

Welcome to **E-XFL.COM**

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded - Microcontrollers</u>"

Details	
Product Status	Obsolete
Core Processor	nX-U8/100
Core Size	8-Bit
Speed	4.2MHz
Connectivity	I ² C, SSP, UART/USART
Peripherals	LCD, Melody Driver, POR, PWM, WDT
Number of I/O	14
Program Memory Size	48KB (24K x 16)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	4K x 8
Voltage - Supply (Vcc/Vdd)	1.1V ~ 3.6V
Data Converters	A/D 2x12b, 2x24b
Oscillator Type	Internal
Operating Temperature	-20°C ~ 70°C (TA)
Mounting Type	Surface Mount
Package / Case	128-TQFP
Supplier Device Package	-
Purchase URL	https://www.e-xfl.com/product-detail/rohm-semi/ml610q428-nnntbz03a7

PWM

- Resolution 16 bits × 3 channel
- Synchronous serial port
 - Master/slave selectable
 - LSB first/MSB first selectable
 - 8-bit length/16-bit length selectable
 - Timer interrupt is used as a serial clock and selection is possible

• UART

- TXD/RXD × 1 channel
- Bit length, parity/no parity, odd parity/even parity, 1 stop bit/2 stop bits
- Positive logic/negative logic selectable
- Built-in baud rate generator
- I²C bus interface
 - Master function only
 - Fast mode (400 kbps@4MHz), standard mode (100 kbps@4MHz, 50kbps@500kHz)
- Melody driver
 - Scale: 29 types (Melody sound frequency: 508 Hz to 32.768 kHz)
 - Tone length: 63 types
 - Tempo: 15 types
 - Buzzer output mode (4 output modes, 8 frequencies, 16 duty levels)
- RC oscillation type A/D converter
 - 24-bit counter
 - Time division × 2 channels
- Successive approximation type A/D converter
 - 12-bit A/D converter
 - Input × 2 channels
- General-purpose ports
 - Non-maskable interrupt input port × 1 channel
 - Input-only port × 10 channels (including secondary functions)
 - Output-only port × 3 channels (including secondary functions)
 - Input/output port
 - ML610Q428: 14 channels (including secondary functions)
 - ML610Q429: 20 channels (including secondary functions)

• LCD driver

– Dot matrix can be supported.

ML610Q428: 1392 dots max. (58 seg \times 24 com), 1/1 to 1/24 duty

ML610Q429: 512 dots max. (64 seg \times 8 com) , 1/1 to 1/8 duty

- 1/3 or 1/4 bias (built-in bias generation circuit)
- Frame frequency selecable (approx. 32Hz, 64 Hz, 73 Hz, 85 Hz, and 102 Hz)
- Bias voltage multiplying clock selectable (8 types)
- Contrast adjustment (1/3 bias: 32 steps, 1/4 bias: 20 steps)
- LCD drive stop mode, LCD display mode, all LCDs on mode, and all LCDs off mode selectable
- Programmable display allocation function (available only when 1/1~1/8 duty is selected)

Reset

- Reset through the RESET_N pin
- Power-on reset generation when powered on
- Reset when oscillation stop of the low-speed clock is detected
- Reset by the watchdog timer (WDT) overflow
- Power supply voltage detect function

Judgment voltages: One of 16 levels
 Judgment accuracy: ±2% (Typ.)

Clock

Low-speed clock: (This LSI can not guarantee the operation withoug low-speed clock)
 Crystal oscillation (32.768 kHz)

- High-speed clock:

Built-in RC oscillation (2M/500kHz)

Built-in PLL oscillation (8.192 MHz ±2.5%), crystal/ceramic oscillation (4.096 MHz), external clock

Selection of high-speed clock mode by software:

Built-in RC oscillation, built-in PLL oscillation, crystal/ceramic oscillation, external clock

• Power management

- HALT mode: Instruction execution by CPU is suspended (peripheral circuits are in operating states).
- STOP mode: Stop of low-speed oscillation and high-speed oscillation (Operations of CPU and peripheral circuits are stopped.)
- Clock gear: The frequency of high-speed system clock can be changed by software (1/1, 1/2, 1/4, or 1/8 of the oscillation clock)
- Block Control Function: Power down (reset registers and stop clock supply) the circuits of unused peripherals.

Guaranteed operating range

Operating temperature: -20°C to 70°C
 Operating voltage: V_{DD} = 1.1V to 3.6V

 $\label{eq:continuous} \bullet \mbox{ Product name} - \mbox{Supported Function}$ The lien up to the ML610Q428and ML610Q429 is below.

- Chip (Die) -	ROM type	Operating temperature	Product availability
ML610Q428-xxxWA	Flash ROM	-20°C to +70°C	Yes
ML610Q429-xxxWA	Flash ROM	-20°C to +70°C	Yes

-128-pin plastic TQFP -	ROM type	Operating temperature	Product availability
ML610Q428-xxxTB	Flash ROM	-20°C to +70°C	Yes
ML610Q429-xxxTB	Flash ROM	-20°C to +70°C	Yes

xxx: ROM code number (xxx of the blank product is NNN)

Q:Flash ROM version

WA: Chip TB: TQFP

BLOCK DIAGRAM ML610Q428 Block Diagram

Figure 1 show the block diagram of the ML610Q428. "*" indicates the secondary function of each port.

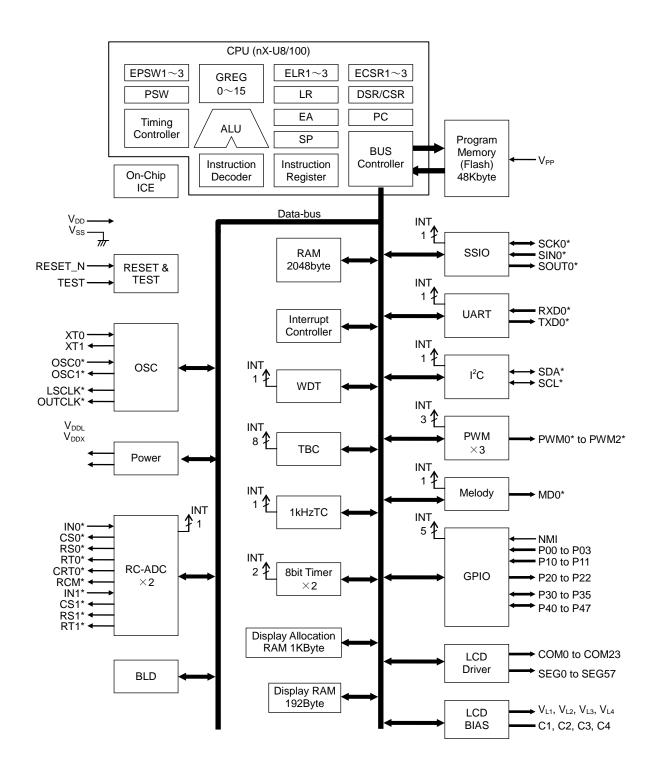
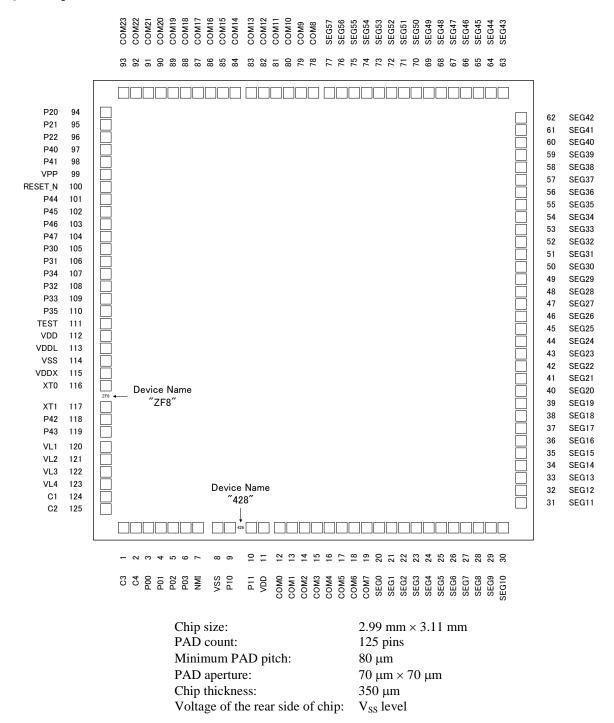
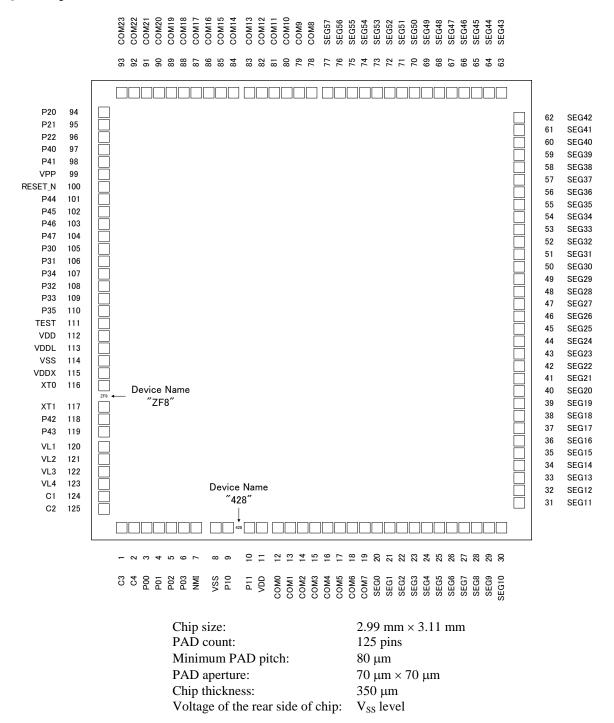


Figure 1 ML610Q428 Block Diagram

ML610Q428 Chip Dimension




Figure 5 ML610Q428 Chip Dimension

Note:

Figure 5 is an image figure of the order of PAD, and it differs from an actual image. Refer to the PAD coordinate for detailed arrangement.

A chip angle can be checked by the distinguishing mark of three figures.

ML610Q429 Chip Dimension

Figure 6 ML610Q429 Chip Dimension

Note:

Figure 6 is an image figure of the order of PAD, and it differs from an actual image. Refer to the PAD coordinate for detailed arrangement.

A chip angle can be checked by the distinguishing mark of three figures.

PIN LIST

PAD No. Primary function				S	Secor	ndary function		Teri	tiary function	
Q429	Q428	Pin name	1/0	Function	Pin name		Function	Pin name		Function
8,114		Vss		Negative power supply pin		_	—	<u> </u>		—
11,112	11,112	V_{DD}	—	Positive power supply pin	_	_	_	_	_	_
113	113	V_{DDL}	_	Power supply pin for internal logic (internally generated)		_	_			_
115	115	V_{DDX}	_	Power supply pin for low-speed oscillation (internally generated)	_	_	_	_		_
99	99	V_{PP}	_	Power supply pin for Flash ROM	_	_	_	_	_	_
120	120	V_{L1}	—	Power supply pin for LCD bias (internally generated)	_	_	_	_	_	_
121	121	V_{L2}	_	Power supply pin for LCD bias (internally generated)	_	_	_	_		_
122	122	V _{L3}	_	Power supply pin for LCD bias (internally generated)	_	_	_	_		_
123	123	V_{L4}	_	Power supply pin for LCD bias (internally generated)	_	_	_	_	-	_
124	124	C1	_	Capacitor connection pin for LCD bias generation	_	_	_	_		_
125	125	C2	_	Capacitor connection pin for LCD bias generation	_	_	_	_	_	_
1	1	C3	_	Capacitor connection pin for LCD bias generation	_	_	_	_		_
2	2	C4	_	Capacitor connection pin for LCD bias generation	_	_	_	_		_
111	111	TEST	I/O	Input/output pin for testing	_	—	_	_		_
100	100	RESET_N	ı	Reset input pin		_	_	_	_	_
116	116	XT0	I	Low-speed clock oscillation pin	_	_	_	_	_	_
117	117	XT1	0	Low-speed clock oscillation pin	_	_	_	_		_
7	7	NMI	I	Non-maskable interrupt pin	_	_	_	_	_	_
3	3	P00/EXI0	I	Input port, External interrupt 0 input	_	_	_	_	_	_
4	4	P01/EXI1	I	Input port, External interrupt 1 input	_		_	_	_	_
5	5	P02/EXI2 /RXD0 /P2CK	I	Input port, External interrupt 2, UART0 receive, PWM2 external clock input	_	_	_	_	_	_
6	6	P03/EXI3	ı	Input port, External interrupt 3	_	_		_	_	
90	_	P04/EXI4	I/O	Input port, External interrupt 4	_	_	_	_		_
91	_	P05/EXI5	I/O	Input port, External interrupt 5	_	_	_	_	_	_
92	_	P06/EXI6	I/O	Input port, External interrupt 6	_	_	_	_	_	_
93	—	P07/EXI7	I/O	Input port, External	_	—	_	_	—	_

ML610Q428/ML610Q429

PAD	No.		Prima	ary function	S	Secor	ndary function		Ter	tiary function
Q429	Q428	Pin name	1/0	Function	Pin name	1/0	Function	Pin name	I/O	Function
Q IZO	Q 120	Tillinanio	,, 0	interrupt 7	1 III Hairio	",	T directori	i iii iidiiio	., 0	T directori
9	9	P10	I	Input port	OSC0	I	High-speed oscillation	_	_	_
10	10	P11	I	Input port	OSC1	0	High-speed oscillation	_	_	_
94	94	P20/LED0	0	Output port	LSCLK	0	Low-speed clock output	PWM2	0	PWM2 output
95	95	P21/LED1	0	Output port	OUTCLK	0	High-speed clock output	_	_	_
96	96	P22/LED2	0	Output port	MD0	0	Melody output	_	_	_
105	105	P30	I/O	Input/output port	IN0	ı	RC type ADC0 oscillation input pin	PWM2	0	PWM2 output
106	106	P31	I/O	Input/output port	CS0	0	RC type ADC0 reference capacitor connection pin	_	_	_
108	108	P32	I/O	Input/output port	RS0	0	RC type ADC0 reference resistor connection pin	_	_	_
109	109	P33	I/O	Input/output port	RT0	0	RC type ADC0 resistor sensor connection pin	_	_	_
107	107	P34	I/O	Input/output port	RCT0	0	RC type ADC0 resistor/capacitor sensor connection pin	PWM0	0	PWM0 output
110	110	P35	I/O	Input/output port	RCM	0	RC type ADC oscillation monitor	PWM1	0	PWM1 output
97	97	P40	I/O	Input/output port	SDA	I/O	I ² C data input/output	SIN0	ı	SSIO data input
98	98	P41	I/O	Input/output port	SCL	I/O	I ² C clock input/output	SCK0	I/O	SSIO synchronous clock
118	118	P42	I/O	Input/output port	RXD0	ı	UART data input	SOUT0	0	SSIO data output
119	119	P43	I/O	Input/output port	TXD0	0	UART data output	PWM0	0	PWM0 output
101	101	P44/T02P 0CK	I/O	Input/output port, Timer 0/Timer 2/PWM0 external clock input	IN1	Ι	RC type ADC1 oscillation input pin	SIN0	_	SSIO0 data input
102	102	P45/T13P 1CK	I/O	Input/output port, Timer 1/Timer 3/PWM1 external clock input	CS1	0	RC type ADC1 reference capacitor connection pin	SCK0	I/O	SSIO0 synchronous clock
103	103	P46/T46P 2CK	I/O	Input/output port, PWM2 external clock input	RS1	0	RC type ADC1 reference resistor connection pin	SOUT0	0	SSIO0 data output
104	1004	P47	I/O	Input/output port	RT1	0	RC type ADC1 resistor sensor connection pin	PWM1	0	PWM1 output
84	_	PA0	I/O	Input/output port	_	_	_	_	—	_
85	_	PA1	I/O	Input/output port	_	_	_	_	_	_
86	_	PA2	I/O	Input/output port	_	_	_	_	_	_
87	_	PA3	I/O	Input/output port	_	_	_	_	_	_
88	_	PA4	I/O	Input/output port		_	_	_	—	_
89		PA5	I/O	Input/output port	_	_		_	_	_
12	12	COM0	0	LCD common pin	_	_		_	_	_
13	13	COM1	0	LCD common pin		_			_	_
14	14	COM2	0	LCD common pin		_			_	_
15	15	COM3	0	LCD common pin	_	_			_	_
16	16	COM4	0	LCD common pin		_	_		_	_
17	17	COM5	0	LCD common pin		_	_		_	_
18	18	COM6	0	LCD common pin		_	_		_	_
19	19	COM7	0	LCD common pin		_	_	_	_	_
	78	COM8	0	LCD common pin	_	_		_	_	_
	79	COM9	0	LCD common pin	_		<u> </u>	_	_	_
_	80	COM10	0	LCD common pin		_			_	_
	81	COM11	0	LCD common pin	_			_	_	_
	82	COM12	0	LCD common pin	_	_	<u> </u>	_	_	_
_	83	COM13	0	LCD common pin	_	_	<u> </u>	_	_	_
	84	COM14	0	LCD common pin	_	_			_	_
_	85	COM15	0	LCD common pin	_	_	_		_	_

PIN DESCRIPTION

			Primary/	
Pin name	1/0	Description	Secondary/	Logic
1 III Hallio	1,0	Beschption	Tertiary	Logic
System	l		Tortiary	
RESET_N	ı	Reset input pin. When this pin is set to a "L" level, system reset mode is	_	Negative
		set and the internal section is initialized. When this pin is set to a "H" level		rioganio
		subsequently, program execution starts. A pull-up resistor is internally		
		connected.		
XT0	-	Crystal connection pin for low-speed clock.	_	_
XT1	0	A 32.768 kHz crystal oscillator (see measuring circuit 1) is connected to		
		this pin. Capacitors CDL and CGL are connected across this pin and $V_{\rm SS}$ as required.	_	_
OSC0		Crystal/ceramic connection pin for high-speed clock.	Secondary	
OSC1	0	A crystal or ceramic is connected to this pin (4.1 MHz max.). Capacitors	Secondary	
0301		CDH and CGH (see measuring circuit 1) are connected across this pin	Secondary	_
		and V _{SS} .		
		This pin is used as the secondary function of the P10 pin(OSC0) and P11		
		pin(OSC1).		
LSCLK	0	Low-speed clock output pin. This pin is used as the secondary function of	Secondary	_
OUTOUK		the P20 pin.	0	
OUTCLK	0	High-speed clock output pin. This pin is used as the secondary function of the P21 pin.	Secondary	_
General-purpo	ose in	put port		
P00-P03	Ι	General-purpose input port.	Primary	Positive
		Since these pins have secondary functions, the pins cannot be used as a		
		port when the secondary functions are used.		
P04-P07	I	General-purpose input port.	Primary	Positive
		Since these pins have secondary functions, the pins cannot be used as a		
		port when the secondary functions are used.		
		These pins are for the ML610Q429, but are not provided in the ML610Q428.		
P10-P11	ı	General-purpose input port.	Drimon	Positive
P10-P11	'	Since these pins have secondary functions, the pins cannot be used as a	Primary	Positive
		port when the secondary functions are used.		
General-purpo	ose oi		1	
P20-P22	0	General-purpose output port.	Primary	Positive
1 20 1 22		Since these pins have secondary functions, the pins cannot be used as a	1 minary	1 0311110
		port when the secondary functions are used.		
General-purpo	ose in	put/output port		
P30-P35	I/O		Primary	Positive
		Since these pins have secondary functions, the pins cannot be used as a		
		port when the secondary functions are used.		
P40-P47	I/O	General-purpose input/output port.	Primary	Positive
		Since these pins have secondary functions, the pins cannot be used as a		
		port when the secondary functions are used.		
PA0-PA5	I/O	General-purpose input/output port.	Primary	Positive
		These pins are for the ML610Q429, but are not provided in the		
		ML610Q428.		

Pin name			Primary/ Secondary/ Tertiary	Logic
UART				
TXD0	0	UART data output pin. This pin is used as the secondary function of the P43 pin.	Secondary	Positive
RXD0	I	UART data input pin. This pin is used as the secondary function of the P42 or the primary function of the P02 pin.	Primary/Se condary	Positive
I ² C bus interf	ace			
SDA	I/O	I ² C data input/output pin. This pin is used as the secondary function of the P40 pin. This pin has an NMOS open drain output. When using this pin as a function of the I ² C, externally connect a pull-up resistor.	Secondary	Positive
SCL	0	I ² C clock output pin. This pin is used as the secondary function of the P41 pin. This pin has an NMOS open drain output. When using this pin as a function of the I ² C, externally connect a pull-up resistor.	Secondary	Positive
Synchronous	serial	(SSIO)		
SCK0	I/O	Synchronous serial clock input/output pin. This pin is used as the tertiary function of the P41 or P45 pin.	Tertiary	_
SIN0	I	Synchronous serial data input pin. This pin is used as the tertiary function of the P40 or P44 pin.	Tertiary	Positive
SOUT0	0	Synchronous serial data output pin. This pin is used as the tertiary function of the P42 or P46 pin.	Tertiary	Positive
PWM				
PWM0	0	PWM0 output pin. This pin is used as the tertiary function of the P43 or P34 pin.	Tertiary	Positive
T0P0CK	I	PWM0 external clock input pin. This pin is used as the primary function of the P44 pin.		_
PWM1	0	PWM1 output pin. This pin is used as the tertiary function of the P47 or P35 pin.	Tertiary	Positive
T1P1CK	I	PWM1 external clock input pin. This pin is used as the primary function of the P45 pin.	Primary	_
PWM2	0	PWM2 output pin. This pin is used as the tertiary function of the P20 or P30 pin.	Tertiary	Positive
P2CK	I	PWM2 external clock input pin. This pin is used as the primary function of the P02 pin.	Primary	
External inter	rupt			
NMI	ı	External non-maskable interrupt input pin. An interrupt is generated on both edges.	Primary	Positive/ negative
EXI0-7	I	External maskable interrupt input pins. Interrupt enable and edge selection can be performed for each bit by software. These pins are used as the primary functions of the P00-P07 pins.	Primary	Positive/ negative
Timer				
T0P0CK	I	External clock input pin used for Timer 0. This pin is used as the primary function of the P44 pin.	Primary	_
T1P1CK	I	External clock input pin used for Timer 1. This pin is used as the primary function of the P45 pin.	Primary	
Melody				
MD0	0	Melody/buzzer signal output pin. This pin is used as the secondary function of the P22 pin.	Secondary	Positive/ negative
LED drive				
LED0-2	0	Nch open drain output pins to drive LED.	Primary	Positive/ negative

Pin name	I/O	Description	Primary/ Secondary/	Logic	
		'	Tertiary		
RC oscillation	type	A/D converter			
IN0	N0 I Channel 0 oscillation input pin. This pin is used as the secondary function of the P30 pin. S0 O Channel 0 reference capacitor connection pin. This pin is used as the				
CS0	0	Secondary	_		
RS0	0	secondary function of the P31 pin. This pin is used as the secondary function of the P32 pin which is the reference resistor connection pin of Channel 0.	Secondary	_	
RT0	0	Resistor sensor connection pin of Channel 0 for measurement. This pin is used as the secondary function of the P34 pin.	Secondary	_	
CRT0	0	Resistor/capacitor sensor connection pin of Channel 0 for measurement. This pin is used as the secondary function of the P33 pin.	Secondary	_	
RCM	0	RC oscillation monitor pin. This pin is used as the secondary function of the P35 pin.	Secondary	_	
IN1	I	Oscillation input pin of Channel 1. This pin is used as the secondary function of the P44 pin.	Secondary	_	
CS1	0	Reference capacitor connection pin of Channel 1. This pin is used as the secondary function of the P45 pin.	Secondary		
RS1	0	Reference resistor connection pin of Channel 1. This pin is used as the secondary function of the P46 pin.	Secondary	_	
RT1	0	Resistor sensor connection pin for measurement of Channel 1. This pin is used as the secondary function of the P47 pin.	Secondary	_	
LCD drive sig	ınal	·			
COM0-7	0	Common output pins.	_	_	
COM8-23	0	Common output pins. These pins are for the ML610Q428, but are not provided in the ML610Q429.	_	_	
SEG0-57	0	Segment output pin.	_	_	
SEG58-63	0	Segment output pins. These pins are for the ML610Q429, but are not provided in the ML610Q428.	_	_	
LCD driver po	ower s		ı.		
V _{L1}		Power supply pins for LCD bias (internally generated). Capacitors Ca, Cb,	_		
V _{L2}		Cc, and Cd (see measuring circuit 1) are connected between V _{SS} and V _{L1} ,			
V _{L2}		V_{L2} , V_{L3} , and V_{L4} , respectively.			
			_		
V _{L4}	_		_		
C1	<u> </u>	Power supply pins for LCD bias (internally generated). Capacitors C12			
C2	<u> </u>	and C34 (see measuring circuit 1) are connected between C1 and C2 and		_	
C3	_	between C3 and C4, respectively.	_	_	
C4	_				
For testing					
TEST	I/O	Input/output pin for testing. A pull-down resistor is internally connected.	_	_	
Power supply		•			
V _{SS}	_	Negative power supply pin.	_	_	
V _{DD}	 	Positive power supply pin.			
V _{DDL}	_	Positive power supply pin: Positive power supply pin (internally generated) for internal logic. Capacitors CL0 and CL1 (see measuring circuit 1) are connected between this pin and V _{SS} .	_		
V_{DDX}	_	Plus-side power supply pin (internally generated) for low-speed oscillation. Capacitor Cx (see measuring circuit 1) is connected between this pin and V _{SS} .	_	_	
V_{PP}	_	Power supply pin for programming Flash ROM. A pull-up resistor is internally connected.		_	

ELECTRICAL CHARACTERISTICS

ABSOLUTE MAXIMUM RATINGS

 $(V_{SS} = 0V)$

Parameter	Symbol	Condition	Rating	Unit
Power supply voltage 1	V_{DD}	Ta = 25°C	-0.3 to +4.6	V
Power supply voltage 2	V _{PP}	Ta = 25°C	-0.3 to +9.5	V
Power supply voltage 3	V _{DDL}	Ta = 25°C	-0.3 to +3.6	V
Power supply voltage 4	V _{DDX}	Ta = 25°C	-0.3 to +3.6	V
Power supply voltage 5	V _{L1}	Ta = 25°C	-0.3 to +1.75	V
Power supply voltage 6	V_{L2}	Ta = 25°C	-0.3 to +3.5	V
Power supply voltage 7	V _{L3}	Ta = 25°C	-0.3 to +5.25	V
Power supply voltage 8	V _{L4}	Ta = 25°C	-0.3 to +7.0	V
Input voltage	V _{IN}	Ta = 25°C	-0.3 to V _{DD} +0.3	V
Output voltage	V _{OUT}	Ta = 25°C	-0.3 to V _{DD} +0.3	V
Output current 1	I _{OUT1}	Port3–A, Ta = 25°C	-12 to +11	mA
Output current 2	I _{OUT2}	Port2, Ta = 25°C	Port2, Ta = 25°C —12 to +20	
Power dissipation	PD	Ta = 25°C	122	mW
Storage temperature	T _{STG}	_	−55 to +150	°C

RECOMMENDED OPERATING CONDITIONS

 $(V_{SS} = 0V)$

				•
Parameter	Symbol	Condition	Range	Unit
Operating temperature	T _{OP}	<u> </u>	-20 to +70	°C
Operating voltage	V_{DD}		1.1 to 3.6	V
Operating frequency (CPU)	f _{OP}	$V_{DD} = 1.1 \text{ to } 3.6 \text{V}$ $V_{DD} = 1.3 \text{ to } 3.6 \text{V}$ $V_{DD} = 1.8 \text{ to } 3.6 \text{V}$	30k to 36k 30k to 650k 30k to 4.2M	Hz
Capacitor externally connected to V _{DDL} pin	C _{L0}	-	1.0±30% 0.1±30%	μF
Capacitor externally connected to V _{DDX} pin	C _X	_	0.1±30%	μF
Capacitors externally connected to V _{L1, 2, 3, 4} pins	C _{a, b, c, d}	_	1.0±30%	μF
Capacitors externally connected across C1 and C2 pins and across C3 and C4 pins	C ₁₂ , C ₃₄	_	1.0±30%	μF

ML610Q428/ML610Q429

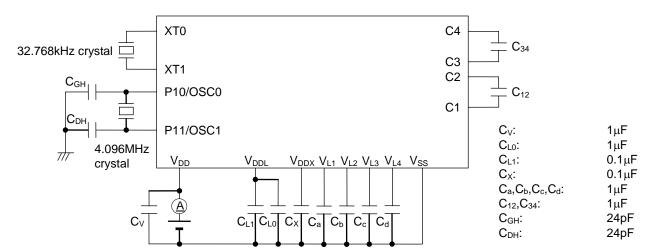
CLOCK GENERATION CIRCUIT OPERATING CONDITIONS

 $(V_{SS} = 0V)$

		0 1111		Rating		
Parameter	Symbol	Condition	Min.	Тур.	Max.	Unit
Low-speed crystal oscillation frequency	f _{XTL}	_	_	32.768k	_	Hz
Recommended equivalent series resistance value of low-speed crystal oscillation	R_L	_	_	_	40k	Ω
		C _L =6pF of crystal oscillation *2		0	_	
Low-speed crystal oscillation external capacitor *1	C _{DL} /C _{GL}	C _L =9pF of crystal oscillation	_	6	_	pF
		C _L =12pF of crystal oscillation	_	12	_	
High-speed crystal/ceramic oscillation frequency	f _{XTH}			4.0M / 4.096M		Hz
High-speed crystal oscillation	Срн	_		24	_	nE
external capacitor	C_GH	_	_	24	_	pF

^{*1:} The external C_{DL} and C_{GL} need to be adjusted in consideration of variation of internal loading capacitance C_D and C_G, and other additional capacitance such as PCB layout.

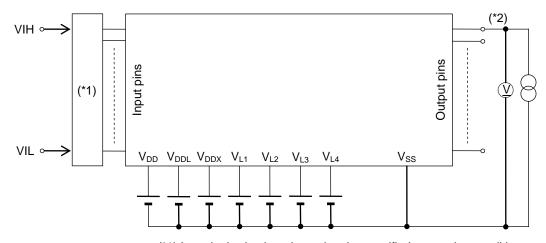
When using a crystal oscillator $C_L = 6pF$, there is a possibility that can not be adjusted by external C_{DL} and C_{GL} .


DC CHARACTERISTICS (4/5)

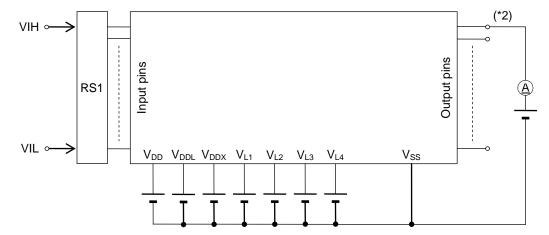
 $(V_{DD} = 1.1 \text{ to } 3.6\text{V}, V_{SS} = 0\text{V}, \text{ Ta} = -20 \text{ to } +70^{\circ}\text{C}, \text{ unless otherwise specified)}$ (4/5)

			.1 to 3.6V, $V_{SS} = 0V$, T	<u>a = -20 t</u>	Rating	uriless o		Measuring
Parameter	Symbol	Con	dition	Min.	Тур.	Max.	Unit	circuit
		IOH1 = -0.5mA,	$V_{DD} = 1.8 \text{ to } 3.6 \text{V}$	V _{DD} -0.5	_	_		
Output voltage 1 (P20–P22/2 nd	VOH1	IOH1 = -0.1mA,	IOH1 = -0.1mA, V_{DD} = 1.3 to 3.6V		_			
function is selected)		IOH1 = -0.03mA, \	$V_{\rm DD} = 1.1 \text{ to } 3.6 \text{V}$	V _{DD} -0.3	_	_		
(P30–P36) (P40–P47)		IOL1 = +0.5mA,	$V_{DD} = 1.8 \text{ to } 3.6 \text{V}$	_	_	0.5	1	
(PA0-PA5)*1	VOL1	IOL1 = +0.1mA,	$V_{DD} = 1.3 \text{ to } 3.6 \text{V}$	_	_	0.5]	
,	VOLI	IOL1 = +0.03mA	$V_{DD} = 1.1 \text{ to } 3.6 \text{ V}$	_	_	0.3		
		IOH1 = −0.5mA,	$V_{DD} = 1.8 \text{ to } 3.6 \text{V}$	V _{DD} -0.5	_	_		
Output voltage 2 (P20–P22/2 nd	VOH2	IOH1 = -0.1mA,	V _{DD} = 1.3 to 3.6V	V _{DD} -0.3	_	_		
function is Not selected)		IOH1 = -0.03mA	, V _{DD} = 1.1 to 3.6V	V _{DD} -0.3	_	_		
	VOL2	IOL2 = +5mA, \	$V_{DD} = 1.8 \text{ to } 3.6 \text{V}$	_	_	0.5		
Output voltage 3 (P40–P41)	VOL3		V _{DD} = 2.0 to 3.6V ode is selected)	_	_	0.4	V	2
	VOH4	,	mA, VL1=1.2V	V _{L4} -0.2	_	_		
	VOMH4	IOMH4 = +0.2	— —	_	V _{L3} +0.2			
	VOMH4S	IOMH4S = −0.	V _{L3} -0.2	_				
Output voltage 4 (COM0–23)	VOM4	IOM4 = +0.2	-0.2	_	V _{L2} +0.2			
(SEG0-63)	VOM4S	IOM4S = −0.2	V _{L2} -0.2	_	_			
	VOML4	IOML4 = +0.2	_		V _{L1} +0.2			
	VOML4S	IOML4S = −0.	2mA, VL1=1.2V	V _{L1} -0.2	_	_		
	VOL4	IOL4 = +0.2r	mA, VL1=1.2V	_	_	0.2	1	
Output leakage (P20–P22) (P30–P35)	ЮОН	VOH = V _{DD} (in hig	h-impedance state)	_	_	1	μА	3
(P40–P47) (PA0–PA5) ^{*1}	IOOL	VOL = V _{SS} (in high	h-impedance state)	-1	_	_		
	IIH1	VIH1	= V _{DD}	0		1		
Input current 1			$V_{DD} = 1.8 \text{ to } 3.6 \text{V}$	-600	-300	-20		
(RESET_N)	IIL1	VIL1 = V _{SS}	$V_{DD} = 1.3 \text{ to } 3.6 \text{V}$	-600	-300	-10		
			$V_{DD} = 1.1 \text{ to } 3.6 \text{V}$	-600	-300	-2		
Input current 1	IIH1	VIH1 = V _{DD}	$V_{DD} = 1.8 \text{ to } 3.6 \text{V}$ $V_{DD} = 1.3 \text{ to } 3.6 \text{V}$	20 10	300	600 600		
Input current 1 (TEST)	''''	VIIII = VDD	$V_{DD} = 1.3 \text{ to } 3.6 \text{V}$ $V_{DD} = 1.1 \text{ to } 3.6 \text{V}$	2	300 300	600	μΑ	4
· - ·/	IIL1	VII.1	$I = V_{ss}$	-1	_	_	μΑ	7
Input current 0			$V_{DD} = 1.8 \text{ to } 3.6 \text{V}$	2	30	200		
Input current 2 (NMI)	IIH2	$VIH2 = V_{DD}$	$V_{DD} = 1.3 \text{ to } 3.6 \text{V}$	0.2	30	200	1	
(P00–P03) (P04–P07) *1		(when pulled-down)	$V_{DD} = 1.1 \text{ to } 3.6 \text{V}$	0.01	30	200	1	
	III o	VIL2 = V _{SS}	$V_{DD} = 1.8 \text{ to } 3.6 \text{V}$	-200	-30	-2		
(P10-P11)	IIL2	(when pulled-up)	$V_{DD} = 1.3 \text{ to } 3.6 \text{V}$	-200	-30	-0.2	<u></u>	

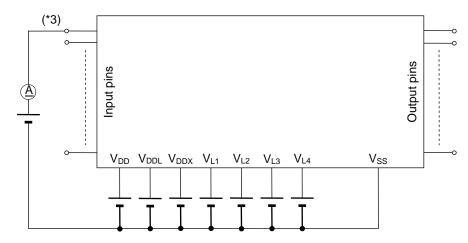
MEASURING CIRCUITS


MEASURING CIRCUIT 1

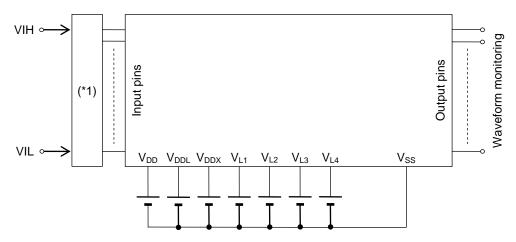
32.768kHz crystal resonator DT-26 (Load capacitance 6pF) (Made by KDS:DAISHINKU CORP.)


4.096MHz crystal: HC49SFWB (Kyocera)

MEASURING CIRCUIT 2


- (*1) Input logic circuit to determine the specified measuring conditions.
- (*2) Measured at the specified output pins.

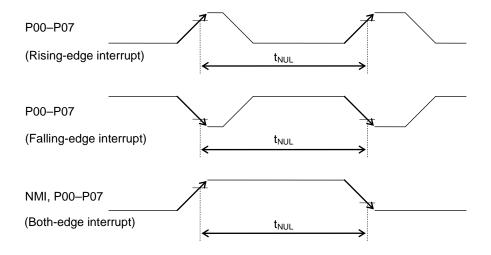
MEASURING CIRCUIT 3


- *1: Input logic circuit to determine the specified measuring conditions.
- *2: Measured at the specified output pins.

MEASURING CIRCUIT 4

*3: Measured at the specified output pins.

MEASURING CIRCUIT 5

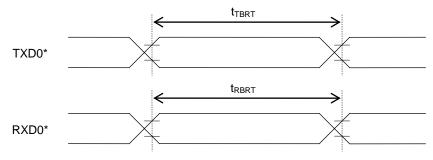


*1: Input logic circuit to determine the specified measuring conditions.

AC CHARACTERISTICS (External Interrupt)

 $(V_{DD} = 1.1 \text{ to } 3.6\text{V}, V_{SS} = 0\text{V}, \text{Ta} = -20 \text{ to } +70^{\circ}\text{C}, \text{ unless otherwise specified})$

Davamatar	Symbol	Condition	Rating			l limit
Parameter			Min.	Тур.	Max.	Unit
External interrupt disable period	T _{NUL}	Interrupt: Enabled (MIE = 1), CPU: NOP operation System clock: 32.768kHz	76.8	_	106.8	μS

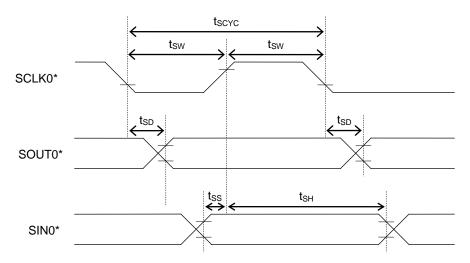


AC CHARACTERISTICS (UART)

 $(V_{DD} = 1.3 \text{ to } 3.6 \text{V}, V_{SS} = 0 \text{V}, \text{Ta} = -20 \text{ to } +70 ^{\circ}\text{C}, \text{ unless otherwise specified})$

Parameter	Symbol	Condition	Rating			Linit
			Min.	Тур.	Max.	Unit
Transmit baud rate	t _{TBRT}	_	_	BRT*1	_	s
Receive baud rate	t _{RBRT}	_	BRT* ¹ -3%	BRT*1	BRT* ¹ +3%	s

^{*1:} Baud rate period (including the error of the clock frequency selected) set with the UART baud rate register (UA0BRTL,H) and the UART mode register 0 (UA0MOD0).


^{*:} Indicates the secondary function of the port.

AC CHARACTERISTICS (Synchronous Serial Port)

 $(V_{DD} = 1.3 \text{ to } 3.6 \text{V}, V_{SS} = 0 \text{V}, \text{ Ta} = -20 \text{ to } +70 ^{\circ}\text{C}, \text{ unless otherwise specified}$

$(V_{DD} = 1.3 \text{ to } 3.6\text{V}, V_{SS} = 0\text{V}, \text{Ta} = -20 \text{ to } +70^{\circ}\text{C}, \text{ unless otherwise specification}$						
Parameter	Cymbal	Condition	Rating			I Imit
	Symbol	Condition	Min.	Тур.	Max.	Unit
SCLK input cycle (slave mode)		When high-speed oscillation is not active	10	_	_	μS
	tscyc	When high-speed oscillation is active ($V_{DD} = 1.8 \text{ to } 3.6\text{V}$)	1		_	μS
SCLK output cycle (master mode)	t _{SCYC}	_		SCLK*1	_	S
SCLK input pulse width (slave mode)		When high-speed oscillation is not active	4	_	_	μS
	t _{SW}	When high-speed oscillation is active (V _{DD} = 1.8 to 3.6V)	0.4	_	_	μS
SCLK output pulse width (master mode)	tsw	_	SCLK* ¹ ×0.4	SCLK* ¹ ×0.5	SCLK* ¹ ×0.6	S
SOUT output delay time (slave mode)	t _{SD}	_		_	180	ns
SOUT output delay time (master mode)	t _{SD}	_		_	80	ns
SIN input setup time (slave mode)	t _{SS}	_	80		_	ns
SIN input setup time (master mode)	t _{SS}	_	180	_	_	ns
SIN input hold time	t _{SH}	_	80	_	_	ns

^{*1:} Clock period selected with S0CK3-0 of the serial port 0 mode register (SIO0MOD1)

^{*:} Indicates the secondary function of the port.

REVISION HISTORY

		Page					
Document No. Da	Date	Previous	Current	Description			
		Edition	Edition				
FEDL610Q428-01	Feb.7.2011	_	_	Formally edition 1.0			
FEDL610Q428-02	Jun 7.2011	3	3	Add the P version			
		All	All	Change header and footer			
	July.25.2014	3,18,19,	3,18,20,				
		20,21,22,	21,22,23,	Delete the Diversion			
		23,26,27,	24,27,28,	Delete the P version			
FEDL610Q428-03		28,29	29,30				
		3,7	4	Delete package products			
		2,7	2	Delete the metal option of only ML610Q429's LCD driver			
		3	4	Change from "Shipment" to " Product name - Supported			
				Function "			
		-	19	Add CLOCK GENERATION CIRCUIT OPERATING			
				CONDITIONS			
		19	20	Change "RESET" to "Reset pulse width (PRST)" and "			
				Power-on reset activation power rise time (T _{POR})".			
		21	22	Correct the CgL's value and the CpL's value of DC			
				CHARACTERISTICS (3/5)'s note No.3			
		30	31	Update Package Dimensions			
FEDL610Q428-04	May.15,2015	2	2	Corrected a typo.			
				"100kbps@1MHz HSCLK" is corrected to 100kbps@4MHz			
			4.0	HSCLK.			
		-	4,8	Add the ML610Q429 package product			

Notes

- 1) The information contained herein is subject to change without notice.
- 2) Although LAPIS Semiconductor is continuously working to improve product reliability and quality, semiconductors can break down and malfunction due to various factors. Therefore, in order to prevent personal injury or fire arising from failure, please take safety measures such as complying with the derating characteristics, implementing redundant and fire prevention designs, and utilizing backups and fail-safe procedures. LAPIS Semiconductor shall have no responsibility for any damages arising out of the use of our Products beyond the rating specified by LAPIS Semiconductor.
- 3) Examples of application circuits, circuit constants and any other information contained herein are provided only to illustrate the standard usage and operations of the Products. The peripheral conditions must be taken into account when designing circuits for mass production.
- 4) The technical information specified herein is intended only to show the typical functions of the Products and examples of application circuits for the Products. No license, expressly or implied, is granted hereby under any intellectual property rights or other rights of LAPIS Semiconductor or any third party with respect to the information contained in this document; therefore LAPIS Semiconductor shall have no responsibility whatsoever for any dispute, concerning such rights owned by third parties, arising out of the use of such technical information.
- 5) The Products are intended for use in general electronic equipment (i.e. AV/OA devices, communication, consumer systems, gaming/entertainment sets) as well as the applications indicated in this document.
- 6) The Products specified in this document are not designed to be radiation tolerant.
- 7) For use of our Products in applications requiring a high degree of reliability (as exemplified below), please contact and consult with a LAPIS Semiconductor representative: transportation equipment (i.e. cars, ships, trains), primary communication equipment, traffic lights, fire/crime prevention, safety equipment, medical systems, servers, solar cells, and power transmission systems.
- 8) Do not use our Products in applications requiring extremely high reliability, such as aerospace equipment, nuclear power control systems, and submarine repeaters.
- 9) LAPIS Semiconductor shall have no responsibility for any damages or injury arising from non-compliance with the recommended usage conditions and specifications contained herein.
- 10) LAPIS Semiconductor has used reasonable care to ensure the accuracy of the information contained in this document. However, LAPIS Semiconductor does not warrant that such information is error-free and LAPIS Semiconductor shall have no responsibility for any damages arising from any inaccuracy or misprint of such information.
- 11) Please use the Products in accordance with any applicable environmental laws and regulations, such as the RoHS Directive. For more details, including RoHS compatibility, please contact a ROHM sales office. LAPIS Semiconductor shall have no responsibility for any damages or losses resulting non-compliance with any applicable laws or regulations.
- 12) When providing our Products and technologies contained in this document to other countries, you must abide by the procedures and provisions stipulated in all applicable export laws and regulations, including without limitation the US Export Administration Regulations and the Foreign Exchange and Foreign Trade Act.
- 13) This document, in part or in whole, may not be reprinted or reproduced without prior consent of LAPIS Semiconductor.

Copyright 2011 – 2015 LAPIS Semiconductor Co., Ltd.

LAPIS Semiconductor Co., Ltd.

2-4-8 Shinyokohama, Kouhoku-ku, Yokohama 222-8575, Japan http://www.lapis-semi.com/en/