text{power dissipation in the package (W)}$ 

The junction to ambient thermal resistance is an industry standard value that provides a quick and easy estimation of thermal performance. As a general statement, the value obtained on a single layer board is appropriate for a tightly packed printed circuit board. The value obtained on the board with the internal planes is usually appropriate if the board has low power dissipation and the components are well separated. Test cases have demonstrated that errors of a factor of two (in the quantity  $T_J - T_A$ ) are possible.

## 24.2.2 Estimation of Junction Temperature with Junction-to-Board Thermal Resistance

The thermal performance of a device cannot be adequately predicted from the junction to ambient thermal resistance. The thermal performance of any component is strongly dependent on the power dissipation of surrounding components. In addition, the ambient temperature varies widely within the application. For many natural convection and especially closed box applications, the board temperature at the perimeter (edge) of the package is approximately the same as the local air temperature near the device. Specifying the local ambient conditions explicitly as the board temperature provides a more precise description of the local ambient conditions that determine the temperature of the device.

At a known board temperature, the junction temperature is estimated using the following equation:

 $T_J = T_B + (R_{\theta JB} \times P_D)$ where:

 $T_J$  = junction temperature (°C)  $T_B$  = board temperature at the package perimeter (°C)

 $R_{\theta JB}$  = junction to board thermal resistance (°C/W) per JESD51-8

 $P_D$  = power dissipation in the package (W)

When the heat loss from the package case to the air can be ignored, acceptable predictions of junction temperature can be made. The application board should be similar to the thermal test condition: the component is soldered to a board with internal planes.



## 24.3.1 Experimental Determination of the Junction Temperature with a Heat Sink

When heat sink is used, the junction temperature is determined from a thermocouple inserted at the interface between the case of the package and the interface material. A clearance slot or hole is normally required in the heat sink. Minimizing the size of the clearance is important to minimize the change in thermal performance caused by removing part of the thermal interface to the heat sink temperature and then back calculate the case temperature using a separate measurement of the thermal resistance of the interface. From this case temperature, the junction temperature is determined from the junction to case thermal resistance.

$$T_J = T_C + (R_{\theta JC} \ x \ P_D)$$

Where

 $T_C$  is the case temperature of the package

 $R_{\theta JC}$  is the junction-to-case thermal resistance

P<sub>D</sub> is the power dissipation

## 25 System Design Information

This section provides electrical and thermal design recommendations for successful application of the MPC8314E.

## 25.1 System Clocking

The MPC8314E includes two PLLs.

- 1. The platform PLL (AVDD2) generates the platform clock from the externally supplied SYS\_CLK\_IN input. The frequency ratio between the platform and SYS\_CLK\_IN is selected using the platform PLL ratio configuration bits as described in Section 23.1, "System PLL Configuration."
- 2. The e300 Core PLL (AVDD1) generates the core clock as a slave to the platform clock. The frequency ratio between the e300 core clock and the platform clock is selected using the e300 PLL ratio configuration bits as described in Section 23.2, "Core PLL Configuration."

## 25.2 PLL Power Supply Filtering

Each of the PLLs listed above is provided with power through independent power supply pins (AVDD1,AVDD2 respectively). The  $AV_{DD}$  level should always be equivalent to VDD, and preferably these voltages are derived directly from VDD through a low frequency filter scheme such as the following.

There are a number of ways to reliably provide power to the PLLs, but the recommended solution is to provide independent filter circuits as illustrated in Figure 61, one to each of the  $AV_{DD}$  pins. By providing independent filters to each PLL the opportunity to cause noise injection from one PLL to the other is reduced.



**Revision History** 

## 27 Revision History

This table summarizes a revision history for this document.

| Table | 79. | Revision | History |
|-------|-----|----------|---------|
|       |     |          |         |

| Revision | Date    | Substantive Change(s)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|----------|---------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 2        | 11/2011 | <ul> <li>In Table 66:</li> <li>Corrected Note 10 to pull down.</li> <li>Added pull up information.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 1        | 11/2011 | <ul> <li>Added Notes 4, 5, 6, and 7 in Table 2.</li> <li>In Table 6: <ul> <li>Decoupled PCI_CLK and SYS_CLK_IN rise and fall times.</li> <li>Relaxed maximum rise/fall time of SYS_CLK_IN from 1.2 ns to 4 ns.</li> <li>Modified Note 2.</li> <li>Updated SYS_CLK_IN/PCI_CLK frequency from 66 MHz to 66.67 MHz.</li> </ul> </li> <li>Added note 4 to Table 9.</li> <li>Added a note stating "eTSEC should be interfaced with peripheral operating at same voltage level." in Section 9.1.1, "MII, RGMII, and RTBI DC Electrical Characteristics."</li> <li>Added a note in Table 26 stating "The frequency of RX_CLK should not exceed the TX_CLK by more than 300 ppm."</li> <li>Added a note in Table 29 stating "The frequency of RX_CLK should not exceed the GTX_CLK125 by more than 300 ppm."</li> <li>Added t<sub>1</sub>ALEHOV parameter to Table 44</li> <li>Replaced 50 with 50 Ω in Section 16.5, "Receiver Compliance Eye Diagrams."</li> <li>In Table 66: <ul> <li>Added Pull up and Pull down information.</li> <li>Removed Note 2 from TSEC_MDIO.</li> </ul> </li> <li>Removed Onfiguration 2 from Table 73.</li> <li>Removed Preliminary from Section 24, "Thermal."</li> <li>Replaced SYS_CLK Nwith SYS_CLK_IN throughout.</li> <li>Replaced all LBIUCM with LBCM.</li> <li>Replaced all SYS_CR_CLK_IN and SYS_CR_CLK_OUT with SYS_XTAL_IN and SYS_XTAL_OUT, respectively. Replaced all USB_CR_CLK_IN and USB_CR_CLK_OUT with USB_XTAL_OUT, respectively.</li> </ul> |
| 0        | 05/2009 | Initial public release                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |