

Welcome to **E-XFL.COM**

<u>Embedded - Microcontrollers - Application</u>
<u>Specific</u>: Tailored Solutions for Precision and Performance

Embedded - Microcontrollers - Application Specific represents a category of microcontrollers designed with unique features and capabilities tailored to specific application needs. Unlike general-purpose microcontrollers, application-specific microcontrollers are optimized for particular tasks, offering enhanced performance, efficiency, and functionality to meet the demands of specialized applications.

What Are <u>Embedded - Microcontrollers - Application Specific</u>?

Application enacific microcontrollars are anaineared to

Details	
Product Status	Active
Applications	Capacitive Sensing
Core Processor	M8C
Program Memory Type	FLASH (8kB)
Controller Series	CY8C20xx6A
RAM Size	1K x 8
Interface	I ² C, SPI
Number of I/O	36
Voltage - Supply	1.71V ~ 5.5V
Operating Temperature	-40°C ~ 85°C
Mounting Type	Surface Mount
Package / Case	48-UFQFN Exposed Pad
Supplier Device Package	48-QFN (6x6)
Purchase URL	https://www.e-xfl.com/product-detail/infineon-technologies/cy8c20636a-24lqxi

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

More Information

Cypress provides a wealth of data at www.cypress.com to help you to select the right PSoC device for your design, and to help you to quickly and effectively integrate the device into your design. For a comprehensive list of resources, see the knowledge base article KBA92181, Resources Available for CapSense® Controllers. Following is an abbreviated list for CapSense devices:

- Overview: CapSense Portfolio, CapSense Roadmap
- Product Selectors: CapSense, CapSense Plus, CapSense Express, PSoC3 with CapSense, PSoC5 with CapSense, PSoC4. In addition, PSoC Designer offers a device selection tool at the time of creating a new project.
- Application notes: Cypress offers CapSense application notes covering a broad range of topics, from basic to advanced level. Recommended application notes for getting started with CapSense are:
 - □ AN64846: Getting Started With CapSense
 - □ AN73034: CY8C20xx6A/H/AS CapSense® Design Guide
- □ AN2397: CapSense® Data Viewing Tools
- Technical Reference Manual (TRM):
 - □ PSoC® CY8C20xx6A/AS/L Family Technical Reference Manual

■ Development Kits:

- □ CY3280-20x66 Universal CapSense Controller Kit features a predefined control circuitry and plug-in hardware to make prototyping and debugging easy. Programming and I2C-to-USB Bridge hardware are included for tuning and data acquisition.
- CY3280-BMM Matrix Button Module Kit consists of eight CapSense sensors organized in a 4x4 matrix format to form 16 physical buttons and eight LEDs. This module connects to any CY3280 Universal CapSense Controller Board, including CY3280-20x66 Universal CapSense Controller.
- □ CY3280-BSM Simple Button Module Kit consists of ten CapSense buttons and ten LEDs. This module connects to any CY3280 Universal CapSense Controller Board, including CY3280-20x66 Universal CapSense Controller.

The CY3217-MiniProg1 and CY8CKIT-002 PSoC® MiniProg3 device provides an interface for flash programming.

PSoC Designer

PSoC Designer is a free Windows-based Integrated Design Environment (IDE). It enables concurrent hardware and firmware design of systems based on CapSense (see Figure 1). With PSoC Designer, you can:

- 1. Drag and drop User Modules to build your hardware system design in the main design workspace
- 2. Codesign your application firmware with the PSoC hardware, using the PSoC Designer IDE C compiler
- 3. Configure User Module
- 4. Explore the library of user modules
- 5. Review user module datasheets

Example_CSD_EzI2Cs_Filters_20xx6 - PSoC Designer 5.4 <u>File Edit View Project Interconnect Build Debug</u> Global Resources - example csd ezi2cs 20xx6

4 X IMO Setting CPU_Clock 24MHz SysClk/2 Workspace 'Example_CSD_EzI2Cs_Filters_20xx6' (1 project)

Example_CSD_EzI2Cs_Filters_20xx6 [CY8C20666-24LTXI]

Example_CSD_EzI2Cs_Filters_20xx6 [Chip] 32K_Select Internal ILO Setting 32kHz 512 Hz Loadable Configuration Interna 4.73V Disable Disable SysClk Source example_csd_ezi2cs_20xx6 - 2 User Modules Example_CSD_EzI2Cs_Filters_20xx6 |
Example_CSD_EzI2Cs_Filters_20xx6 | Interrupt Mode P1[0] Data Output IMO Setting Selects the speed of the internal main oscillator (IMO) Registers Affected: CPU_SCR1 IMO_TR arameters - CSD Name User Module Part 2.0 cap Workspace Explorer Co FingerThreshold 100 Noise Threshold User Modules User Modules
ADCs
Amplifiers
Cap Sensors
Digital Comm ndicates the name used to identify this User Module instance Digital Com
Legacy
Misc Digital
MUXs
Protocols
RF CapSense® Sigma-Delta Datasheet ⊕ PO(0)
⊕ PO(1)
⊕ PO(2)
⊕ PO(3)
⊕ PO(4)
⊕ PO(6)
⊕ PO(6)
⊕ PO(7)
⊕ P1(0)
⊕ P1(1) Resources PSoC® Blocks Port 0 0, StdCPU, High Z Analog, I -Port 0 1. StdCPU. High Z Analog. I Port_0_2, StdCPU, High Z Analog, I Custom User Module CapSense® |2C/SP| Timer Comparator Flash RAM CSDCapacitor, Analog MUXINDUI, HI Port_0_4, StdCPU, High Z Analog, I Port_0_5, StdCPU, High Z Analog, I Port_0_6, StdCPU, High Z Analog, I Port_0_7, StdCPU, High Z Analog, I CY8C20x66A, CY8C20x36A, CY8C20x46A, CY8C20x96A, CY8C20xx6AS, User Module 1 1143 35 79 EzI2CsSDA, I2C SDA, Open Drain L EzI2CsSCL, I2C SCL, Open Drain Lo 10 Port_1_2, StdCPU, High Z Analog, I Port_1_3, StdCPU, High Z Analog, I

Figure 1. PSoC Designer Features

PSoC® Functional Overview

The PSoC family consists of on-chip controller devices, which are designed to replace multiple traditional microcontroller unit (MCU)-based components with one, low cost single-chip programmable component. A PSoC device includes configurable analog and digital blocks, and programmable interconnect. This architecture allows the user to create customized peripheral configurations, to match the requirements of each individual application. Additionally, a fast CPU, Flash program memory, SRAM data memory, and configurable I/O are included in a range of convenient pinouts.

The architecture for this device family, as shown in the Logic Block Diagram on page 2, consists of three main areas:

- The Core
- CapSense Analog System
- System Resources (including a full-speed USB port).

A common, versatile bus allows connection between I/O and the analog system.

Each CY8C20XX6A/S PSoC device includes a dedicated CapSense block that provides sensing and scanning control circuitry for capacitive sensing applications. Depending on the PSoC package, up to 36 GPIO are also included. The GPIO provides access to the MCU and analog mux.

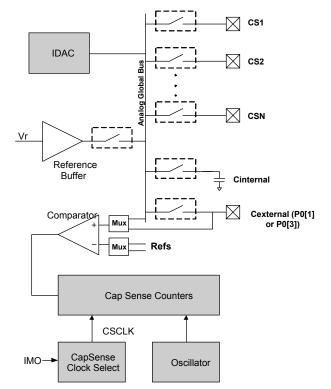
PSoC Core

The PSoC Core is a powerful engine that supports a rich instruction set. It encompasses SRAM for data storage, an interrupt controller, sleep and watchdog timers, and IMO and ILO. The CPU core, called the M8C, is a powerful processor with speeds up to 24 MHz. The M8C is a 4-MIPS, 8-bit Harvard-architecture microprocessor.

CapSense System

The analog system contains the capacitive sensing hardware. Several hardware algorithms are supported. This hardware performs capacitive sensing and scanning without requiring external components. The analog system is composed of the CapSense PSoC block and an internal 1 V or 1.2 V analog reference, which together support capacitive sensing of up to 33 inputs ^[2]. Capacitive sensing is configurable on each GPIO pin. Scanning of enabled CapSense pins are completed quickly and easily across multiple ports.

SmartSense


SmartSense is an innovative solution from Cypress that removes manual tuning of CapSense applications. This solution is easy to use and provides a robust noise immunity. It is the only auto-tuning solution that establishes, monitors, and maintains all

required tuning parameters. SmartSense allows engineers to go from prototyping to mass production without re-tuning for manufacturing variations in PCB and/or overlay material properties.

SmartSense EMC

In addition to the SmartSense auto tuning algorithm to remove manual tuning of CapSense applications, SmartSense_EMC user module incorporates a unique algorithm to improve robustness of capacitive sensing algorithm/circuit against high frequency conducted and radiated noise. Every electronic device must comply with specific limits for radiated and conducted external noise and these limits are specified by regulatory bodies (for example, FCC, CE, U/L and so on). A very good PCB layout design, power supply design and system design is a mandatory for a product to pass the conducted and radiated noise tests. An ideal PCB layout, power supply design or system design is not often possible because of cost and form factor limitations of the product. SmartSense_EMC with superior noise immunity is well suited and handy for such applications to pass radiated and conducted noise test.

Figure 2. CapSense System Block Diagram

Note

^{2. 36} GPIOs = 33 pins for capacitive sensing + 2 pins for I^2C + 1 pin for modulator capacitor.

Getting Started

The quickest way to understand PSoC silicon is to read this datasheet and then use the PSoC Designer Integrated Development Environment (IDE). This datasheet is an overview of the PSoC integrated circuit and presents specific pin, register, and electrical specifications.

For in depth information, along with detailed programming details, see the Technical Reference Manual for the CY8C20XX6A/S PSoC devices.

For up-to-date ordering, packaging, and electrical specification information, see the latest PSoC device datasheets on the web at www.cypress.com/psoc.

CapSense Design Guides

Design Guides are an excellent introduction to the wide variety of possible CapSense designs. They are located at www.cypress.com/go/CapSenseDesignGuides.

Refer Getting Started with CapSense design guide for information on CapSense design and CY8C20XX6A/H/AS CapSense[®] Design Guide for specific information on CY8C20XX6A/AS CapSense controllers.

Silicon Errata

Errata documents known issues with silicon including errata trigger conditions, scope of impact, available workarounds and silicon revision applicability. Refer to Silicon Errata for the PSoC® CY8C20x36A/46A/66A/96A/46AS/66AS/36H/46H families available at http://www.cypress.com/?rID=56239 for errata information on CY8C20xx6A/AS/H family of device. Compare errata document with datasheet for a complete functional description of device.

Development Kits

PSoC Development Kits are available online from and through a growing number of regional and global distributors, which include Arrow, Avnet, Digi-Key, Farnell, Future Electronics, and Newark.

Training

Free PSoC technical training (on demand, webinars, and workshops), which is available online via www.cypress.com, covers a wide variety of topics and skill levels to assist you in your designs.

CYPros Consultants

Certified PSoC consultants offer everything from technical assistance to completed PSoC designs. To contact or become a PSoC consultant go to the CYPros Consultants web site.

Solutions Library

Visit our growing library of solution focused designs. Here you can find various application designs that include firmware and hardware design files that enable you to complete your designs quickly.

Technical Support

Technical support – including a searchable Knowledge Base articles and technical forums – is also available online. If you cannot find an answer to your question, call our Technical Support hotline at 1-800-541-4736.

Pinouts

The CY8C20XX6A/S PSoC device is available in a variety of packages, which are listed and illustrated in the following tables. Every port pin (labeled with a "P") is capable of Digital I/O and connection to the common analog bus. However, V_{SS} , V_{DD} , and XRES are not capable of Digital I/O.

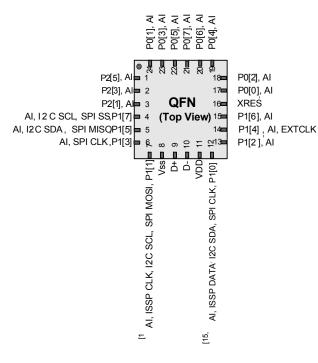
16-pin QFN (10 Sensing Inputs)[3, 4]

Table 1. Pin Definitions - CY8C20236A, CY8C20246A, CY8C20246AS PSoC Device

				•
Pin	Ту	pe	Name	Description
No.	Digital	Analog	Itallic	Description
1	I/O	I	P2[5]	Crystal output (XOut)
2	I/O	Ĺ	P2[3]	Crystal input (XIn)
3	IOHR	I	P1[7]	I ² C SCL, SPI SS
4	IOHR	I	P1[5]	I ² C SDA, SPI MISO
5	IOHR	I	P1[3]	SPI CLK
6	IOHR	I	P1[1]	ISSP CLK ^[5] , I ² C SCL, SPI MOSI
7	Po	wer	V_{SS}	Ground connection ^[7]
8	IOHR	I	P1[0]	ISSP DATA ^[5] , I ² C SDA, SPI CLK ^[6]
9	IOHR	I	P1[2]	
10	IOHR	Ĺ	P1[4]	Optional external clock (EXTCLK)
11	In	put	XRES	Active high external reset with internal pull-down
12	IOH	ĺ	P0[4]	
13	Po	wer	V_{DD}	Supply voltage
14	IOH	I	P0[7]	
15	IOH	I	P0[3]	Integrating input
16	IOH	I	P0[1]	Integrating input

LEGEND A = Analog, I = Input, O = Output, OH = 5 mA High Output Drive, R = Regulated Output.

- 3. 13 GPIOs = 10 pins for capacitive sensing + 2 pins for I2C + 1 pin for modulation capacitor.
- 4. No Center Pad.
- On power-up, the SDA(P1[0]) drives a strong high for 256 sleep clock cycles and drives resistive low for the next 256 sleep clock cycles. The SCL(P1[1]) line drives resistive low for 512 sleep clock cycles and both the pins transition to high impedance state. On reset, after XRES de-asserts, the SDA and the SCL lines drive resistive low for 8 sleep clock cycles and transition to high impedance state. Hence, during power-up or reset event, P1[1] and P1[0] may disturb the I2C bus. Use alternate pins if you encounter issues.
- 6. Alternate SPI clock.
- 7. All VSS pins should be brought out to one common GND plane.



24-pin QFN (15 Sensing Inputs (With USB)) [13]

Table 3. Pin Definitions - CY8C20396A [14]

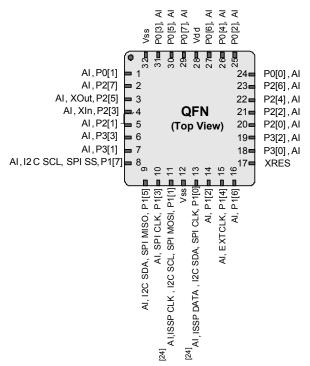
Pin	Ту	pe	Name	Description
No.	Digital	Analog	Name	Description
1	I/O	I	P2[5]	
2	I/O	I	P2[3]	
3	I/O	I	P2[1]	
4	IOHR	I	P1[7]	I ² C SCL, SPI SS
5	IOHR	I	P1[5]	I ² C SDA, SPI MISO
6	IOHR	I	P1[3]	SPI CLK
7	IOHR	I	P1[1]	ISSP CLK ^[15] , I ² C SCL, SPI MOSI
8	Pov	wer	V _{SS}	Ground ^[17]
9	I/O	I	D+	USB D+
10	I/O	ı	D-	USB D-
11	Pov	wer	V_{DD}	Supply
12	IOHR	I	P1[0]	ISSP DATA ^[15] , I ² C SDA, SPI CLK ^[16]
13	IOHR	I	P1[2]	
14	IOHR	I	P1[4]	Optional external clock input (EXTCLK)
15	IOHR	I	P1[6]	
16	RESET	INPUT	XRES	Active high external reset with internal pull-down
17	IOH	I	P0[0]	
18	IOH	I	P0[2]	
19	IOH	I	P0[4]	
20	IOH	I	P0[6]	
21	IOH	I	P0[7]	
22	IOH	I	P0[5]	
23	IOH	I	P0[3]	Integrating input
24	IOH	I	P0[1]	Integrating input
СР	Pov	wer	V _{SS}	Center pad must be connected to Ground

Figure 5. CY8C20396A

LEGEND I = Input, O = Output, OH = 5 mA High Output Drive, R = Regulated Output

- 13. 20 GPIOs = 15 pins for capacitive sensing + 2 pins for I2C + 2 pins for USB + 1 pin for modulation capacitor.
- 14. The center pad (CP) on the QFN package must be connected to ground (VSS) for best mechanical, thermal, and electrical performance. If not connected to ground,
- it must be electrically floated and not connected to any other signal.

 15. On power-up, the SDA(P1[0]) drives a strong high for 256 sleep clock cycles and drives resistive low for 512 sleep clock cycles and both the pins transition to high impedance state. On reset, after XRES de-asserts, the SDA and the SCL lines drive resistive low for 8 sleep clock cycles and transition to high impedance state. Hence, during power-up or reset event, P1[1] and P1[0] may disturb the I2C bus. Use alternate pins if you encounter issues.
- 16. Alternate SPI clock.
- 17. All VSS pins should be brought out to one common GND plane.



32-pin QFN (25 Sensing Inputs) [22]

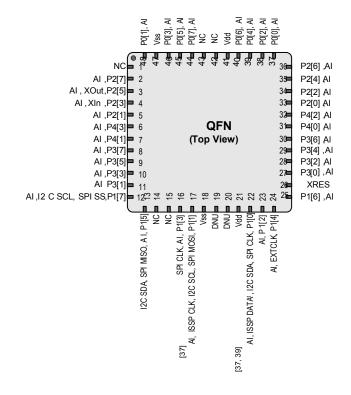
Table 5. Pin Definitions - CY8C20436A, CY8C20446A, CY8C20446AS, CY8C20466A, CY8C20466AS^[23]

Name	Pin	Ty	ре			
2		_		Name	Description	
3	1	IOH	I	P0[1]	Integrating input	
1/O	2	I/O	I	P2[7]		
5	3	I/O	ı	P2[5]	Crystal output (XOut)	
10	4	I/O	ı	P2[3]	Crystal input (XIn)	
7	5	I/O	ı	P2[1]		
8	6	I/O	ı	P3[3]		
9 IOHR I P1[5] I ² C SDA, SPI MISO 10 IOHR I P1[3] SPI CLK. 11 IOHR I P1[1] ISSP CLK ^[24] , I ² C SCL, SPI MOSI 12 Power V _{SS} Ground connection ^[26] 13 IOHR I P1[0] ISSP DATA ^[24] , I ² C SDA, SPI CLK ^[25] 14 IOHR I P1[2] 15 IOHR I P1[6] 17 Input XRES Active high external clock input (EXTCLK) 18 I/O I P3[0] 19 I/O I P3[0] 20 I/O I P2[0] 21 I/O I P2[1] 22 I/O I P2[2] 23 I/O I P2[6] 24 IOH I P0[0] 25 IOH I P0[2] 26 IOH I P0[2] 27 IOH I P0[6] 28 Power V _{DD} Supply voltage 29 IOH I P0[5] 31 IOH I P0[3] Integrating input 32 Power V _{SS} Ground connection ^[26] CR Power V _{SS} Ground connection ^[26] Center pad must be connected to	7	I/O	ı	P3[1]		
10	8	IOHR	I	P1[7]	I ² C SCL, SPI SS	
11	9	IOHR	I	P1[5]	I ² C SDA, SPI MISO	
12	10	IOHR	ı	P1[3]		
13	11	IOHR	I	P1[1]	ISSP CLK ^[24] , I ² C SCL, SPI MOSI.	
14	12	Po	wer	V_{SS}	Ground connection ^[26]	
15	13	IOHR	I	P1[0]	ISSP DATA ^[24] , I ² C SDA, SPI CLK ^[25]	
10	14	IOHR	I	P1[2]		
17	15	IOHR	I	P1[4]		
18	16	IOHR	I	P1[6]		
19	17	Inj	out	XRES		
20	18	I/O	I	P3[0]		
21 I/O I P2[2] 22 I/O I P2[4] 23 I/O I P2[6] 24 IOH I P0[0] 25 IOH I P0[2] 26 IOH I P0[4] 27 IOH I P0[6] 28 Power V _{DD} Supply voltage 29 IOH I P0[7] 30 IOH I P0[5] 31 IOH I P0[3] Integrating input 32 Power V _{SS} Ground connection[26] CP Power V _C Center pad must be connected to	19	I/O	I	P3[2]		
22	20	I/O	I	P2[0]		
23 I/O	21	I/O	I	P2[2]		
24	22	I/O	I	P2[4]		
25 IOH I P0[2] 26 IOH I P0[4] 27 IOH I P0[6] 28 Power V _{DD} Supply voltage 29 IOH I P0[7] 30 IOH I P0[5] 31 IOH I P0[3] Integrating input 32 Power V _{SS} Ground connection[26] CP Power V _C Center pad must be connected to	23	I/O	I	P2[6]		
26 IOH I P0[4] 27 IOH I P0[6] 28 Power V _{DD} Supply voltage 29 IOH I P0[7] 30 IOH I P0[5] 31 IOH I P0[3] Integrating input 32 Power V _{SS} Ground connection[26] CP Power V _C Center pad must be connected to	24	IOH	I	P0[0]		
27 IOH I P0[6] 28 Power V _{DD} Supply voltage 29 IOH I P0[7] 30 IOH I P0[5] 31 IOH I P0[3] Integrating input 32 Power V _{SS} Ground connection[26] CP Power V _C Center pad must be connected to	25	IOH	I	P0[2]		
28 Power V _{DD} Supply voltage 29 IOH I P0[7] 30 IOH I P0[5] 31 IOH I P0[3] Integrating input 32 Power V _{SS} Ground connection[26] CR Power V _C Center pad must be connected to	26	IOH	I	P0[4]		
29 IOH I P0[7] 30 IOH I P0[5] 31 IOH I P0[3] Integrating input 32 Power V _{SS} Ground connection ^[26] CP Power V _C Center pad must be connected to	27	IOH	I	P0[6]		
30 IOH I P0[5] 31 IOH I P0[3] Integrating input 32 Power V _{SS} Ground connection ^[26] CP Power V _S Center pad must be connected to	28	Po	wer	V_{DD}	Supply voltage	
31 IOH I P0[3] Integrating input 32 Power V _{SS} Ground connection ^[26] CP Power V _C Center pad must be connected to	29	IOH	I	P0[7]		
32 Power V _{SS} Ground connection ^[26] CP Power V Center pad must be connected to	30	IOH	I	P0[5]		
CP Power Vac Center pad must be connected to	31	IOH	I	P0[3]	Integrating input	
CP Power V Center pad must be connected to	32	Po	wer	V _{SS}	Ground connection ^[26]	
9,04,14	СР	Po	wer	V _{SS}	Center pad must be connected to ground	

Figure 7. CY8C20436A, CY8C20446A, CY8C20446AS, CY8C20466A, CY8C20466AS

LEGEND A = Analog, I = Input, O = Output, OH = 5 mA High Output Drive, R = Regulated Output.

- 22. 28 GPIOs = 25 pins for capacitive sensing + 2 pins for I2C + 1 pin for modulation capacitor.
- 23. The center pad (CP) on the QFN package must be connected to ground (V_{SS}) for best mechanical, thermal, and electrical performance. If not connected to ground, it must be electrically floated and not connected to any other signal.
- 24. On power-up, the SDA(P1[0]) drives a strong high for 256 sleep clock cycles and drives resistive low for the next 256 sleep clock cycles. The SCL(P1[1]) line drives resistive low for 512 sleep clock cycles and both the pins transition to high impedance state. On reset, after XRES de-asserts, the SDA and the SCL lines drive resistive low for 8 sleep clock cycles and transition to high impedance state. Hence, during power-up or reset event, P1[1] and P1[0] may disturb the I2C bus. Use alternate pins if you encounter issues.
- 25. Alternate SPI clock.
- 26. All VSS pins should be brought out to one common GND plane.



48-pin QFN (33 Sensing Inputs) [36]

Table 8. Pin Definitions - CY8C20636A^[37, 38]

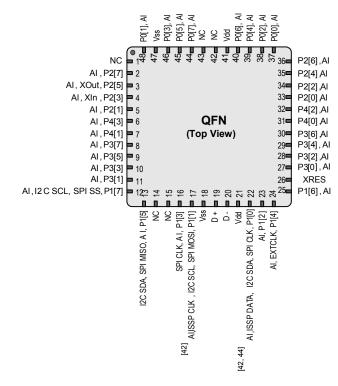
Pin No.	Digital	Analog	Name	Description
1			NC	No connection
2	I/O	ı	P2[7]	
3	I/O		P2[5]	Crystal output (XOut)
4	I/O		P2[3]	Crystal input (XIn)
5	I/O		P2[1]	
6	I/O		P4[3]	
7	I/O		P4[1]	
8	I/O		P3[7]	
9	I/O		P3[5]	
10	I/O		P3[3]	
11	I/O		P3[1]	
12	IOHR		P1[7]	I ² C SCL, SPI SS
13	IOHR		P1[5]	I ² C SDA, SPI MISO
14			NC	No connection
15			NC	No connection
16	IOHR		P1[3]	SPI CLK
17	IOHR	I	P1[1]	ISSP CLK ^[37] , I ² C SCL, SPI MOSI
18	Po	wer	V_{SS}	Ground connection ^[40]
19			DNU	
20			DNU	
21	Po	wer	V_{DD}	Supply voltage
22	IOHR	I	P1[0]	ISSP DATA ^[37] , I ² C SDA, SPI CLK ^[39]
23	IOHR	ı	P1[2]	
24	IOHR	I	P1[4]	Optional external clock input (EXTCLK)
25	IOHR		P1[6]	
26	In	put	XRES	Active high external reset with internal pull-down
27	I/O	ı	P3[0]	
28	I/O	ı	P3[2]	
29	I/O	I	P3[4]	

Figure 10. CY8C20636A

28	I/O	ı	P3[2]						
29	I/O	I	P3[4]		Pin No.	Digital Analog Name Description		Description	
30	I/O	ı	P3[6]	4	40	IOH	1	P0[6]	
31	I/O	ı	P4[0]	4	41	Po	wer	V_{DD}	Supply voltage
32	I/O	I	P4[2]	4	12		No connection		
33	I/O	ı	P2[0]	4	43			NC	No connection
34	I/O	ı	P2[2]	4	14	IOH		P0[7]	
35	I/O	ı	P2[4]	4	45	IOH		P0[5]	
36	I/O	ı	P2[6]	4	16	IOH		P0[3]	Integrating input
37	IOH	I	P0[0]	4	17	Power		V_{SS}	Ground connection ^[40]
38	IOH	ı	P0[2]	4	48	IOH I		P0[1]	
39	IOH		P0[4]		CP	Po	wer	V_{SS}	Center pad must be connected to ground

LEGEND A = Analog, I = Input, O = Output, NC = No Connection H = 5 mA High Output Drive, R = Regulated Output.

- 36. 36 GPIOs = 33 pins for capacitive sensing + 2 pins for I2C + 1 pin for modulation capacitor.
- 37. On power-up, the SDA(P1[0]) drives a strong high for 256 sleep clock cycles and drives resistive low for the next 256 sleep clock cycles. The SCL(P1[1]) line drives resistive low for 512 sleep clock cycles and both the pins transition to high impedance state. On reset, after XRES de-asserts, the SDA and the SCL lines drive resistive low for 8 sleep clock cycles and transition to high impedance state. Hence, during power-up or reset event, P1[1] and P1[0] may disturb the I2C bus. Use alternate pins if you encounter issues.
- 38. The center pad (CP) on the QFN package must be connected to ground (V_{SS}) for best mechanical, thermal, and electrical performance. If not connected to ground, it must be electrically floated and not connected to any other signal
- 39. Alternate SPI clock
- 40. All VSS pins should be brought out to one common GND plane.



48-pin QFN (33 Sensing Inputs (With USB)) [41]

Table 9. Pin Definitions - CY8C20646A, CY8C20646AS, CY8C20666A, CY8C20666AS [42, 43]

Pin No.	Digital	Analog	Name	Description
1		I	NC	No connection
2	I/O	ı	P2[7]	
3	I/O	ı	P2[5]	Crystal output (XOut)
4	I/O	ı	P2[3]	Crystal input (XIn)
5	I/O	ı	P2[1]	
6	I/O	ı	P4[3]	
7	I/O	ı	P4[1]	
8	I/O	ı	P3[7]	
9	I/O	ı	P3[5]	
10	I/O	ı	P3[3]	
11	I/O	ı	P3[1]	
12	IOHR	ı	P1[7]	I ² C SCL, SPI SS
13	IOHR	ı	P1[5]	I ² C SDA, SPI MISO
14			NC	No connection
15			NC	No connection
16	IOHR	ı	P1[3]	SPI CLK
17	IOHR	ı	P1[1]	ISSP CLK ^[42] , I ² C SCL, SPI MOSI
18	Po	wer	V _{SS}	Ground connection[45]
19	I/O		D+	USB D+
20	I/O		D-	USB D-
21	Po	wer	V_{DD}	Supply voltage
22	IOHR	I	P1[0]	ISSP DATA ^[42] , I ² C SDA, SPI CLK ^[44]
23	IOHR	ı	P1[2]	
24	IOHR	I	P1[4]	Optional external clock input (EXTCLK)
25	IOHR	I	P1[6]	
26	In	put	XRES	Active high external reset with internal pull-down
27	I/O	ı	P3[0]	
28	I/O	ı	P3[2]	
29	I/O	I	P3[4]	
30	I/O	ı	P3[6]	
21	1/0	i .	DAIOI	

Figure 11. CY8C20646A, CY8C20646AS, CY8C20666A, CY8C20666AS

28	I/O	ı	P3[2]						
29	I/O	I	P3[4]	Pin No.				Description	
30	I/O	ı	P3[6]	40	IOH	I	P0[6]		
31	I/O	ı	P4[0]	41	P	ower	V_{DD}	Supply voltage	
32	I/O	ı	P4[2]	42			NC	No connection	
33	I/O	ı	P2[0]	43		NC No connection			
34	I/O	ı	P2[2]	44	IOH	I	P0[7]		
35	I/O	ı	P2[4]	45	IOH	IOH I P0[5]			
36	I/O	ı	P2[6]	46	IOH	I	P0[3]	Integrating input	
37	IOH	ı	P0[0]	47	Power V _{SS} Ground connection ^[45]				
38	IOH	ı	P0[2]	48					
39	IOH	ı	P0[4]	СР					

LEGEND A = Analog, I = Input, O = Output, NC = No Connection H = 5 mA High Output Drive, R = Regulated Output.

- 41.38 GPIOs = 33 pins for capacitive sensing + 2 pins for I2C + 2 pins for USB + 1 pin for modulation capacitor.
- 42. On Power-up, the SDA(P1[0]) drives a strong high for 256 sleep clock cycles and drives resistive low for the next 256 sleep clock cycles. The SCL(P1[1]) line drives resistive low for 512 sleep clock cycles and both the pins transition to High impedance state. On reset, after XRES de- asserts, the SDA and the SCL lines drive resistive low for 8 sleep clock cycles and transition to high impedance state. In both cases, a pull-up resistance on these lines combines with the pull-down resistance (5.6K ohm) and form a potential divider. Hence, during power-up or reset event, P1[1] and P1[0] may disturb the I2C bus. Use alternate pins if you encounter issues.
- 43. The center pad (CP) on the QFN package must be connected to ground (V_{SS}) for best mechanical, thermal, and electrical performance. If not connected to ground, it must be electrically floated and not connected to any other signal.
- 44. Alternate SPI clock.
- 45. All VSS pins should be brought out to one common GND plane.

DC GPIO Specifications

The following tables list guaranteed maximum and minimum specifications for the voltage and temperature ranges: 3.0 V to 5.5 V and $-40~^{\circ}\text{C} \le T_{A} \le 85~^{\circ}\text{C}$, 2.4 V to 3.0 V and $-40~^{\circ}\text{C} \le T_{A} \le 85~^{\circ}\text{C}$, or 1.71 V to 2.4 V and $-40~^{\circ}\text{C} \le T_{A} \le 85~^{\circ}\text{C}$, respectively. Typical parameters apply to 5 V and 3.3 V at 25 C and are for design guidance only.

Table 14. 3.0 V to 5.5 V DC GPIO Specifications

Symbol	Description	Conditions	Min	Тур	Max	Units
R _{PU}	Pull-up resistor	-	4	5.60	8	kΩ
V _{OH1}	High output voltage Port 2 or 3 or 4 pins	$I_{OH} \le 10~\mu A$, maximum of 10 mA source current in all I/Os	V _{DD} – 0.20	-	-	V
V _{OH2}	High output voltage Port 2 or 3 or 4 pins	I _{OH} = 1 mA, maximum of 20 mA source current in all I/Os	V _{DD} – 0.90	-	-	V
V _{OH3}	High output voltage Port 0 or 1 pins with LDO regulator Disabled for port 1	I_{OH} < 10 μ A, maximum of 10 mA source current in all I/Os	V _{DD} – 0.20	_	-	V
V _{OH4}	High output voltage Port 0 or 1 pins with LDO regulator Disabled for port 1	I _{OH} = 5 mA, maximum of 20 mA source current in all I/Os	V _{DD} – 0.90	_	-	V
V _{OH5}	High output voltage Port 1 Pins with LDO Regulator Enabled for 3 V out	I_{OH} < 10 μ A, V_{DD} > 3.1 V, maximum of 4 I/Os all sourcing 5 mA	2.85	3.00	3.30	V
V _{OH6}	High output voltage Port 1 pins with LDO regulator enabled for 3 V out	I _{OH} = 5 mA, V _{DD} > 3.1 V, maximum of 20 mA source current in all I/Os	2.20	_	-	V
V _{OH7}	High output voltage Port 1 pins with LDO enabled for 2.5 V out	$I_{OH}\!<\!10\mu\text{A},V_{DD}\!>\!2.7\text{V},\text{maximum}\text{of}20\text{mA}$ source current in all I/Os	2.35	2.50	2.75	V
V _{OH8}	High output voltage Port 1 pins with LDO enabled for 2.5 V out	I_{OH} = 2 mA, V_{DD} > 2.7 V, maximum of 20 mA source current in all I/Os	1.90	-	-	V
V _{OH9}	High output voltage Port 1 pins with LDO enabled for 1.8 V out	I_{OH} < 10 μ A, V_{DD} > 2.7 V, maximum of 20 mA source current in all I/Os	1.60	1.80	2.10	V
V _{OH10}	High output voltage Port 1 pins with LDO enabled for 1.8 V out	I_{OH} = 1 mA, V_{DD} > 2.7 V, maximum of 20 mA source current in all I/Os	1.20	-	-	V
V _{OL}	Low output voltage	I_{OL} = 25 mA, V_{DD} > 3.3 V, maximum of 60 mA sink current on even port pins (for example, P0[2] and P1[4]) and 60 mA sink current on odd port pins (for example, P0[3] and P1[5])	_	-	0.75	V
V _{IL}	Input low voltage	-	-	-	0.80	V
V _{IH}	Input high voltage	-	2.00	_	_	V
V _H	Input hysteresis voltage	-	-	80	_	mV
$I_{\rm IL}$	Input leakage (Absolute Value)	_	-	0.001	1	μА
C _{PIN}	Pin capacitance	Package and pin dependent Temp = 25 °C	0.50	1.70	7	pF
V _{ILLVT3.3}	Input Low Voltage with low threshold enable set, Enable for Port1	Bit3 of IO_CFG1 set to enable low threshold voltage of Port1 input	0.8	V	ı	_
V _{IHLVT3.3}	Input High Voltage with low threshold enable set, Enable for Port1	Bit3 of IO_CFG1 set to enable low threshold voltage of Port1 input	1.4	-	_	V
V _{ILLVT5.5}	Input Low Voltage with low threshold enable set, Enable for Port1	Bit3 of IO_CFG1 set to enable low threshold voltage of Port1 input	0.8	V	-	-
V _{IHLVT5.5}	Input High Voltage with low threshold enable set, Enable for Port1	Bit3 of IO_CFG1 set to enable low threshold voltage of Port1 input	1.7	-	-	V

Table 16. 1.71 V to 2.4 V DC GPIO Specifications (continued)

Symbol	Description	Conditions	Min	Тур	Max	Units
V_{IH}	Input high voltage	_	0.65 × V _{DD}	-	-	V
V_{H}	Input hysteresis voltage	-	_	80	_	mV
I _{IL}	Input leakage (absolute value)	_	-	1	1000	nA
C _{PIN}	Capacitive load on pins	Package and pin dependent temp = 25 °C	0.50	1.70	7	pF

Table 17. DC Characteristics - USB Interface

Symbol	Description	Conditions	Min	Тур	Max	Units
R _{USBI}	USB D+ pull-up resistance	With idle bus	900	-	1575	Ω
R _{USBA}	USB D+ pull-up resistance	While receiving traffic	1425	_	3090	Ω
V _{OHUSB}	Static output high	-	2.8	-	3.6	V
V _{OLUSB}	Static output low	-	_	_	0.3	V
V _{DI}	Differential input sensitivity	-	0.2	_		V
V _{CM}	Differential input common mode range	-	0.8	_	2.5	V
V _{SE}	Single ended receiver threshold	-	0.8	_	2.0	V
C _{IN}	Transceiver capacitance	-	_	_	50	pF
I _{IO}	High Z state data line leakage	On D+ or D- line	-10	-	+10	μΑ
R _{PS2}	PS/2 pull-up resistance	-	3000	5000	7000	Ω
R _{EXT}	External USB series resistor	In series with each USB pin	21.78	22.0	22.22	Ω

DC Analog Mux Bus Specifications

Table 18 lists guaranteed maximum and minimum specifications for the entire voltage and temperature ranges.

Table 18. DC Analog Mux Bus Specifications

Symbol	Description	Conditions	Min	Тур	Max	Units
R _{SW}	Switch resistance to common analog bus	-	_	_	800	Ω
R_{GND}	Resistance of initialization switch to V _{SS}	_	-	_	800	Ω

The maximum pin voltage for measuring R_{SW} and R_{GND} is 1.8 $\mbox{\rm V}$

DC Low Power Comparator Specifications

Table 19 lists guaranteed maximum and minimum specifications for the entire voltage and temperature ranges.

Table 19. DC Comparator Specifications

Symbol	Description	Description Conditions		Тур	Max	Units
V_{LPC}	Low power comparator (LPC) common mode	Maximum voltage limited to V _{DD}	0.0	-	1.8	V
I _{LPC}	LPC supply current	-	_	10	40	μΑ
V _{OSLPC}	LPC voltage offset	-	_	3	30	mV

Document Number: 001-54459 Rev. *X Page 24 of 53

Table 29. AC Characteristics - USB Data Timings

Symbol	Description	Conditions	Min	Тур	Max	Units
t _{DRATE}	Full speed data rate	Average bit rate	12 – 0.25%	12	12 + 0.25%	MHz
t _{JR1}	Receiver jitter tolerance	To next transition	-18.5	_	18.5	ns
t _{JR2}	Receiver jitter tolerance	To pair transition	-9.0	_	9	ns
t _{DJ1}	FS Driver jitter	To next transition	-3.5	-	3.5	ns
t _{DJ2}	FS Driver jitter	To pair transition	-4.0	_	4.0	ns
t _{FDEOP}	Source jitter for differential transition	To SE0 transition	-2.0	_	5	ns
t _{FEOPT}	Source SE0 interval of EOP	_	160.0	_	175	ns
t _{FEOPR}	Receiver SE0 interval of EOP	_	82.0	-	_	ns
t _{FST}	Width of SE0 interval during differential transition	-	-	_	14	ns

Table 30. AC Characteristics - USB Driver

Symbol	Description	Conditions		Тур	Max	Units
t _{FR}	Transition rise time	50 pF	4	=	20	ns
t _{FF}	Transition fall time	50 pF	4	_	20	ns
t _{FRFM} ^[70]	Rise/fall time matching	-	90	_	111	%
V_{CRS}	Output signal crossover voltage	-	1.30	_	2.00	V

AC Comparator Specifications

Table 31 lists guaranteed maximum and minimum specifications for the entire voltage and temperature ranges.

Table 31. AC Low Power Comparator Specifications

Symbol	Description	Conditions	Min	Тур	Max	Units
t _{LPC}	Comparator response time, 50 mV overdrive	50 mV overdrive does not include offset voltage	_	_	100	ns

AC External Clock Specifications

Table 32 lists guaranteed maximum and minimum specifications for the entire voltage and temperature ranges.

Table 32. AC External Clock Specifications

Symbol	Description	Conditions	Min	Тур	Max	Units
	Frequency (external oscillator frequency)	-	0.75	-	25.20	MHz
F _{OSCEXT}	High period	-	20.60	_	5300	ns
0002/1	Low period	-	20.60	_	_	ns
	Power-up IMO to switch	-	150	_	_	μS

Note

Document Number: 001-54459 Rev. *X Page 30 of 53

^{70.} T_{FRFM} is not met under all conditions. There is a corner case at lower supply voltages, such as those under 3.3 V. This condition does not affect USB communications. Signal integrity tests show an excellent eye diagram at 3.15 V.

Table 36. SPI Slave AC Specifications

Symbol	Description	Conditions	Min	Тур	Max	Units
F _{SCLK}	SCLK clock frequency	-	-	-	4	MHz
t _{LOW}	SCLK low time	-	42	-	-	ns
t _{HIGH}	SCLK high time	-	42	-	-	ns
t _{SETUP}	MOSI to SCLK setup time	-	30	-	-	ns
t _{HOLD}	SCLK to MOSI hold time	-	50	-	-	ns
t _{SS_MISO}	SS high to MISO valid	-	-	-	153	ns
t _{SCLK_MISO}	SCLK to MISO valid	_	-	_	125	ns
t _{SS_HIGH}	SS high time	-	50	-	_	ns
t _{SS_CLK}	Time from SS low to first SCLK	-	2/SCLK	-	-	ns
t _{CLK_SS}	Time from last SCLK to SS high	_	2/SCLK	_	_	ns

Figure 19. SPI Slave Mode 0 and 2

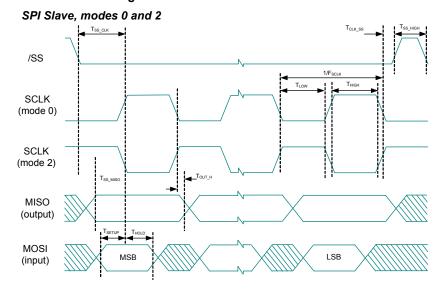


Figure 20. SPI Slave Mode 1 and 3

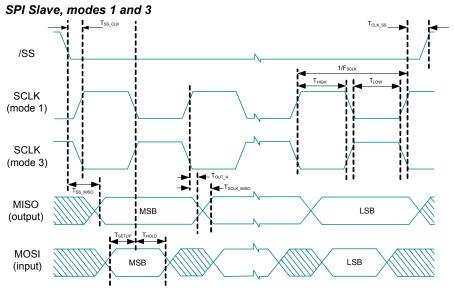


Figure 23. 32-pin QFN (5 × 5 × 0.55 mm) LQ32 3.5 × 3.5 E-Pad (Sawn) Package Outline, 001-42168

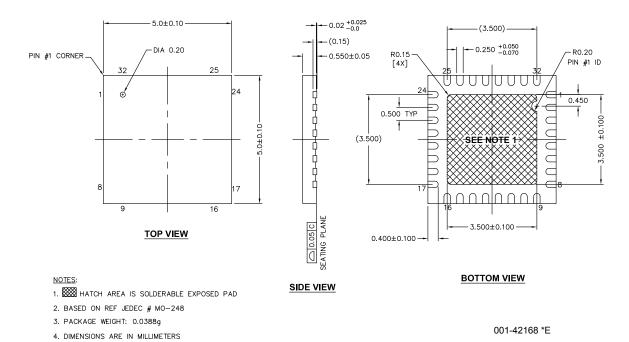


Figure 24. 48-pin SSOP (300 Mils) O483 Package Outline, 51-85061

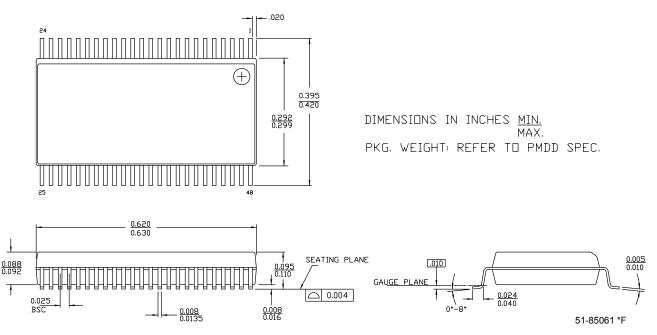


Figure 25. 48-pin QFN (7 × 7 × 1.0 mm) LT48A 5.1 × 5.1 E-Pad (Sawn) Package Outline, 001-13191

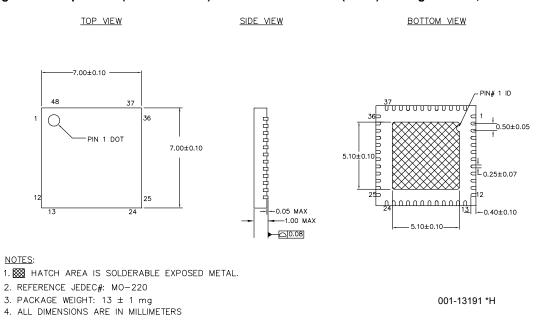
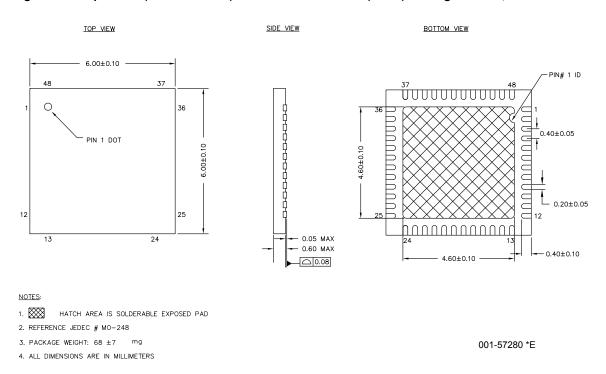



Figure 26. 48-pin QFN (6 × 6 × 0.6 mm) LQ48A 4.6 × 4.6 E-Pad (Sawn) Package Outline, 001-57280

Important Notes

- For information on the preferred dimensions for mounting QFN packages, see the following Application Note at http://www.amkor.com/products/notes_papers/MLFAppNote.pdf.
- Pinned vias for thermal conduction are not required for the low power PSoC device.

Thermal Impedances

Table 37. Thermal Impedances per Package

Package	Typical θ _{JA} ^[73]	Typical θ _{JC}
16-pin QFN (No Center Pad)	33 °C/W	-
24-pin QFN ^[74]	21 °C/W	-
32-pin QFN ^[74]	20 °C/W	-
48-pin SSOP	69 °C/W	-
48-pin QFN (6 × 6 × 0.6 mm) [74]	25.20 °C/W	3.04 °C/W
48-pin QFN (7 × 7 × 1.0 mm) [74]	18 °C/W	-
30-ball WLCSP	54 °C/W	-

Capacitance on Crystal Pins

Table 38. Typical Package Capacitance on Crystal Pins

Package	Package Capacitance
32-pin QFN	3.2 pF
48-pin QFN	3.3 pF

Solder Reflow Specifications

Table 39 shows the solder reflow temperature limits that must not be exceeded.

Table 39. Solder Reflow Specifications

Package	Maximum Peak Temperature (T _C)	Maximum Time above T _C – 5 °C
16-pin QFN	260 °C	30 seconds
24-pin QFN	260 °C	30 seconds
32-pin QFN	260 °C	30 seconds
48-pin SSOP	260 °C	30 seconds
48-pin QFN (6 × 6 × 0.6 mm)	260 °C	30 seconds
48-pin QFN (7 × 7 × 1.0 mm)	260 °C	30 seconds
30-ball WLCSP	260 °C	30 seconds

Document Number: 001-54459 Rev. *X

Notes $73.\,T_J = T_A + \text{Power} \times \theta_{JA}.$ $74.\,To \ \text{achieve the thermal impedance specified for the QFN package, the center thermal pad must be soldered to the PCB ground plane.}$

 Table 41. PSoC Device Key Features and Ordering Information (continued)

Package	Ordering Code	Flash (Bytes)	SRAM (Bytes)	CapSense Blocks	Digital I/O Pins	Analog Inputs [78]	XRES Pin	USB	ADC
48-pin SSOP ^[79]	CY8C20536A-24PVXI [79]	8 K	1 K	1	34	34	Yes	No	Yes
48-pin SSOP (Tape and Reel) [79]	CY8C20536A-24PVXIT [79]	8 K	1 K	1	34	34	Yes	No	Yes
48-pin SSOP ^[79]	CY8C20546A-24PVXI [79]	16 K	2 K	1	34	34	Yes	No	Yes
48-pin SSOP (Tape and Reel) [79]	CY8C20546A-24PVXIT [79]	16 K	2 K	1	34	34	Yes	No	Yes
48-pin SSOP [79]	CY8C20566A-24PVXI [79]	32 K	2 K	1	34	34	Yes	No	Yes
48-pin SSOP (Tape and Reel) [79]	CY8C20566A-24PVXIT [79]	32 K	2 K	1	34	34	Yes	No	Yes
48-pin (6 × 6 × 0.6 mm) QFN	CY8C20636A-24LQXI	8 K	1 K	1	36	36	Yes	No	Yes
48-pin (6 × 6 × 0.6 mm) QFN (Tape and Reel)	CY8C20636A-24LQXIT	8 K	1 K	1	36	36	Yes	No	Yes
48-pin (7 × 7 × 1.0 mm) QFN [79]	CY8C20636A-24LTXI [79]	8 K	1 K	1	36	36	Yes	No	Yes
48-pin (7 × 7 × 1.0 mm) QFN (Tape and Reel) [79]	CY8C20636A-24LTXIT [79]	8 K	1 K	1	36	36	Yes	No	Yes
48-pin (6 × 6 × 0.6 mm) QFN	CY8C20646A-24LQXI	16 K	2 K	1	36	36	Yes	Yes	Yes
48-pin (6 × 6 × 0.6 mm) QFN (Tape and Reel)	CY8C20646A-24LQXIT	16 K	2 K	1	36	36	Yes	Yes	Yes
48-pin (7 × 7 × 1.0 mm) QFN [79]	CY8C20646A-24LTXI [79]	16 K	2 K	1	36	36	Yes	Yes	Yes
48-pin (7 × 7 × 1.0 mm) QFN (Tape and Reel) [79]	CY8C20646A-24LTXIT [79]	16 K	2 K	1	36	36	Yes	Yes	Yes
48-pin (6 × 6 × 0.6 mm) QFN	CY8C20666A-24LQXI	32 K	2 K	1	36	36	Yes	Yes	Yes
48-pin (6 × 6 × 0.6 mm) QFN (Tape and Reel)	CY8C20666A-24LQXIT	32 K	2 K	1	36	36	Yes	Yes	Yes
48-pin (7 × 7 × 1.0 mm) QFN [79]	CY8C20666A-24LTXI [79]	32 K	2 K	1	36	36	Yes	Yes	Yes
48-pin (7 × 7 × 1.0 mm) QFN [79]	CY8C20666AS-24LTXI [79]	32 K	2 K	1	36	36	Yes	Yes	Yes
48-pin (7 × 7 × 1.0 mm) QFN (Tape and Reel) [79]	CY8C20666A-24LTXIT [79]	32 K	2 K	1	36	36	Yes	Yes	Yes
48-pin (7 × 7 × 1.0 mm) QFN (Tape and Reel) [79]	CY8C20666AS-24LTXIT [79]	32 K	2 K	1	36	36	Yes	Yes	Yes
48-pin (7 × 7 × 1.0 mm) QFN (OCD) [78]	CY8C20066A-24LTXI [78]	32 K	2 K	1	36	36	Yes	Yes	Yes
30-ball WLCSP	CY8C20746A-24FDXC	16 K	1 K	1	27	27	Yes	No	Yes
30-ball WLCSP (Tape and Reel)	CY8C20746A-24FDXCT	16 K	1 K	1	27	27	Yes	No	Yes
30-ball WLCSP	CY8C20766A-24FDXC	32 K	2 K	1	27	27	Yes	No	Yes
30-ball WLCSP (Tape and Reel)	CY8C20766A-24FDXCT	32 K	2 K	1	27	27	Yes	No	Yes
24-pin (4 × 4 × 0.6 mm) QFN	CY8C20336AN-24LQXI	8 K	1 K	1	20	20	Yes	No	No
24-pin (4 × 4 × 0.6 mm) QFN (Tape and Reel)	CY8C20336AN-24LQXIT	8 K	1 K	1	20	20	Yes	No	No
32-pin (5 × 5 × 0.6 mm) QFN	CY8C20436AN-24LQXI	8 K	1 K	1	28	28	Yes	No	No
32-pin (5 × 5 × 0.6 mm) QFN (Tape and Reel)	CY8C20436AN-24LQXIT	8 K	1 K	1	28	28	Yes	No	No
16-pin (3 × 3 × 0.6 mm) QFN (no E-Pad)	CY8C20246AS-24LKXI	16 K	2 K	1	13	13	Yes	No	Yes
16-pin (3 × 3 × 0.6 mm) QFN (no E-Pad, Tape and Reel)	CY8C20246AS-24LKXIT	16 K	2 K	1	13	13	Yes	No	Yes

Notes
78. Dual-function Digital I/O Pins also connect to the common analog mux.
79. Not Recommended for New Designs.

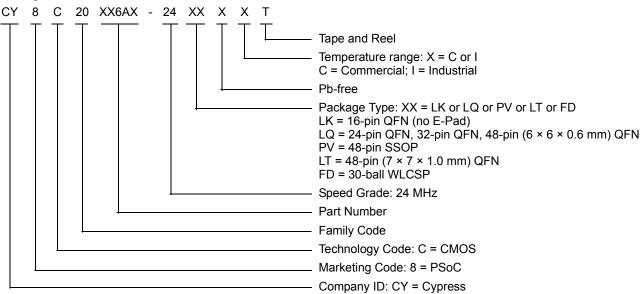


Table 41. PSoC Device Key Features and Ordering Information (continued)

Package	Ordering Code	Flash (Bytes)	SRAM (Bytes)	CapSense Blocks	Digital I/O Pins	Analog Inputs ^[78]	XRES Pin	USB	ADC
24-pin (4 × 4 × 0.6 mm) QFN	CY8C20346AS-24LQXI	16 K	2 K	1	20	20	Yes	No	Yes
24-pin (4 × 4 × 0.6 mm) QFN (Tape and Reel)	CY8C20346AS-24LQXIT	16 K	2 K	1	20	20	Yes	No	Yes
32-pin (5 × 5 × 0.6 mm) QFN	CY8C20446AS-24LQXI	16 K	2 K	1	28	28	Yes	No	Yes
32-pin (5 × 5 × 0.6 mm) QFN (Tape and Reel)	CY8C20446AS-24LQXIT	16 K	2 K	1	28	28	Yes	No	Yes
32-pin (5 × 5 × 0.6 mm) QFN	CY8C20466AS-24LQXI	32 K	2 K	1	28	28	Yes	No	Yes
32-pin (5 × 5 × 0.6 mm) QFN (Tape and Reel) CY8C20466AS-24LQXIT		32 K	2 K	1	28	28	Yes	No	Yes
48-pin (6 × 6 × 0.6 mm) QFN	CY8C20666AS-24LQXI	32 K	2 K	1	36	36	Yes	Yes	Yes
48-pin (6 × 6 × 0.6 mm) QFN (Tape and Reel)	CY8C20666AS-24LQXIT	32 K	2 K	1	36	36	Yes	Yes	Yes
48-pin (7 × 7 × 1.0 mm) QFN [79]	CY8C20666AS-24LTXI [79]	32 K	2 K	1	36	36	Yes	Yes	Yes
48-pin (7 × 7 × 1.0 mm) QFN (Tape and Reel) [79]	CY8C20666AS-24LTXIT [79]	32 K	2 K	1	36	36	Yes	Yes	Yes
48-pin (6 × 6 × 0.6 mm) QFN	CY8C20646AS-24LQXI	16 K	2 K	1	36	36	Yes	Yes	Yes
48-pin (6 × 6 × 0.6 mm) QFN (Tape and Reel)	CY8C20646AS-24LQXIT	16 K	2 K	1	36	36	Yes	Yes	Yes
48-pin (7 × 7 × 1.0 mm) QFN [79]	CY8C20646AS-24LTXI [79]	16 K	2 K	1	36	36	Yes	Yes	Yes
48-pin (7 × 7 × 1.0 mm) QFN (Tape and Reel) [79]	CY8C20646AS-24LTXIT [79]	16 K	2 K	1	36	36	Yes	Yes	Yes

Notes

Ordering Code Definitions

^{78.} Dual-function Digital I/O Pins also connect to the common analog mux.

^{79.} Not Recommended for New Designs.

3. DoubleTimer0 ISR

■ Problem Definition

When programmable timer 0 is used in "one-shot" mode by setting bit 1 of register 0,80h (PT0_CFG), and the timer interrupt is used to wake the device from sleep, the interrupt service routine (ISR) may be executed twice.

■ Parameters Affected

No datasheet parameters are affected.

■ Trigger Condition(S)

Triggered by enabling one-shot mode in the timer, and using the timer to wake from sleep mode.

■ Scope of Impact

The ISR may be executed twice.

■ Workaround

In the ISR, firmware should clear the one-shot bit with a statement such as "and reg[B0h], FDh"

■ Fix Status

Will not be fixed

■ Changes

None

4. Missed GPIO Interrupt

■ Problem Definition

When in sleep mode, if a GPIO interrupt happens simultaneously with a Timer0 or Sleep Timer interrupt, the GPIO interrupt may be missed, and the corresponding GPIO ISR not run.

■ Parameters Affected

No datasheet parameters are affected.

■ Trigger Condition(S)

Triggered by enabling sleep mode, then having GPIO interrupt occur simultaneously with a Timer 0 or Sleep Timer interrupt.

■ Scope of Impact

The GPIO interrupt service routine will not be run.

■ Workaround

The system should be architected such that a missed GPIO interrupt may be detected. For example, if a GPIO is used to wake the system to perform some function, the system should detect if the function is not performed, and re-issue the GPIO interrupt.

Alternatively, if a GPIO interrupt is required to wake the system, then firmware should disable the Sleep Timer and Timer0.

Alternatively, the ISR's for Sleep Timer and Timer0 should manually check the state of the GPIO to determine if the host system has attempted to generate a GPIO interrupt.

■ Fix Status

Will not be fixed

■ Changes

None

Document History Page (continued)

Document Title: CY8C20XX6A/S, 1.8 V Programmable CapSense[®] Controller with SmartSense[™] Auto-tuning 1–33 Buttons, 0–6 Sliders

Documer	nt Number: (001-54459		
Revision	ECN	Orig. of Change	Submission Date	Description of Change
*P	3774062	UBU	10/11/2012	Updated Electrical Specifications: Updated AC Chip-Level Specifications: Updated Table 27: Changed minimum value of F _{32K1} parameter from 19 kHz to 15 kHz. Updated Packaging Information: spec 001-09116 – Changed revision from *F to *G. spec 001-13937 – Changed revision from *D to *E. spec 51-85061 – Changed revision from *E to *F. spec 001-13191 – Changed revision from *F to *G. spec 001-57280 – Changed revision from *C to *D.
*Q	3807186	PKS	15/11/2012	No content update; appended to EROS document.
*R	3836626	SRLI	01/03/2013	Updated Document Title to read as "CY8C20XX6A/S, 1.8 V Programmable CapSense® Controller with SmartSense™ Auto-tuning 1–33 Buttons, 0–6 Sliders". Updated Features. Updated PSoC® Functional Overview: Replaced "CY8C20X36A/46A/66A/96A/46AS/66AS" with "CY8C20XX6A/S". Updated Getting Started: Replaced "CY8C20X36A/46A/66A/96A/46AS/66AS" with "CY8C20XX6A/S". Updated Pinouts: Updated 16-pin QFN (10 Sensing Inputs)[3, 4]: Replaced "12 Sensing Inputs" with "10 Sensing Inputs" in heading, added Note 3 only. Updated 24-pin QFN (17 Sensing Inputs) [8]: Replaced "12 Sensing Inputs" with "17 Sensing Inputs" in heading, added Note 8 only. Updated 24-pin QFN (15 Sensing Inputs (With USB)) [13]: Replaced "18 Sensing Inputs" with "15 Sensing Inputs" in heading, added Note 13 only. Updated 30-ball WLCSP (24 Sensing Inputs) [18]: Replaced "26 Sensing Inputs" with "24 Sensing Inputs" in heading, added Note 18 only. Updated 32-pin QFN (25 Sensing Inputs) [22]: Replaced "27 Sensing Inputs" with "25 Sensing Inputs" in heading, added Note 20 only. updated 32-pin QFN (22 Sensing Inputs) [22]: Replaced "27 Sensing Inputs" with "25 Sensing Inputs" in heading, added Note 22 only. updated 48-pin QFN (22 Sensing Inputs) [32]: Replaced "33 Sensing Inputs" with "31 Sensing Inputs" in heading, added Note 27 only. Updated 48-pin QFN (33 Sensing Inputs) [32]: Replaced "35 Sensing Inputs" with "31 Sensing Inputs" in heading, added Note 36 only. Updated 48-pin QFN (33 Sensing Inputs) [36]: Replaced "35 Sensing Inputs" with "33 Sensing Inputs" in heading, added Note 36 only. Updated 48-pin QFN (0CD) (33 Sensing Inputs) [46]: Added "33 Sensing Inputs" in heading, added Note 41 only. Updated 48-pin QFN (OCD) (33 Sensing Inputs) [46]: Added "35 Sensing Inputs" in heading, added Note 46 only. Updated Packaging Information: spec 001-42168 — Changed revision from *D to *E.
**	2007522	D) //	05/44/0040	spec 001-57280 – Changed revision from *D to *E.
*S *T	3997568 4044148	BVI BVI	05/11/2013 06/28/2013	Added Errata Footnotes.
	4044148	DVI	00/26/2013	Updated Packaging Information: spec 001-09116 – Changed revision from *G to *H. Updated to new template.

Document History Page (continued)

Document Title: CY8C20XX6A/S, 1.8 V Programmable CapSense[®] Controller with SmartSense™ Auto-tuning 1–33 Buttons, 0-6 Sliders Document Number: 001-54459 Orig. of Submission **ECN** Revision **Description of Change** Change Date *U 4185313 BVI 11/07/2013 Updated Features. Updated Packaging Information: spec 001-09116 – Changed revision from *H to *I. *V SSHH 4622119 01/13/2015 Added More Information. *W 4825924 SSHH 07/07/2015 **Updated Pinouts:** Updated 16-pin QFN (10 Sensing Inputs)[3, 4]: Updated Table 1: Added Note 7 and referred the same note in description of V_{SS} pin. Updated 24-pin QFN (17 Sensing Inputs) [8]: Updated Table 2: Added Note 12 and referred the same note in description of V_{SS} pin. Updated 24-pin QFN (15 Sensing Inputs (With USB)) [13]: Updated Table 3: Added Note 17 and referred the same note in description of V_{SS} pin. Updated 30-ball WLCSP (24 Sensing Inputs) [18]: Added Note 21 and referred the same note in description of V_{SS} pin. Updated 32-pin QFN (25 Sensing Inputs) [22]: Updated Table 5: Added Note 26 and referred the same note in description of V_{SS} pin. Updated 32-pin QFN (22 Sensing Inputs (With USB)) [27]: Updated Table 6: Added Note 31 and referred the same note in description of V_{SS} pin. Updated 48-pin SSOP (31 Sensing Inputs) [32]: Updated Table 7: Added Note 35 and referred the same note in description of V_{SS} pin. Updated 48-pin QFN (33 Sensing Inputs) [36]: Updated Table 8: Added Note 40 and referred the same note in description of V_{SS} pin. Updated 48-pin QFN (33 Sensing Inputs (With USB)) [41]: Updated Table 9: Added Note 45 and referred the same note in description of V_{SS} pin. Updated 48-pin QFN (OCD) (33 Sensing Inputs) [46]: Updated Table 10: Added Note 52 and referred the same note in description of V_{SS} pin. **Updated Ordering Information:** Removed prune part numbers (CY8C20636AN-24LTXI and CY8C20636AN-24LTXIT). **Updated Packaging Information:** spec 001-13937 - Changed revision from *E to *F. spec 001-13191 - Changed revision from *G to *H. *X 5394582 SSHH 08/08/2016 Updated to new template. Completing Sunset Review.