E·XFL

Welcome to E-XFL.COM

Embedded - Microcontrollers - Application Specific: Tailored Solutions for Precision and Performance

Embedded - Microcontrollers - Application Specific

represents a category of microcontrollers designed with unique features and capabilities tailored to specific application needs. Unlike general-purpose microcontrollers, application-specific microcontrollers are optimized for particular tasks, offering enhanced performance, efficiency, and functionality to meet the demands of specialized applications.

What Are <u>Embedded - Microcontrollers -</u> <u>Application Specific</u>?

Application enacific microcontrollars are analyzared to

Details

Product Status	Active
Applications	Capacitive Sensing
Core Processor	M8C
Program Memory Type	FLASH (16kB)
Controller Series	CY8C20xx6A
RAM Size	2K x 8
Interface	I ² C, SPI, USB
Number of I/O	36
Voltage - Supply	1.71V ~ 5.5V
Operating Temperature	-40°C ~ 85°C
Mounting Type	Surface Mount
Package / Case	48-UFQFN Exposed Pad
Supplier Device Package	48-QFN (6x6)
Purchase URL	https://www.e-xfl.com/product-detail/infineon-technologies/cy8c20646a-24lqxit

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Logic Block Diagram

More Information

Cypress provides a wealth of data at www.cypress.com to help you to select the right PSoC device for your design, and to help you to quickly and effectively integrate the device into your design. For a comprehensive list of resources, see the knowledge base article KBA92181, Resources Available for CapSense® Controllers. Following is an abbreviated list for CapSense devices:

- Overview: CapSense Portfolio, CapSense Roadmap
- Product Selectors: CapSense, CapSense Plus, CapSense Express, PSoC3 with CapSense, PSoC5 with CapSense, PSoC4. In addition, PSoC Designer offers a device selection tool at the time of creating a new project.
- Application notes: Cypress offers CapSense application notes covering a broad range of topics, from basic to advanced level. Recommended application notes for getting started with CapSense are:

□ AN64846: Getting Started With CapSense

□ AN73034: CY8C20xx6A/H/AS CapSense[®] Design Guide □ AN2397: CapSense[®] Data Viewing Tools

Technical Reference Manual (TRM):

PSoC® CY8C20xx6A/AS/L Family Technical Reference Manual

- Development Kits:
 - CY3280-20x66 Universal CapSense Controller Kit features a predefined control circuitry and plug-in hardware to make prototyping and debugging easy. Programming and I2C-to-USB Bridge hardware are included for tuning and data acquisition.
 - CY3280-BMM Matrix Button Module Kit consists of eight CapSense sensors organized in a 4x4 matrix format to form 16 physical buttons and eight LEDs. This module connects to any CY3280 Universal CapSense Controller Board, including CY3280-20x66 Universal CapSense Controller.
 - CY3280-BSM Simple Button Module Kit consists of ten CapSense buttons and ten LEDs. This module connects to any CY3280 Universal CapSense Controller Board, including CY3280-20x66 Universal CapSense Controller.

The CY3217-MiniProg1 and CY8CKIT-002 PSoC® MiniProg3 device provides an interface for flash programming.

PSoC Designer

PSoC Designer is a free Windows-based Integrated Design Environment (IDE). It enables concurrent hardware and firmware design of systems based on CapSense (see Figure 1). With PSoC Designer, you can:

- 1. Drag and drop User Modules to build your hardware system design in the main design workspace
- Codesign your application firmware with the PSoC hardware, using the PSoC Designer IDE C compiler
- 3. Configure User Module
- 4. Explore the library of user modules
- 5. Review user module datasheets

CY8C20XX6A/S

Contents

PSoC [®] Functional Overview	5
PSoC Core	5
CapSense System	5
Additional System Resources	6
Getting Started	7
CapSense Design Guides	7
Silicon Frrata	7
Development Kits	7
Training	7
CVPros Consultants	·····/ 7
Solutions Library	·····/ 7
Toobaical Support	، ح
Development Teelo	/ ه
Development roots	0
PSoC Designer Software Subsystems	8
Designing with PSoC Designer	9
Select User Modules	9
Configure User Modules	9
Organize and Connect	9
Generate, Verify, and Debug	9
Pinouts	10
16-pin QFN (10 Sensing Inputs)[3, 4]	10
24-pin QFN (17 Sensing Inputs) [8]	11
24-pin QFN (15 Sensing Inputs (With USB)) [13]	12
30-ball WLCSP (24 Sensing Inputs) [18]	13
32-pin QFN (25 Sensing Inputs) [22]	14
32-pin QFN (22 Sensing Inputs (With USB)) [27]	15
48-pin SSOP (31 Sensing Inputs) [32]	16
48-pin QEN (33 Sensing Inputs) [36]	
48-pin QEN (33 Sensing Inputs (With USB)) [41]	18
48-nin OEN (OCD) (33 Sensing Inputs) [46]	10
Flectrical Specifications	20
Absolute Maximum Ratings	20
Operating Temperature	20 20
DC Chin Lovel Specifications	20 21
	ر ∠
DC GPIO Specifications	ZZ
DC Analog Mux Bus Specifications	24
Do Low Power Comparator Specifications	24
Comparator User Module	~-
Electrical Specifications	25
ADC Electrical Specifications	25
DC POR and LVD Specifications	26

	DC Programming Specifications	26
	DC I2C Specifications	27
	DC Reference Buffer Specifications	27
	DC IDAC Specifications	27
	AC Chip-Level Specifications	28
	AC GPIO Specifications	29
	AC Comparator Specifications	30
	AC External Clock Specifications	30
	AC Programming Specifications	31
	AC I2C Specifications	32
Pac	kaging Information	35
	Thermal Impedances	38
	Capacitance on Crystal Pins	38
	Solder Reflow Specifications	38
Dev	elopment Tool Selection	39
	Software	39
	Development Kits	39
	Evaluation Tools	39
	Device Programmers	39
	Accessories (Emulation and Programming)	40
	Third Party Tools	40
	Build a PSoC Emulator into Your Board	40
Ord	ering Information	41
	Ordering Code Definitions	43
Acr	onyms	44
Ref	erence Documents	44
Doc	ument Conventions	44
	Units of Measure	44
	Numeric Naming	45
Glo	ssary	45
Erra	ata	46
	Qualification Status	46
	Errata Summary	46
Doc	ument History Page	49
Sale	es, Solutions, and Legal Information	53
	Worldwide Sales and Design Support	53
	Products	53
	PSoC®Solutions	53
	Cypress Developer Community	53
	Technical Support	53

PSoC[®] Functional Overview

The PSoC family consists of on-chip controller devices, which are designed to replace multiple traditional microcontroller unit (MCU)-based components with one, low cost single-chip programmable component. A PSoC device includes configurable analog and digital blocks, and programmable interconnect. This architecture allows the user to create customized peripheral configurations, to match the requirements of each individual application. Additionally, a fast CPU, Flash program memory, SRAM data memory, and configurable I/O are included in a range of convenient pinouts.

The architecture for this device family, as shown in the Logic Block Diagram on page 2, consists of three main areas:

- The Core
- CapSense Analog System
- System Resources (including a full-speed USB port).

A common, versatile bus allows connection between I/O and the analog system.

Each CY8C20XX6A/S PSoC device includes a dedicated CapSense block that provides sensing and scanning control circuitry for capacitive sensing applications. Depending on the PSoC package, up to 36 GPIO are also included. The GPIO provides access to the MCU and analog mux.

PSoC Core

The PSoC Core is a powerful engine that supports a rich instruction set. It encompasses SRAM for data storage, an interrupt controller, sleep and watchdog timers, and IMO and ILO. The CPU core, called the M8C, is a powerful processor with speeds up to 24 MHz. The M8C is a 4-MIPS, 8-bit Harvard-architecture microprocessor.

CapSense System

The analog system contains the capacitive sensing hardware. Several hardware algorithms are supported. This hardware performs capacitive sensing and scanning without requiring external components. The analog system is composed of the CapSense PSoC block and an internal 1 V or 1.2 V analog reference, which together support capacitive sensing of up to 33 inputs ^[2]. Capacitive sensing is configurable on each GPIO pin. Scanning of enabled CapSense pins are completed quickly and easily across multiple ports.

SmartSense

SmartSense is an innovative solution from Cypress that removes manual tuning of CapSense applications. This solution is easy to use and provides a robust noise immunity. It is the only auto-tuning solution that establishes, monitors, and maintains all required tuning parameters. SmartSense allows engineers to go from prototyping to mass production without re-tuning for manufacturing variations in PCB and/or overlay material properties.

SmartSense_EMC

In addition to the SmartSense auto tuning algorithm to remove manual tuning of CapSense applications, SmartSense_EMC user module incorporates a unique algorithm to improve robustness of capacitive sensing algorithm/circuit against high frequency conducted and radiated noise. Every electronic device must comply with specific limits for radiated and conducted external noise and these limits are specified by regulatory bodies (for example, FCC, CE, U/L and so on). A very good PCB layout design, power supply design and system design is a mandatory for a product to pass the conducted and radiated noise tests. An ideal PCB layout, power supply design or system design is not often possible because of cost and form factor limitations of the product. SmartSense_EMC with superior noise immunity is well suited and handy for such applications to pass radiated and conducted noise test.

Figure 2. CapSense System Block Diagram

Note 2. 36 GPIOs = 33 pins for capacitive sensing + 2 pins for I^2C + 1 pin for modulator capacitor.

Getting Started

The quickest way to understand PSoC silicon is to read this datasheet and then use the PSoC Designer Integrated Development Environment (IDE). This datasheet is an overview of the PSoC integrated circuit and presents specific pin, register, and electrical specifications.

For in depth information, along with detailed programming details, see the Technical Reference Manual for the CY8C20XX6A/S PSoC devices.

For up-to-date ordering, packaging, and electrical specification information, see the latest PSoC device datasheets on the web at www.cypress.com/psoc.

CapSense Design Guides

Design Guides are an excellent introduction to the wide variety of possible CapSense designs. They are located at www.cypress.com/go/CapSenseDesignGuides.

Refer Getting Started with CapSense design guide for information on CapSense design and CY8C20XX6A/H/AS CapSense[®] Design Guide for specific information on CY8C20XX6A/AS CapSense controllers.

Silicon Errata

Errata documents known issues with silicon including errata trigger conditions, scope of impact, available workarounds and silicon revision applicability. Refer to Silicon Errata for the PSoC[®] CY8C20x36A/46A/66A/96A/46AS/66AS/36H/46H families available at http://www.cypress.com/?rID=56239 for errata information on CY8C20xx6A/AS/H family of device. Compare errata document with datasheet for a complete functional description of device.

Development Kits

PSoC Development Kits are available online from and through a growing number of regional and global distributors, which include Arrow, Avnet, Digi-Key, Farnell, Future Electronics, and Newark.

Training

Free PSoC technical training (on demand, webinars, and workshops), which is available online via www.cypress.com, covers a wide variety of topics and skill levels to assist you in your designs.

CYPros Consultants

Certified PSoC consultants offer everything from technical assistance to completed PSoC designs. To contact or become a PSoC consultant go to the CYPros Consultants web site.

Solutions Library

Visit our growing library of solution focused designs. Here you can find various application designs that include firmware and hardware design files that enable you to complete your designs quickly.

Technical Support

Technical support – including a searchable Knowledge Base articles and technical forums – is also available online. If you cannot find an answer to your question, call our Technical Support hotline at 1-800-541-4736.

24-pin QFN (17 Sensing Inputs) [8]

Table 2. Pin Definitions – CY8C20336A, CY8C20346A, CY8C20346AS^[9]

Pin	Ту	ре	Nama	Description		
No.	Digital	Analog	Name	Description		
1	I/O	I	P2[5]	Crystal output (XOut)		
2	I/O	I	P2[3]	Crystal input (XIn)		
3	I/O	I	P2[1]			
4	IOHR	I	P1[7]	I ² C SCL, SPI SS		
5	IOHR	I	P1[5]	I ² C SDA, SPI MISO		
6	IOHR	I	P1[3]	SPI CLK		
7	IOHR	I	P1[1]	ISSP CLK ^[10] , I ² C SCL, SPI MOSI		
8			NC	No connection		
9	Po	wer	V _{SS}	Ground connection ^[12]		
10	IOHR	I	P1[0]	ISSP DATA ^[10] , I ² C SDA, SPI CLK ^[11]		
11	IOHR	I	P1[2]			
12	IOHR	I	P1[4]	Optional external clock input (EXTCLK)		
13	IOHR	I	P1[6]			
14	Inj	out	XRES	Active high external reset with internal pull-down		
15	I/O	I	P2[0]			
16	IOH	I	P0[0]			
17	IOH	I	P0[2]			
18	IOH	I	P0[4]			
19	IOH	I	P0[6]			
20	Po	wer	V _{DD}	Supply voltage		
21	IOH	I	P0[7]			
22	IOH	I	P0[5]			
23	IOH	I	P0[3]	Integrating input		
24	IOH	Ι	P0[1]	Integrating input		
СР	Power		V _{SS}	Center pad must be connected to ground		

Figure 4. CY8C20336A, CY8C20346A, CY8C20346AS

LEGEND A = Analog, I = Input, O = Output, OH = 5 mA High Output Drive, R = Regulated Output.

Notes

- 8. 20 GPIOs = 17 pins for capacitive sensing + 2 pins for I2C + 1 pin for modulation capacitor.
 9. The center pad (CP) on the QFN package must be connected to ground (V_{SS}) for best mechanical, thermal, and electrical performance. If not connected to ground, it must be electrically floated and not connected to any other signal.
- 10. On power-up, the SDA(P1[0]) drives a strong high for 256 sleep clock cycles and drives resistive low for the next 256 sleep clock cycles. The SCL(P1[1]) line drives resistive low for 512 sleep clock cycles and both the pins transition to high impedance state. On reset, after XRES de-asserts, the SDA and the SCL lines drive resistive low for 8 sleep clock cycles and transition to high impedance state. Hence, during power-up or reset event, P1[1] and P1[0] may disturb the I2C bus. Use alternate pins if you encounter issues.

11. Alternate SPI clock

12. All VSS pins should be brought out to one common GND plane.

32-pin QFN (25 Sensing Inputs) [22]

Table 5. Pin Definitions – CY8C20436A, CY8C20446A, CY8C20446AS, CY8C20466A, CY8C20466AS^[23]

Pin	Ту	ре	Namo	Description
No.	Digital	Analog	Name	Description
1	IOH	I	P0[1]	Integrating input
2	I/O	I	P2[7]	
3	I/O	I	P2[5]	Crystal output (XOut)
4	I/O	I	P2[3]	Crystal input (XIn)
5	I/O	I	P2[1]	
6	I/O	I	P3[3]	
7	I/O	I	P3[1]	
8	IOHR	I	P1[7]	I ² C SCL, SPI SS
9	IOHR	I	P1[5]	I ² C SDA, SPI MISO
10	IOHR	I	P1[3]	SPI CLK.
11	IOHR	I	P1[1]	ISSP CLK ^[24] , I ² C SCL, SPI MOSI.
12	Po	wer	V _{SS}	Ground connection ^[26]
13	IOHR	I	P1[0]	ISSP DATA ^[24] , I ² C SDA, SPI CLK ^[25]
14	IOHR	I	P1[2]	
15	IOHR	I	P1[4]	Optional external clock input (EXTCLK)
16	IOHR	I	P1[6]	
17	Input		XRES	Active high external reset with internal pull-down
18	I/O	I	P3[0]	
19	I/O	I	P3[2]	
20	I/O	I	P2[0]	
21	I/O	I	P2[2]	
22	I/O	I	P2[4]	
23	I/O	I	P2[6]	
24	IOH	I	P0[0]	
25	IOH	I	P0[2]	
26	IOH	I	P0[4]	
27	IOH	I	P0[6]	
28	Po	wer	V _{DD}	Supply voltage
29	IOH	I	P0[7]	
30	IOH	I	P0[5]	
31	IOH	I	P0[3]	Integrating input
32	Po	wer	V _{SS}	Ground connection ^[26]
СР	Power		V _{SS}	Center pad must be connected to ground

Figure 7. CY8C20436A, CY8C20446A, CY8C20446AS, CY8C20466A, CY8C20466AS

LEGEND A = Analog, I = Input, O = Output, OH = 5 mA High Output Drive, R = Regulated Output.

Notes

22. 28 GPIOs = 25 pins for capacitive sensing + 2 pins for I2C + 1 pin for modulation capacitor.

23. The center pad (CP) on the QFN package must be connected to ground (V_{SS}) for best mechanical, thermal, and electrical performance. If not connected to ground, it must be electrically floated and not connected to any other signal.

24. On power-up, the SDA(P1[0]) drives a strong high for 256 sleep clock cycles and drives resistive low for the next 256 sleep clock cycles. The SCL(P1[1]) line drives resistive low for 512 sleep clock cycles and both the pins transition to high impedance state. On reset, after XRES de-asserts, the SDA and the SCL lines drive resistive low for 8 sleep clock cycles and transition to high impedance state. Hence, during power-up or reset event, P1[1] and P1[0] may disturb the I2C bus. Use alternate pins if you encounter issues.

25. Alternate SPI clock.

26. All VSS pins should be brought out to one common GND plane.

[33, 34]

48-pin SSOP (31 Sensing Inputs) ^[32] Table 7. Pin Definitions – CY8C20536A, CY8C20546A, and CY8C20566A^[33]

Pin No.	Digital	Analog	Name	Description		Figure	9. CY8	C20536/	A, CY8C20	546A	A, and CY8C20566A
1	IOH	1	P0[7]						· · · · ·		
2	IOH	1	P0[5]					AI, P0[7]	2	48 47	VDD P0[6] , Al
3	IOH	1	P0[3]	Integrating Input				AI, P0[3]	3	46	P0[4] , Al P0[2] , Al
4	IOH	1	P0[1]	Integrating Input				AI, P2[7]	5	44	P0[0], AI
5	I/O	1	P2[7]				XTA	ALOUT, P2[5] = TALIN, P2[3] =	6 7	43 42	P2[6] , Al P2[4] , Al
6	I/O	1	P2[5]	XTAL Out				AI, P2[1]	8 9	41	P2[2], Al
7	I/O	1	P2[3]	XTAL In				NC=	10	39 =	P3[6] , Al
8	I/O	1	P2[1]					AI, P4[3] AI, P4[1]	¹¹ ¹² SSOP	38 = 37 =	P3[4] , Al P3[2] , Al
9			NC	No connection				NC	13 330F	36	P3[0], AI
10			NC	No connection				AI, P3[5]	15	34	NC
11	I/O	1	P4[3]					AI, P3[3]= AI, P3[1]=	16 17	33 32	NC NC
12	I/O	1	P4[1]					NC=	18	31	NC
13			NC	No connection			I2 C SCL, S	SPI SS, P1[7]	20	29	NC
14	I/O	1	P3[7]			[33]	I2 C SDA, SP S	I MISO, P1[5]= PI CLK, P1[3]=	21 22	28	P1[6], AI P1[4], EXT CLK
15	I/O	1	P3[5]			ISSP CLI	K, I2 C SCL, SP	I MOSI, P1[1]	23	26	P1[2], AI [3
16	I/O	1	P3[3]					V35∎	24	25	P 1[0],155P DATA,12C 5DA,5PI CLK
17	I/O	1	P3[1]								
18			NC	No connection							
19			NC	No connection							
20	IOHR	1	P1[7]	I ² C SCL, SPI SS							
21	IOHR	1	P1[5]	I ² C SDA, SPI MISO							
22	IOHR	1	P1[3]	SPI CLK							
23	IOHR	1	P1[1]	ISSP CLK ^[33] , I ² C SCL, SPI MOSI							
24			V _{SS}	Ground Pin ^[35]							
25	IOHR	I	P1[0]	ISSP DATA ^[33] , I ² C SDA, SPI CLK ^[34]							
26	IOHR	1	P1[2]								
27	IOHR	I	P1[4]	Optional external clock input (EXT CLK)							
28	IOHR	1	P1[6]								
29			NC	No connection							
30			NC	No connection							
31			NC	No connection							
32			NC	No connection	Pin No.	Digital	Analog	Name			Description
33			NC	No connection	41	I/O	I	P2[2]			
34			NC	No connection	42	I/O	Ι	P2[4]			
35			XRES	Active high external reset with internal pull-down	43	I/O	I	P2[6]			
36	I/O	I	P3[0]		44	IOH	I	P0[0]			
37	I/O	I	P3[2]		45	IOH	1	P0[2]			
38	I/O	1	P3[4]		46	IOH	I	P0[4]	VREF		
39	I/O	1	P3[6]		47	IOH	I	P0[6]			
40	I/O	1	P2[0]		48	Power		V _{DD}	Power Pin		

LEGEND A = Analog, I = Input, O = Output, NC = No Connection, H = 5 mA High Output Drive, R = Regulated Output Option.

Notes

32.34 GPIOs = 31 pins for capacitive sensing + 2 pins for I2C + 1 pin for modulation capacitor.

33. On power-up, the SDA(P1[0]) drives a strong high for 256 sleep clock cycles and drives resistive low for the next 256 sleep clock cycles. The SCL(P1[1]) line drives resistive low for 512 sleep clock cycles and both the pins transition to high impedance state. On reset, after XRES de-asserts, the SDA and the SCL lines drive resistive low for 8 sleep clock cycles and transition to high impedance state. Hence, during power-up or reset event, P1[1] and P1[0] may disturb the I2C bus. Use alternate pins if you encounter issues.

34. Alternate SPI clock.

35. All VSS pins should be brought out to one common GND plane.

Electrical Specifications

This section presents the DC and AC electrical specifications of the CY8C20XX6A/S PSoC devices. For the latest electrical specifications, confirm that you have the most recent datasheet by visiting the web at http://www.cypress.com/psoc.

Figure 13. Voltage versus CPU Frequency

Absolute Maximum Ratings

Exceeding maximum ratings may shorten the useful life of the device. User guidelines are not tested.

Table 11. Absolute Maximum Ratings

Symbol	Description	Conditions	Min	Тур	Мах	Units
T _{STG}	Storage temperature	Higher storage temperatures reduce data retention time. Recommended Storage Temperature is +25 °C ± 25 °C. Extended duration storage temperatures above 85 °C degrades reliability.	-55	+25	+125	°C
V _{DD}	Supply voltage relative to V_{SS}	_	-0.5	-	+6.0	V
V _{IO}	DC input voltage	_	$V_{SS} - 0.5$	-	V _{DD} + 0.5	V
V _{IOZ} ^[53]	DC voltage applied to tristate	_	$V_{SS} - 0.5$	-	V _{DD} + 0.5	V
I _{MIO}	Maximum current into any port pin	_	-25	-	+50	mA
ESD	Electrostatic discharge voltage	Human body model ESD	2000	-	_	V
LU	Latch-up current	In accordance with JESD78 standard	_	-	200	mA

Operating Temperature

Table 12. Operating Temperature

Symbol	Description	Conditions	Min	Тур	Мах	Units
T _A	Ambient temperature	_	-40	-	+85	°C
т _с	Commercial temperature range	_	0	Ι	70	°C
TJ	Operational die temperature	The temperature rise from ambient to junction is package specific. Refer the Thermal Impedances on page 38. The user must limit the power consumption to comply with this requirement.	-40	_	+100	°C

Note

53. Port1 pins are hot-swap capable with I/O configured in High-Z mode, and pin input voltage above V_{DD}.

DC Chip-Level Specifications

Table 13 lists guaranteed maximum and minimum specifications for the entire voltage and temperature ranges.

Table 13. DC Chip-Level Specifications

Symbol	Description	Conditions	Min	Тур	Мах	Units
V _{DD} ^[54, 55, 56, 57]	Supply voltage	No USB activity. Refer the table "DC POR and LVD Specifications" on page 26	1.71	-	5.50	v
V[54, 55, 56, 57]	Operating voltage	USB activity, USB regulator enabled	4.35	-	5.25	V
VDDUSB		USB activity, USB regulator bypassed	3.15	3.3	3.60	V
I _{DD24}	Supply current, IMO = 24 MHz	Conditions are $V_{DD} \le 3.0 \text{ V}$, $T_A = 25 \degree \text{C}$, CPU = 24 MHz. CapSense running at 12 MHz, no I/O sourcing current	_	2.88	4.00	mA
I _{DD12}	Supply current, IMO = 12 MHz	Conditions are $V_{DD} \le 3.0 \text{ V}$, $T_A = 25 \degree \text{C}$, CPU = 12 MHz. CapSense running at 12 MHz, no I/O sourcing current	_	1.71	2.60	mA
I _{DD6}	Supply current, IMO = 6 MHz	Conditions are $V_{DD} \le 3.0 \text{ V}$, $T_A = 25 \degree \text{C}$, CPU = 6 MHz. CapSense running at 6 MHz, no I/O sourcing current	_	1.16	1.80	mA
I _{DDAVG10}	Average supply current per sensor	One sensor scanned at 10 mS rate	_	250	_	μΑ
I _{DDAVG100}	Average supply current per sensor	One sensor scanned at 100 mS rate	-	25	_	μΑ
IDDAVG500	Average supply current per sensor	One sensor scanned at 500 mS rate	-	7	_	μΑ
I _{SB0} [58, 59, 60, 61, 62, 63]	Deep sleep current	$V_{DD} \leq 3.0$ V, T_A = 25 °C, I/O regulator turned off	-	0.10	1.05	μΑ
I _{SB1} ^[58, 59, 60, 61, 62, 63]	Standby current with POR, LVD and sleep timer	$V_{DD} \leq$ 3.0 V, T_A = 25 °C, I/O regulator turned off	_	1.07	1.50	μA
I _{SBI2C} ^[58, 59, 60, 61, 62, 63]	Standby current with I ² C enabled	Conditions are V_{DD} = 3.3 V, T _A = 25 °C and CPU = 24 MHz	_	1.64	_	μΑ

Notes

54. When V_{DD} remains in the range from 1.71 V to 1.9 V for more than 50 μs, the slew rate when moving from the 1.71 V to 1.9 V range to greater than 2 V must be slower than 1 V/500 μs to avoid triggering POR. The only other restriction on slew rates for any other voltage range or transition is the SR_{POWER_UP} parameter.
 55. If powering down in standby sleep mode, to properly detect and recover from a V_{DD} brown out condition any of the following actions must be taken:

- a.Bring the device out of sleep before powering down.
- b.Assure that V_{DD} falls below 100 mV before powering back up.
- c.Set the No Buzz bit in the OSC_CR0 register to keep the voltage monitoring circuit powered during sleep.

 d.Increase the buzz rate to assure that the falling edge of V_{DD} is captured. The rate is configured through the PSSDC bits in the SLP_CFG register. For the referenced registers, refer to the CY8C20X36 Technical Reference Manual. In deep sleep mode, additional low power voltage monitoring circuitry allows V_{DD} brown out conditions to be detected for edge rates slower than 1V/ms.
 56. For USB mode, the V_{DD} supply for bus-powered application should be limited to 4.35 V–5.35 V. For self-powered application, V_{DD} should be 3.15 V–3.45 V.
 57. For proper CapSense block functionality, if the drop in V_{DD} exceeds 5% of the base V_{DD}, the rate at which V_{DD} drops should not exceed 200 mV/s. Base V_{DD} can be between 1.8 V and 5.5 V. be between 1.8 V and 5.5 V.

58. Errata: When the device is put to sleep in Standby or I2C_USB Mode and the bandgap circuit is refreshed less frequently than every 8 ms (default), the device may not come out of sleep when a sleep-ending input is received. For more information, see the "Errata" on page 46.

59. Errata: The I2C block exhibits occasional data and bus corruption errors when the I2C master initiates transactions while the device is in or out of transition of sleep mode. For more information, see the "Errata" on page 46.

60. Errata: When programmable timer 0 is used in "one-shot" mode by setting bit 1 of register 0,B0h (PT0_CFG), and the timer interrupt is used to wake the device from sleep, the interrupt service routine (ISR) may be executed twice. For more information, see the "Errata" on page 47.

61. Errata: When in sleep mode, if a GPIO interrupt happens simultaneously with a Timer0 or Sleep Timer interrupt, the GPIO interrupt may be missed, and the corresponding GPIO ISR not run. For more information, see the "Errata" on page 47.

62. Errata: If an interrupt is posted a short time (within 2.5 CPU cycles) before firmware commands the device to sleep, the interrupt will be missed. For more information, see the "Errata" on page 48.

63. Errata: Device wakes up from sleep when an analog interrupt is trigger. For more information, see the "Errata" on page 48.

DC GPIO Specifications

The following tables list guaranteed maximum and minimum specifications for the voltage and temperature ranges: 3.0 V to 5.5 V and -40 °C \leq T_A \leq 85 °C, 2.4 V to 3.0 V and -40 °C \leq T_A \leq 85 °C, or 1.71 V to 2.4 V and -40 °C \leq T_A \leq 85 °C, respectively. Typical parameters apply to 5 V and 3.3 V at 25 C and are for design guidance only.

|--|

Symbol	Description	Conditions	Min	Тур	Max	Units
R _{PU}	Pull-up resistor	-	4	5.60	8	kΩ
V _{OH1}	High output voltage Port 2 or 3 or 4 pins	$I_{OH} \le 10 \ \mu$ A, maximum of 10 mA source current in all I/Os	V _{DD} – 0.20	_	-	V
V _{OH2}	High output voltage Port 2 or 3 or 4 pins	I _{OH} = 1 mA, maximum of 20 mA source current in all I/Os	V _{DD} - 0.90	-	-	V
V _{OH3}	High output voltage Port 0 or 1 pins with LDO regulator Disabled for port 1	I _{OH} < 10 μA, maximum of 10 mA source current in all I/Os	V _{DD} – 0.20	-	-	V
V _{OH4}	High output voltage Port 0 or 1 pins with LDO regulator Disabled for port 1	I _{OH} = 5 mA, maximum of 20 mA source current in all I/Os	V _{DD} – 0.90	-	_	V
V _{OH5}	High output voltage Port 1 Pins with LDO Regulator Enabled for 3 V out	I_{OH} < 10 μ A, V_{DD} > 3.1 V, maximum of 4 I/Os all sourcing 5 mA	2.85	3.00	3.30	V
V _{OH6}	High output voltage Port 1 pins with LDO regulator enabled for 3 V out	I _{OH} = 5 mA, V _{DD} > 3.1 V, maximum of 20 mA source current in all I/Os	2.20	-	-	V
V _{OH7}	High output voltage Port 1 pins with LDO enabled for 2.5 V out	I_{OH} < 10 μ A, V _{DD} > 2.7 V, maximum of 20 mA source current in all I/Os	2.35	2.50	2.75	V
V _{OH8}	High output voltage Port 1 pins with LDO enabled for 2.5 V out	I _{OH} = 2 mA, V _{DD} > 2.7 V, maximum of 20 mA source current in all I/Os	1.90	-	-	V
V _{OH9}	High output voltage Port 1 pins with LDO enabled for 1.8 V out	I_{OH} < 10 μ A, V _{DD} > 2.7 V, maximum of 20 mA source current in all I/Os	1.60	1.80	2.10	V
V _{OH10}	High output voltage Port 1 pins with LDO enabled for 1.8 V out	I _{OH} = 1 mA, V _{DD} > 2.7 V, maximum of 20 mA source current in all I/Os	1.20	-	I	V
V _{OL}	Low output voltage	I_{OL} = 25 mA, V_{DD} > 3.3 V, maximum of 60 mA sink current on even port pins (for example, P0[2] and P1[4]) and 60 mA sink current on odd port pins (for example, P0[3] and P1[5])	-	-	0.75	v
V _{IL}	Input low voltage	_	-	-	0.80	V
V _{IH}	Input high voltage	-	2.00	-	-	V
V _H	Input hysteresis voltage	-	_	80	-	mV
IIL	Input leakage (Absolute Value)	_	_	0.001	1	μΑ
C _{PIN}	Pin capacitance	Package and pin dependent Temp = 25 °C	0.50	1.70	7	pF
V _{ILLVT3.3}	Input Low Voltage with low threshold enable set, Enable for Port1	Bit3 of IO_CFG1 set to enable low threshold voltage of Port1 input	0.8	V	_	-
V _{IHLVT3.3}	Input High Voltage with low threshold enable set, Enable for Port1	Bit3 of IO_CFG1 set to enable low threshold voltage of Port1 input	1.4	_	_	V
V _{ILLVT5.5}	Input Low Voltage with low threshold enable set, Enable for Port1	Bit3 of IO_CFG1 set to enable low threshold voltage of Port1 input	0.8	V	_	_
V _{IHLVT5.5}	Input High Voltage with low threshold enable set, Enable for Port1	Bit3 of IO_CFG1 set to enable low threshold voltage of Port1 input	1.7	_	-	V

Table 15. 2.4 V to 3.0 V DC GPIO Specifications

Symbol	Description	Conditions	Min	Тур	Max	Units
R _{PU}	Pull-up resistor	-	4	5.60	8	kΩ
V _{OH1}	High output voltage Port 2 or 3 or 4 pins	I _{OH} < 10 μA, maximum of 10 mA source current in all I/Os	V _{DD} – 0.20	_	-	V
V _{OH2}	High output voltage Port 2 or 3 or 4 pins	I _{OH} = 0.2 mA, maximum of 10 mA source current in all I/Os	V _{DD} – 0.40	-	-	V
V _{OH3}	High output voltage Port 0 or 1 pins with LDO regulator Disabled for port 1	I _{OH} < 10 μA, maximum of 10 mA source current in all I/Os	V _{DD} – 0.20	_	_	V
V _{OH4}	High output voltage Port 0 or 1 pins with LDO regulator Disabled for Port 1	I _{OH} = 2 mA, maximum of 10 mA source current in all I/Os	V _{DD} – 0.50	-	_	V
V _{OH5A}	High output voltage Port 1 pins with LDO enabled for 1.8 V out	I_{OH} < 10 μ A, V _{DD} > 2.4 V, maximum of 20 mA source current in all I/Os	1.50	1.80	2.10	V
V _{OH6A}	High output voltage Port 1 pins with LDO enabled for 1.8 V out	I _{OH} = 1 mA, V _{DD} > 2.4 V, maximum of 20 mA source current in all I/Os	1.20	Ι	-	V
V _{OL}	Low output voltage	IOL = 10 mA, maximum of 30 mA sink current on even port pins (for example, P0[2] and P1[4]) and 30 mA sink current on odd port pins (for example, P0[3] and P1[5])	_	_	0.75	V
V _{IL}	Input low voltage	-	-	-	0.72	V
V _{IH}	Input high voltage	_	1.40	Ι		V
V _H	Input hysteresis voltage	_	-	80	-	mV
IIL	Input leakage (absolute value)	-	-	1	1000	nA
C _{PIN}	Capacitive load on pins	Package and pin dependent Temp = 25 °C	0.50	1.70	7	pF
V _{ILLVT2.5}	Input Low Voltage with low threshold enable set, Enable for Port1	Bit3 of IO_CFG1 set to enable low threshold voltage of Port1 input	0.7	V	_	
V _{IHLVT2.5}	Input High Voltage with low threshold enable set, Enable for Port1	Bit3 of IO_CFG1 set to enable low threshold voltage of Port1 input	1.2		_	V

Table 16. 1.71 V to 2.4 V DC GPIO Specifications

Symbol	Description	Conditions	Min	Тур	Мах	Units
R _{PU}	Pull-up resistor	-	4	5.60	8	kΩ
V _{OH1}	High output voltage Port 2 or 3 or 4 pins	I_{OH} = 10 μ A, maximum of 10 mA source current in all I/Os	V _{DD} – 0.20	-	-	V
V _{OH2}	High output voltage Port 2 or 3 or 4 pins	I _{OH} = 0.5 mA, maximum of 10 mA source current in all I/Os	V _{DD} – 0.50	_	_	V
V _{OH3}	High output voltage Port 0 or 1 pins with LDO regulator Disabled for Port 1	I _{OH} = 100 μA, maximum of 10 mA source current in all I/Os	V _{DD} – 0.20	_	-	V
V _{OH4}	High output voltage Port 0 or 1 Pins with LDO Regulator Disabled for Port 1	I _{OH} = 2 mA, maximum of 10 mA source current in all I/Os	V _{DD} – 0.50	_	-	V
V _{OL}	Low output voltage	I _{OL} = 5 mA, maximum of 20 mA sink current on even port pins (for example, P0[2] and P1[4]) and 30 mA sink current on odd port pins (for example, P0[3] and P1[5])	-	-	0.40	V
V _{IL}	Input low voltage	_	_	-	$0.30 \times V_{DD}$	V

Comparator User Module Electrical Specifications

Table 20 lists the guaranteed maximum and minimum specifications. Unless stated otherwise, the specifications are for the entire device voltage and temperature operating range: –40 °C \leq T_A \leq 85 °C, 1.71 V \leq V_{DD} \leq 5.5 V.

 Table 20. Comparator User Module Electrical Specifications

Symbol	Description	Conditions	Min	Тур	Max	Units
t _{COMP}	Comparator response time	50 mV overdrive	-	70	100	ns
Offset		Valid from 0.2 V to $V_{DD} - 0.2 V$	-	2.5	30	mV
Current		Average DC current, 50 mV overdrive	-	20	80	μA
DODD	Supply voltage > 2 V	Power supply rejection ratio	-	80	-	dB
	Supply voltage < 2 V	Power supply rejection ratio	-	40	-	dB
Input range		_	0		1.5	V

ADC Electrical Specifications

Table 21. ADC User Module Electrical Specifications

Symbol	Description	Conditions	Min	Тур	Max	Units
Input		-				
V _{IN}	Input voltage range	-	0	-	VREFADC	V
C _{IIN}	Input capacitance	_	-	-	5	pF
R _{IN}	Input resistance	Equivalent switched cap input resistance for 8-, 9-, or 10-bit resolution	1/(500fF × data clock)	1/(400fF × data clock)	1/(300fF × data clock)	Ω
Reference						
V _{REFADC}	ADC reference voltage	-	1.14	-	1.26	V
Conversion Ra	ite					
F _{CLK}	Data clock	Source is chip's internal main oscillator. See AC Chip-Level Specifications for accuracy	2.25	-	6	MHz
S8	8-bit sample rate	Data clock set to 6 MHz. sample rate = 0.001/ (2^Resolution/Data Clock)	-	23.43	-	ksps
S10	10-bit sample rate	Data clock set to 6 MHz. sample rate = 0.001/ (2 ^{resolution/data clock})	-	5.85	-	ksps
DC Accuracy	•					
RES	Resolution	Can be set to 8-, 9-, or 10-bit	8	-	10	bits
DNL	Differential nonlinearity	_	–1	-	+2	LSB
INL	Integral nonlinearity	-	-2	-	+2	LSB
E	Offect arror	8-bit resolution	0	3.20	19.20	LSB
-OFFSET		10-bit resolution	0	12.80	76.80	LSB
E _{GAIN}	Gain error	For any resolution	-5	-	+5	%FSR
Power						
I _{ADC}	Operating current	-	-	2.10	2.60	mA
	Power supply rejection ratio	PSRR (V _{DD} > 3.0 V)	-	24	-	dB
		PSRR (V _{DD} < 3.0 V)	_	30	-	dB

DC I²C Specifications

Table 24 list guaranteed maximum and minimum specifications for the voltage and temperature ranges: 3.0 V to 5.5 V and –40 °C \leq T_A \leq 85 °C, 2.4 V to 3.0 V and –40 °C \leq T_A \leq 85 °C, or 1.71 V to 2.4 V and –40 °C \leq T_A \leq 85 °C, respectively. Typical parameters apply to 5 V and 3.3 V at 25 °C and are for design guidance only.

Table 24. DC I²C Specifications

Symbol	Description	Conditions	Min	Тур	Max	Units
		$3.1 \text{ V} \le \text{V}_{\text{DD}} \le 5.5 \text{ V}$	-	-	$0.25 \times V_{DD}$	V
V _{ILI2C}	Input low level	$2.5 \text{ V} \le \text{V}_{\text{DD}} \le 3.0 \text{ V}$	-	-	$0.3 \times V_{DD}$	V
		$1.71 \text{ V} \leq \text{V}_{\text{DD}} \leq 2.4 \text{ V}$	-	-	$0.3 \times V_{DD}$	V
V _{IHI2C}	Input high level	$1.71 \text{ V} \le \text{V}_{\text{DD}} \le 5.5 \text{ V}$	$0.65 \times V_{DD}$	-	-	V

DC Reference Buffer Specifications

Table 25 list guaranteed maximum and minimum specifications for the voltage and temperature ranges: 3.0 V to 5.5 V and –40 °C \leq T_A \leq 85 °C, 2.4 V to 3.0 V and –40 °C \leq T_A \leq 85 °C, or 1.71 V to 2.4 V and –40 °C \leq T_A \leq 85 °C, respectively. Typical parameters apply to 5 V and 3.3 V at 25 °C and are for design guidance only.

Table 25. DC Reference Buffer Specifications

Symbol	Description	Conditions	Min	Тур	Max	Units
V _{Ref}	Reference buffer output	$1.7 \text{ V} \leq \text{V}_{\text{DD}} \leq 5.5 \text{ V}$	1	-	1.05	V
V _{RefHi}	Reference buffer output	$1.7 \text{ V} \le \text{V}_{\text{DD}} \le 5.5 \text{ V}$	1.2	_	1.25	V

DC IDAC Specifications

Table 26 lists guaranteed maximum and minimum specifications for the entire voltage and temperature ranges.

Table 26. DC IDAC Specifications

Symbol	Description	Min	Тур	Max	Units	Notes
IDAC_DNL	Differential nonlinearity	-4.5	-	+4.5	LSB	-
IDAC_INL	INL Integral nonlinearity		-	+5	LSB	-
	Range = 0.5x	6.64	-	22.46	μA	DAC setting = 128 dec.
	Range = 1x	14.5	-	47.8	μA	Not recommended for CapSense
IDAC_Gain	Range = 2x	42.7	-	92.3	μA	applications.
(Source)	Range = 4x	91.1	-	170	μA	DAC setting = 128 dec
	Range = 8x	184.5	_	426.9	μA	DAC setting = 128 dec

Table 36. SPI Slave AC Specifications

Symbol	Description	Conditions	Min	Тур	Max	Units
F _{SCLK}	SCLK clock frequency	-	-	-	4	MHz
t _{LOW}	SCLK low time	-	42	-	-	ns
t _{HIGH}	SCLK high time	-	42	-	-	ns
t _{SETUP}	MOSI to SCLK setup time	-	30	-	-	ns
t _{HOLD}	SCLK to MOSI hold time	-	50	-	-	ns
t _{SS_MISO}	SS high to MISO valid	-	-	-	153	ns
t _{SCLK_MISO}	SCLK to MISO valid	-	-	-	125	ns
t _{SS_HIGH}	SS high time	-	50	-	-	ns
t _{SS_CLK}	Time from SS low to first SCLK	-	2/SCLK	-	-	ns
t _{CLK_SS}	Time from last SCLK to SS high	_	2/SCLK	1	_	ns

┢

MSB

MSB

4

LSB

LSB

Document Number: 001-54459 Rev. *X

MISO

(output)

MOSI

(input)

Development Tool Selection

Software

PSoC Designer™

At the core of the PSoC development software suite is PSoC Designer. Utilized by thousands of PSoC developers, this robust software has been facilitating PSoC designs for over half a decade. PSoC Designer is available free of charge at http://www.cypress.com.

PSoC Programmer

Flexible enough to be used on the bench in development, yet suitable for factory programming, PSoC Programmer works either as a standalone programming application or it can operate directly from PSoC Designer. PSoC Programmer software is compatible with both PSoC ICE-Cube In-Circuit Emulator and PSoC MiniProg. PSoC Programmer is available free of charge at http://www.cypress.com.

Development Kits

All development kits are sold at the Cypress Online Store.

CY3215-DK Basic Development Kit

The CY3215-DK is for prototyping and development with PSoC Designer. This kit supports in-circuit emulation and the software interface enables users to run, halt, and single step the processor and view the content of specific memory locations. PSoC Designer supports the advance emulation features also. The kit includes:

- PSoC Designer Software CD
- ICE-Cube In-Circuit Emulator
- ICE Flex-Pod for CY8C29X66A Family
- Cat-5 Adapter
- Mini-Eval Programming Board
- 110 ~ 240 V Power Supply, Euro-Plug Adapter
- iMAGEcraft C Compiler (Registration Required)
- ISSP Cable
- USB 2.0 Cable and Blue Cat-5 Cable
- 2 CY8C29466A-24PXI 28-PDIP Chip Samples

Evaluation Tools

All evaluation tools are sold at the Cypress Online Store.

CY3210-MiniProg1

The CY3210-MiniProg1 kit enables the user to program PSoC devices via the MiniProg1 programming unit. The MiniProg is a small, compact prototyping programmer that connects to the PC via a provided USB 2.0 cable. The kit includes:

- MiniProg Programming Unit
- MiniEval Socket Programming and Evaluation Board

- 28-pin CY8C29466A-24PXI PDIP PSoC Device Sample
- 28-pin CY8C27443A-24PXI PDIP PSoC Device Sample
- PSoC Designer Software CD
- Getting Started Guide
- USB 2.0 Cable

CY3210-PSoCEval1

The CY3210-PSoCEval1 kit features an evaluation board and the MiniProg1 programming unit. The evaluation board includes an LCD module, potentiometer, LEDs, and plenty of breadboarding space to meet all of your evaluation needs. The kit includes:

- Evaluation Board with LCD Module
- MiniProg Programming Unit
- 28-Pin CY8C29466A-24PXI PDIP PSoC Device Sample (2)
- PSoC Designer Software CD
- Getting Started Guide
- USB 2.0 Cable

CY3280-20X66 Universal CapSense Controller

The CY3280-20X66 CapSense Controller Kit is designed for easy prototyping and debug of CY8C20XX6A CapSense Family designs with pre-defined control circuitry and plug-in hardware. Programming hardware and an I2C-to-USB bridge are included for tuning and data acquisition.

The kit includes:

- CY3280-20X66 CapSense Controller Board
- CY3240-I2USB Bridge
- CY3210 MiniProg1 Programmer
- USB 2.0 Retractable Cable
- CY3280-20X66 Kit CD

Device Programmers

All device programmers are purchased from the Cypress Online Store.

CY3216 Modular Programmer

The CY3216 Modular Programmer kit features a modular programmer and the MiniProg1 programming unit. The modular programmer includes three programming module cards and supports multiple Cypress products. The kit includes:

- Modular Programmer Base
- Three Programming Module Cards
- MiniProg Programming Unit
- PSoC Designer Software CD
- Getting Started Guide
- USB 2.0 Cable

Ordering Information

Table 41 lists the CY8C20XX6A/S PSoC devices' key package features and ordering codes.

Table 41. PSoC Device Key Features and Ordering Information

Package	Ordering Code	Flash (Bytes)	SRAM (Bytes)	CapSense Blocks	Digital I/O Pins	Analog Inputs ^[78]	XRES Pin	USB	ADC
16-pin (3 × 3 × 0.6 mm) QFN (no E-Pad)	CY8C20236A-24LKXI	8 K	1 K	1	13	13	Yes	No	Yes
16-pin (3 × 3 × 0.6 mm) QFN (no E-Pad) (Tape and Reel)	CY8C20236A-24LKXIT	8 K	1 K	1	13	13	Yes	No	Yes
16-pin (3 × 3 × 0.6 mm) QFN (no E-Pad)	CY8C20246A-24LKXI	16 K	2 K	1	13	13	Yes	No	Yes
16-pin (3 × 3 × 0.6 mm) QFN (no E-Pad)	CY8C20246AS-24LKXI	16 K	2 K	1	13	13	Yes	No	Yes
16-pin (3 × 3 × 0.6 mm) QFN (no E-Pad) (Tape and Reel)	CY8C20246A-24LKXIT	16 K	2 K	1	13	13	Yes	No	Yes
16-pin (3 × 3 × 0.6 mm) QFN (no E-Pad) (Tape and Reel)	CY8C20246AS-24LKXIT	16 K	2 K	1	13	13	Yes	No	Yes
24-pin (4 × 4 × 0.6 mm) QFN	CY8C20336A-24LQXI	8 K	1 K	1	20	20	Yes	No	Yes
24-pin (4 × 4 × 0.6 mm) QFN (Tape and Reel)	CY8C20336A-24LQXIT	8 K	1 K	1	20	20	Yes	No	Yes
24-pin (4 × 4 × 0.6 mm) QFN	CY8C20346A-24LQXI	16 K	2 K	1	20	20	Yes	No	Yes
24-pin (4 × 4 × 0.6 mm) QFN	CY8C20346AS-24LQXI	16 K	2 K	1	20	20	Yes	No	Yes
24-pin (4 × 4 × 0.6 mm) QFN (Tape and Reel)	CY8C20346A-24LQXIT	16 K	2 K	1	20	20	Yes	No	Yes
24-pin (4 × 4 × 0.6 mm) QFN (Tape and Reel)	CY8C20346AS-24LQXIT	16 K	2 K	1	20	20	Yes	No	Yes
24-pin (4 × 4 × 0.6 mm) QFN	CY8C20396A-24LQXI	16 K	2 K	1	19	19	Yes	Yes	Yes
24-pin (4 × 4 × 0.6 mm) QFN (Tape and Reel)	CY8C20396A-24LQXIT	16 K	2 K	1	19	19	Yes	Yes	Yes
32-pin (5 × 5 × 0.6 mm) QFN	CY8C20436A-24LQXI	8 K	1 K	1	28	28	Yes	No	Yes
32-pin (5 × 5 × 0.6 mm) QFN (Tape and Reel)	CY8C20436A-24LQXIT	8 K	1 K	1	28	28	Yes	No	Yes
32-pin (5 × 5 × 0.6 mm) QFN	CY8C20446A-24LQXI	16 K	2 K	1	28	28	Yes	No	Yes
32-pin (5 × 5 × 0.6 mm) QFN	CY8C20446AS-24LQXI	16 K	2 K	1	28	28	Yes	No	Yes
32-pin (5 × 5 × 0.6 mm) QFN (Tape and Reel)	CY8C20446A-24LQXIT	16 K	2 K	1	28	28	Yes	No	Yes
32-pin (5 × 5 × 0.6 mm) QFN (Tape and Reel)	CY8C20446AS-24LQXIT	16 K	2 K	1	28	28	Yes	No	Yes
32-pin (5 × 5 × 0.6 mm) QFN	CY8C20466A-24LQXI	32 K	2 K	1	28	28	Yes	No	Yes
32-pin (5 × 5 × 0.6 mm) QFN	CY8C20466AS-24LQXI	32 K	2 K	1	28	28	Yes	No	Yes
32-pin (5 × 5 × 0.6 mm) QFN (Tape and Reel)	CY8C20466A-24LQXIT	32 K	2 K	1	28	28	Yes	No	Yes
32-pin (5 × 5 × 0.6 mm) QFN (Tape and Reel)	CY8C20466AS-24LQXIT	32 K	2 K	1	28	28	Yes	No	Yes
32-pin (5 × 5 × 0.6 mm) QFN	CY8C20496A-24LQXI	16 K	2 K	1	25	25	Yes	Yes	Yes
32-pin (5 × 5 × 0.6 mm) QFN (Tape and Reel)	CY8C20496A-24LQXIT	16 K	2 K	1	25	25	Yes	Yes	Yes

Notes

T8. Dual-function Digital I/O Pins also connect to the common analog mux.
 79. Not Recommended for New Designs.

Table 41. PSoC Device Key Features and Ordering Information (continued)

Package	Ordering Code	Flash (Bytes)	SRAM (Bytes)	CapSense Blocks	Digital I/O Pins	Analog Inputs ^[78]	XRES Pin	USB	ADC
24-pin (4 × 4 × 0.6 mm) QFN	CY8C20346AS-24LQXI	16 K	2 K	1	20	20	Yes	No	Yes
24-pin (4 × 4 × 0.6 mm) QFN (Tape and Reel)	CY8C20346AS-24LQXIT	16 K	2 K	1	20	20	Yes	No	Yes
32-pin (5 × 5 × 0.6 mm) QFN	CY8C20446AS-24LQXI	16 K	2 K	1	28	28	Yes	No	Yes
32-pin (5 × 5 × 0.6 mm) QFN (Tape and Reel)	CY8C20446AS-24LQXIT	16 K	2 K	1	28	28	Yes	No	Yes
32-pin (5 × 5 × 0.6 mm) QFN	CY8C20466AS-24LQXI	32 K	2 K	1	28	28	Yes	No	Yes
32-pin (5 × 5 × 0.6 mm) QFN (Tape and Reel)	CY8C20466AS-24LQXIT	32 K	2 K	1	28	28	Yes	No	Yes
48-pin (6 × 6 × 0.6 mm) QFN	CY8C20666AS-24LQXI	32 K	2 K	1	36	36	Yes	Yes	Yes
48-pin (6 × 6 × 0.6 mm) QFN (Tape and Reel)	CY8C20666AS-24LQXIT	32 K	2 K	1	36	36	Yes	Yes	Yes
48-pin (7 × 7 × 1.0 mm) QFN ^[79]	CY8C20666AS-24LTXI ^[79]	32 K	2 K	1	36	36	Yes	Yes	Yes
48-pin (7 × 7 × 1.0 mm) QFN (Tape and Reel) ^[79]	CY8C20666AS-24LTXIT [79]	32 K	2 K	1	36	36	Yes	Yes	Yes
48-pin (6 × 6 × 0.6 mm) QFN	CY8C20646AS-24LQXI	16 K	2 K	1	36	36	Yes	Yes	Yes
48-pin (6 × 6 × 0.6 mm) QFN (Tape and Reel)	CY8C20646AS-24LQXIT	16 K	2 K	1	36	36	Yes	Yes	Yes
48-pin (7 × 7 × 1.0 mm) QFN ^[79]	CY8C20646AS-24LTXI ^[79]	16 K	2 K	1	36	36	Yes	Yes	Yes
48-pin (7 × 7 × 1.0 mm) QFN (Tape and Reel) ^[79]	CY8C20646AS-24LTXIT [79]	16 K	2 K	1	36	36	Yes	Yes	Yes

Notes

78. Dual-function Digital I/O Pins also connect to the common analog mux.

79. Not Recommended for New Designs.

Ordering Code Definitions

5. Missed Interrupt During Transition to Sleep

Problem Definition

If an interrupt is posted a short time (within 2.5 CPU cycles) before firmware commands the device to sleep, the interrupt will be missed.

Parameters Affected

No datasheet parameters are affected.

Trigger Condition(S)

Triggered by enabling sleep mode just prior to an interrupt.

Scope of Impact

The relevant interrupt service routine will not be run.

Workaround

None.

Fix Status

Will not be fixed

■ Changes

None

6. Wakeup from sleep with analog interrupt

Problem Definition

Device wakes up from sleep when an analog interrupt is trigger

Parameters Affected

No datasheet parameters are affected.

Trigger Condition(S)

Triggered by enabling analog interrupt during sleep mode when device operating temperature is 50 °C or above

Scope of Impact

Device unexpectedly wakes up from sleep

Workaround

Disable the analog interrupt before entering sleep and turn it back on upon wakeup.

Fix Status

Will not be fixed

Changes

None

Document History Page (continued)

Documer 0–6 Slide Documer	nt Title: CY8 rs nt Number:	C20XX6A/S, 001-54459	1.8 V Program	mable CapSense [®] Controller with SmartSense ™ Auto-tuning 1–33 Buttons,
Revision	ECN	Orig. of Change	Submission Date	Description of Change
*G	3247491	TTO/JPM/ ARVM/BVI	06/16/2011	Add 4 new parameters to Table 14 on page 22, and 2 new parameters to Table 15 on page 23. Changed Typ values for the following parameters: I_{DD24} , I_{DD12} , I_{DD6} , V_{OSLPC} . Added footnote # 49 and referred it to pin numbers 1, 14, 15, 42, and 43 under Table 10 on page 19. Added footnote # 53 and referred it to parameter V_{IOZ} under Table 11 on page 20. Added "t _{JIT_IMO} " parameter to Table 27 on page 28. Included footnote # 69 and added reference to t _{JIT_IMO} specification under Table 27 on page 28. Updated Solder Reflow Specifications on page 38 as per specs 25-00090 and 25-00103. I _{SB0} Max value changed from 0.5 µA to 1.1 µA in Table 13 on page 21. Added Table 26 on page 27. Updated part numbers for "SmartSense_EMC" enabled CapSense controller.
*H	3367332	BTK / SSHH / JPM/TTO/ VMAD	09/09/2011	Added parameter " t_{OS} " to Table 27 on page 28. Added parameter " I_{SBI2C} " to Table 13 on page 21. Added Table 24 on page 27. Added Table 25 on page 27. Replaced text "Port 2 or 3 pins" with "Port 2 or 3 or 4 pins" in Table 14, Table 15, Table 16, and Table 28.
*	3371807	MATT	09/30/2011	Updated Packaging Information (Updated the next revision package outline for Figure 21, Figure 24 and included a new package outline Figure 26). Updated Ordering Information (Added new part numbers CY8C20636A-24LQXI, CY8C20636A-24LQXIT, CY8C20646A-24LQXI, CY8C20646A-24LQXIT, CY8C20666A-24LQXI, CY8C20666A-24LQXIT, CY8C20666AS-24LQXI, CY8C20666AS-24LQXIT, CY8C20646AS-24LQXIT, CY8C20666AS-24LQXI, CY8C20666AS-24LQXIT, CY8C20646AS-24LQXI and CY8C20646AS-24LQXIT). Updated to new template.
*J	3401666	MATT	10/11/2011	No technical updates.
*K	3414479	KPOL	10/19/2011	Removed clock stretching feature on page 1. Removed I ² C enhanced slave interface point from Additional System Resources.
*L	3452591	BVI/UDYG	12/01/2011	Changed document title. Updated DC Chip-Level Specifications table. Updated Solder Reflow Specifications section. Updated Getting Started and Designing with PSoC Designer sections. Included Development Tools section. Updated Software under Development Tool Selection section.
*M	3473330	ANBA	12/22/2011	Updated DC Chip-Level Specifications under Electrical Specifications (updated maximum value of I_{SB0} parameter from 1.1 µA to 1.05 µA).
*N	3587003	DST	04/16/2012	Added note for WLCSP package on page 1. Added Sensing inputs to pin table captions. Updated Conditions for DC Reference Buffer Specifications. Updated t _{JIT_IMO} description in AC Chip-Level Specifications. Added note for t _{VDDWAIT} , t _{VDDXRES} , t _{ACQ} , and t _{XRESINI} specs. Removed WLCSP package outline.
*0	3638569	BVI	06/06/2012	Updated F_{SCLK} parameter in the Table 36, "SPI Slave AC Specifications," on page 34. Changed t_{OUT_HIGH} to t_{OUT_H} in Table 35, "SPI Master AC Specifications," on page 33. Updated package diagram 001-57280 to *C revision.