

Welcome to E-XFL.COM

Embedded - Microcontrollers - Application Specific: Tailored Solutions for Precision and Performance

Embedded - Microcontrollers - Application Specific

represents a category of microcontrollers designed with unique features and capabilities tailored to specific application needs. Unlike general-purpose microcontrollers, application-specific microcontrollers are optimized for particular tasks, offering enhanced performance, efficiency, and functionality to meet the demands of specialized applications.

What Are <u>Embedded - Microcontrollers -</u> <u>Application Specific</u>?

Application charific microcontrollars are analyzared to

Details

Details	
Product Status	Obsolete
Applications	Capacitive Sensing
Core Processor	M8C
Program Memory Type	FLASH (16kB)
Controller Series	CY8C20xx6A
RAM Size	2K x 8
Interface	I ² C, SPI, USB
Number of I/O	36
Voltage - Supply	1.71V ~ 5.5V
Operating Temperature	-40°C ~ 85°C
Mounting Type	Surface Mount
Package / Case	48-UFQFN Exposed Pad
Supplier Device Package	48-QFN (6x6)
Supplier Device Package Purchase URL	48-QFN (6x6) https://www.e-xfl.com/product-detail/infineon-technologies/cy8c20646as-24lqxit

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

More Information

Cypress provides a wealth of data at www.cypress.com to help you to select the right PSoC device for your design, and to help you to quickly and effectively integrate the device into your design. For a comprehensive list of resources, see the knowledge base article KBA92181, Resources Available for CapSense® Controllers. Following is an abbreviated list for CapSense devices:

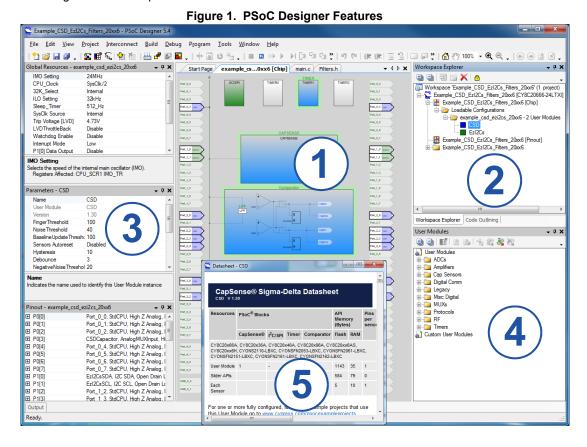
- Overview: CapSense Portfolio, CapSense Roadmap
- Product Selectors: CapSense, CapSense Plus, CapSense Express, PSoC3 with CapSense, PSoC5 with CapSense, PSoC4. In addition, PSoC Designer offers a device selection tool at the time of creating a new project.
- Application notes: Cypress offers CapSense application notes covering a broad range of topics, from basic to advanced level. Recommended application notes for getting started with CapSense are:

□ AN64846: Getting Started With CapSense

□ AN73034: CY8C20xx6A/H/AS CapSense[®] Design Guide □ AN2397: CapSense[®] Data Viewing Tools

Technical Reference Manual (TRM):

PSoC® CY8C20xx6A/AS/L Family Technical Reference Manual


- Development Kits:
 - CY3280-20x66 Universal CapSense Controller Kit features a predefined control circuitry and plug-in hardware to make prototyping and debugging easy. Programming and I2C-to-USB Bridge hardware are included for tuning and data acquisition.
 - CY3280-BMM Matrix Button Module Kit consists of eight CapSense sensors organized in a 4x4 matrix format to form 16 physical buttons and eight LEDs. This module connects to any CY3280 Universal CapSense Controller Board, including CY3280-20x66 Universal CapSense Controller.
 - CY3280-BSM Simple Button Module Kit consists of ten CapSense buttons and ten LEDs. This module connects to any CY3280 Universal CapSense Controller Board, including CY3280-20x66 Universal CapSense Controller.

The CY3217-MiniProg1 and CY8CKIT-002 PSoC® MiniProg3 device provides an interface for flash programming.

PSoC Designer

PSoC Designer is a free Windows-based Integrated Design Environment (IDE). It enables concurrent hardware and firmware design of systems based on CapSense (see Figure 1). With PSoC Designer, you can:

- 1. Drag and drop User Modules to build your hardware system design in the main design workspace
- Codesign your application firmware with the PSoC hardware, using the PSoC Designer IDE C compiler
- 3. Configure User Module
- 4. Explore the library of user modules
- 5. Review user module datasheets

Getting Started

The quickest way to understand PSoC silicon is to read this datasheet and then use the PSoC Designer Integrated Development Environment (IDE). This datasheet is an overview of the PSoC integrated circuit and presents specific pin, register, and electrical specifications.

For in depth information, along with detailed programming details, see the Technical Reference Manual for the CY8C20XX6A/S PSoC devices.

For up-to-date ordering, packaging, and electrical specification information, see the latest PSoC device datasheets on the web at www.cypress.com/psoc.

CapSense Design Guides

Design Guides are an excellent introduction to the wide variety of possible CapSense designs. They are located at www.cypress.com/go/CapSenseDesignGuides.

Refer Getting Started with CapSense design guide for information on CapSense design and CY8C20XX6A/H/AS CapSense[®] Design Guide for specific information on CY8C20XX6A/AS CapSense controllers.

Silicon Errata

Errata documents known issues with silicon including errata trigger conditions, scope of impact, available workarounds and silicon revision applicability. Refer to Silicon Errata for the PSoC[®] CY8C20x36A/46A/66A/96A/46AS/66AS/36H/46H families available at http://www.cypress.com/?rID=56239 for errata information on CY8C20xx6A/AS/H family of device. Compare errata document with datasheet for a complete functional description of device.

Development Kits

PSoC Development Kits are available online from and through a growing number of regional and global distributors, which include Arrow, Avnet, Digi-Key, Farnell, Future Electronics, and Newark.

Training

Free PSoC technical training (on demand, webinars, and workshops), which is available online via www.cypress.com, covers a wide variety of topics and skill levels to assist you in your designs.

CYPros Consultants

Certified PSoC consultants offer everything from technical assistance to completed PSoC designs. To contact or become a PSoC consultant go to the CYPros Consultants web site.

Solutions Library

Visit our growing library of solution focused designs. Here you can find various application designs that include firmware and hardware design files that enable you to complete your designs quickly.

Technical Support

Technical support – including a searchable Knowledge Base articles and technical forums – is also available online. If you cannot find an answer to your question, call our Technical Support hotline at 1-800-541-4736.

Development Tools

PSoC Designer[™] is the revolutionary integrated design environment (IDE) that you can use to customize PSoC to meet your specific application requirements. PSoC Designer software accelerates system design and time to market. Develop your applications using a library of precharacterized analog and digital peripherals (called user modules) in a drag-and-drop design environment. Then, customize your design by leveraging the dynamically generated application programming interface (API) libraries of code. Finally, debug and test your designs with the integrated debug environment, including in-circuit emulation and standard software debug features. PSoC Designer includes:

- Application editor graphical user interface (GUI) for device and user module configuration and dynamic reconfiguration
- Extensive user module catalog
- Integrated source-code editor (C and assembly)
- Free C compiler with no size restrictions or time limits
- Built-in debugger
- In-circuit emulation
- Built-in support for communication interfaces:
- Hardware and software I²C slaves and masters
- □ Full-speed USB 2.0
- □ Up to four full-duplex universal asynchronous receiver/transmitters (UARTs), SPI master and slave, and wireless

PSoC Designer supports the entire library of PSoC 1 devices and runs on Windows XP, Windows Vista, and Windows 7.

PSoC Designer Software Subsystems

Design Entry

In the chip-level view, choose a base device to work with. Then select different onboard analog and digital components that use the PSoC blocks, which are called user modules. Examples of user modules are analog-to-digital converters (ADCs), digital-to-analog converters (DACs), amplifiers, and filters. Configure the user modules for your chosen application and connect them to each other and to the proper pins. Then generate your project. This prepopulates your project with APIs and libraries that you can use to program your application.

The tool also supports easy development of multiple configurations and dynamic reconfiguration. Dynamic reconfiguration makes it possible to change configurations at run time. In essence, this lets you to use more than 100 percent of PSoC's resources for an application.

Code Generation Tools

The code generation tools work seamlessly within the PSoC Designer interface and have been tested with a full range of debugging tools. You can develop your design in C, assembly, or a combination of the two.

Assemblers. The assemblers allow you to merge assembly code seamlessly with C code. Link libraries automatically use absolute addressing or are compiled in relative mode, and linked with other software modules to get absolute addressing.

C Language Compilers. C language compilers are available that support the PSoC family of devices. The products allow you to create complete C programs for the PSoC family devices. The optimizing C compilers provide all of the features of C, tailored to the PSoC architecture. They come complete with embedded libraries providing port and bus operations, standard keypad and display support, and extended math functionality.

Debugger

PSoC Designer has a debug environment that provides hardware in-circuit emulation, allowing you to test the program in a physical system while providing an internal view of the PSoC device. Debugger commands allow you to read and program and read and write data memory, and read and write I/O registers. You can read and write CPU registers, set and clear breakpoints, and provide program run, halt, and step control. The debugger also lets you to create a trace buffer of registers and memory locations of interest.

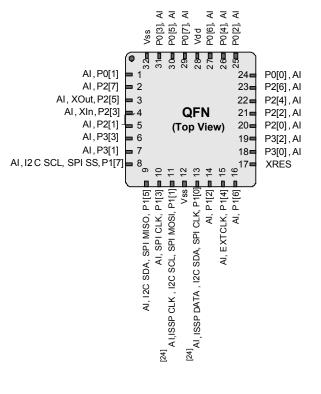
Online Help System

The online help system displays online, context-sensitive help. Designed for procedural and quick reference, each functional subsystem has its own context-sensitive help. This system also provides tutorials and links to FAQs and an Online Support Forum to aid the designer.

In-Circuit Emulator

A low-cost, high-functionality in-circuit emulator (ICE) is available for development support. This hardware can program single devices.

The emulator consists of a base unit that connects to the PC using a USB port. The base unit is universal and operates with all PSoC devices. Emulation pods for each device family are available separately. The emulation pod takes the place of the PSoC device in the target board and performs full-speed (24 MHz) operation.



32-pin QFN (25 Sensing Inputs) [22]

Table 5. Pin Definitions – CY8C20436A, CY8C20446A, CY8C20446AS, CY8C20466A, CY8C20466AS^[23]

Pin	Ту	ре	Name	Description
No.	Digital	Analog	Name	Description
1	IOH	I	P0[1]	Integrating input
2	I/O	I	P2[7]	
3	I/O	I	P2[5]	Crystal output (XOut)
4	I/O	I	P2[3]	Crystal input (XIn)
5	I/O	I	P2[1]	
6	I/O	I	P3[3]	
7	I/O	I	P3[1]	
8	IOHR	I	P1[7]	I ² C SCL, SPI SS
9	IOHR	I	P1[5]	I ² C SDA, SPI MISO
10	IOHR	I	P1[3]	SPI CLK.
11	IOHR	I	P1[1]	ISSP CLK ^[24] , I ² C SCL, SPI MOSI.
12	Pov	wer	V _{SS}	Ground connection ^[26]
13	IOHR	I	P1[0]	ISSP DATA ^[24] , I ² C SDA, SPI CLK ^[25]
14	IOHR	I	P1[2]	
15	IOHR	I	P1[4]	Optional external clock input (EXTCLK)
16	IOHR	I	P1[6]	
17	Inp	out	XRES	Active high external reset with internal pull-down
18	I/O	I	P3[0]	
19	I/O		P3[2]	
20	I/O		P2[0]	
21	I/O	I	P2[2]	
22	I/O	I	P2[4]	
23	I/O	I	P2[6]	
24	IOH	I	P0[0]	
25	IOH	I	P0[2]	
26	IOH	I	P0[4]	
27	IOH	I	P0[6]	
28	Pov	wer	V _{DD}	Supply voltage
29	IOH	I	P0[7]	
30	IOH	I	P0[5]	
31	IOH	I	P0[3]	Integrating input
32	Pov	wer	V _{SS}	Ground connection ^[26]
CP	Pov	wer	V_{SS}	Center pad must be connected to ground

Figure 7. CY8C20436A, CY8C20446A, CY8C20446AS, CY8C20466A, CY8C20466AS

LEGEND A = Analog, I = Input, O = Output, OH = 5 mA High Output Drive, R = Regulated Output.

Notes

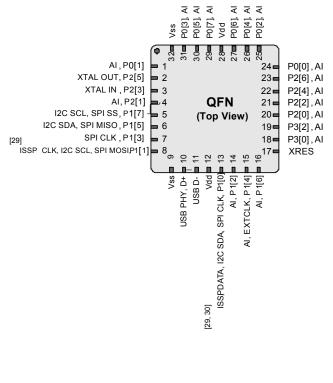
22. 28 GPIOs = 25 pins for capacitive sensing + 2 pins for I2C + 1 pin for modulation capacitor.

23. The center pad (CP) on the QFN package must be connected to ground (V_{SS}) for best mechanical, thermal, and electrical performance. If not connected to ground, it must be electrically floated and not connected to any other signal.

24. On power-up, the SDA(P1[0]) drives a strong high for 256 sleep clock cycles and drives resistive low for the next 256 sleep clock cycles. The SCL(P1[1]) line drives resistive low for 512 sleep clock cycles and both the pins transition to high impedance state. On reset, after XRES de-asserts, the SDA and the SCL lines drive resistive low for 8 sleep clock cycles and transition to high impedance state. Hence, during power-up or reset event, P1[1] and P1[0] may disturb the I2C bus. Use alternate pins if you encounter issues.

25. Alternate SPI clock.

26. All VSS pins should be brought out to one common GND plane.



32-pin QFN (22 Sensing Inputs (With USB)) [27]

Table 6. Pin Definitions – CY8C20496A^[28]

Pin	Ту	ре	Newse	Description
No.	Digital	Analog	Name	Description
1	IOH	I	P0[1]	Integrating Input
2	I/O	I	P2[5]	XTAL Out
3	I/O	I	P2[3]	XTAL In
4	I/O	I	P2[1]	
5	IOHR	I	P1[7]	I ² C SCL, SPI SS
6	IOHR	I	P1[5]	I ² C SDA, SPI MISO
7	IOHR	I	P1[3]	SPI CLK
8	IOHR	I	P1[1]	ISSP CLK ^[29] , I ² C SCL, SPI MOSI
9	Po	wer	V _{SS}	Ground Pin ^[31]
10		I	D+	USB D+
11		l	D-	USB D-
12	Po	wer	V _{DD}	Power pin
13	IOHR	I	P1[0]	ISSP DATA ^[29] , I ² C SDA, SPI CLKI ^[30]
14	IOHR	I	P1[2]	
15	IOHR	I	P1[4]	Optional external clock input (EXTCLK)
16	IOHR	I	P1[6]	
17	In	out	XRES	Active high external reset with internal pull-down
18	I/O	I	P3[0]	
19	I/O	I	P3[2]	
20	I/O	I	P2[0]	
21	I/O	I	P2[2]	
22	I/O	I	P2[4]	
23	I/O	I	P2[6]	
24	IOH	I	P0[0]	
25	IOH	I	P0[2]	
26	IOH	I	P0[4]	
27	IOH	I	P0[6]	
28	Po	wer	V _{DD}	Power Pin
29	IOH	I	P0[7]	
30	IOH	I	P0[5]	
31	IOH	I	P0[3]	Integrating Input
32	Po	wer	V_{SS}	Ground Pin ^[31]

Figure 8. CY8C20496A

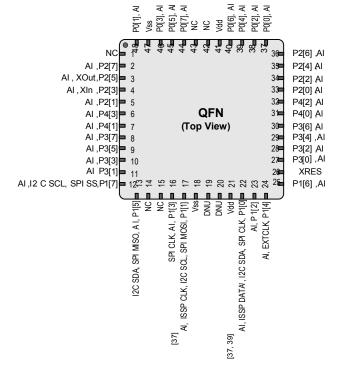
LEGEND A = Analog, I = Input, O = Output, OH = 5 mA High Output Drive, R = Regulated Output.

Notes

- 27.27 GPIOs = 22 pins for capacitive sensing + 2 pins for I2C + 2 pins for USB + 1 pin for modulation capacitor.
- 28. The center pad (CP) on the QFN package must be connected to ground (V_{SS}) for best mechanical, thermal, and electrical performance. If not connected to ground, it must be electrically floated and not connected to any other signal.
 29. On power-up, the SDA(P1[0]) drives a strong high for 256 sleep clock cycles and drives resistive low for the next 256 sleep clock cycles. The SCL(P1[1]) line drives resistive low for 512 sleep clock cycles and both the pins transition to high impedance state. On reset, after XRES de-asserts, the SDA and the SCL lines drive resistive low for 8 sleep clock cycles and transition to high impedance state. Hence, during power-up or reset event, P1[1] and P1[0] may disturb the I2C bus. Use alternate pins if our operator is used. alternate pins if you encounter issues.

^{30.} Alternate SPI clock

^{31.} All VSS pins should be brought out to one common GND plane.



48-pin QFN (33 Sensing Inputs) [36]

Table 8. Pin Definitions – CY8C20636A^[37, 38]

Pin No.	Digital	Analog	Name	Description	
1			NC	No connection	
2	I/O		P2[7]		
3	I/O	I	P2[5]	Crystal output (XOut)	
4	I/O	I	P2[3]	Crystal input (XIn)	
5	I/O	I	P2[1]		
6	I/O	I	P4[3]		
7	I/O	Ι	P4[1]		
8	I/O	I	P3[7]		
9	I/O	I	P3[5]		
10	I/O	I	P3[3]		
11	I/O	I	P3[1]		
12	IOHR	I	P1[7]	I ² C SCL, SPI SS	
13	IOHR	I	P1[5]	I ² C SDA, SPI MISO	
14			NC	No connection	
15			NC	No connection	
16	IOHR	I	P1[3]	SPI CLK	
17	IOHR	I	P1[1]	ISSP CLK ^[37] , I ² C SCL, SPI MOSI	
18	Po	wer	V _{SS}	Ground connection ^[40]	
19			DNU		
20			DNU		
21	Po	wer	V _{DD}	Supply voltage	
22	IOHR	I	P1[0]	ISSP DATA ^[37] , I ² C SDA, SPI CLK ^[39]	
23	IOHR	I	P1[2]		
24	IOHR	I	P1[4]	Optional external clock input (EXTCLK)	
25	IOHR	I	P1[6]		
26	In	put	XRES	Active high external reset with internal pull-down	
27	I/O	I	P3[0]		
28	I/O	I	P3[2]		
29	I/O	I	P3[4]		Pi No
30	I/O	Ι	P3[6]		40
31	I/O	I	P4[0]		41
32	I/O	I	P4[2]		42
33	I/O	I	P2[0]		43
34	I/O	I	P2[2]		44
35	I/O	I	P2[4]		45
36	I/O	I	P2[6]		46
37	IOH	I	P0[0]		47
38	IOH	I	P0[2]		48
39	IOH	I	P0[4]		CF

Figure	10.	CY8C20636A

29	I/O	I	P3[4]	Pin No.	Digital	Analog	Name	Description
30	I/O	I	P3[6]	40	IOH	1	P0[6]	
31	I/O	I	P4[0]	41	Po	wer	V _{DD}	Supply voltage
32	I/O	I	P4[2]	42			NC	No connection
33	I/O	I	P2[0]	43			NC	No connection
34	I/O	I	P2[2]	44	IOH	I	P0[7]	
35	I/O	I	P2[4]	45	IOH	1	P0[5]	
36	I/O	I	P2[6]	46	IOH	1	P0[3]	Integrating input
37	IOH		P0[0]	47	Po	wer	V _{SS}	Ground connection ^[40]
38	IOH		P0[2]	48	IOH	1	P0[1]	
39	IOH		P0[4]	СР	Po	wer	V _{SS}	Center pad must be connected to ground

LEGEND A = Analog, I = Input, O = Output, NC = No Connection H = 5 mA High Output Drive, R = Regulated Output.

Notes

36. 36 GPIOs = 33 pins for capacitive sensing + 2 pins for I2C + 1 pin for modulation capacitor.

37. On power-up, the SDA(P1[0]) drives a strong high for 256 sleep clock cycles and drives resistive low for the next 256 sleep clock cycles. The SCL(P1[1]) line drives resistive low for 512 sleep clock cycles and both the pins transition to high impedance state. On reset, after XRES de-asserts, the SDA and the SCL lines drive resistive low for 8 sleep clock cycles and transition to high impedance state. Hence, during power-up or reset event, P1[1] and P1[0] may disturb the I2C bus. Use alternate pins if you encounter issues.

38. The center pad (CP) on the QFN package must be connected to ground (V_{SS}) for best mechanical, thermal, and electrical performance. If not connected to ground, it must be electrically floated and not connected to any other signal

39. Alternate SPI clock.

40. All VSS pins should be brought out to one common GND plane.

48-pin QFN (OCD) (33 Sensing Inputs) [46]

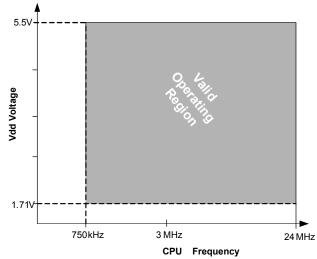
The 48-pin QFN part is for the CY8C20066A On-Chip Debug (OCD). Note that this part is only used for in-circuit debugging. Table 10. Pin Definitions – CY8C20066A ^[47, 48]

Pin No.	Digital	Analog	Name	Description]		-		/8C20066A
1 ^[49]		1	OCDOE	OCD mode direction pin				Po[1], AI Vss Po[3], AI Po[5], AI	P0[7], AI OCDE OCDO OCDO OCDO P0[6], AI P0[0], AI P0[0], AI
2	I/O	I	P2[7]					Pol Pol	
3	I/O	I	P2[5]	Crystal output (XOut)				5 5 7 8	
4	I/O		P2[3]	Crystal input (XIn)			A E 1 A P2[7] 2	4444	
5	I/O		P2[1]				0ut, P2[7] = 2 Out, P2[5] = 3		35 ■ P2[4] , Al 34 ■ P2[2] , Al
6	I/O	I	P4[3]				Xln , P2[3] = 4		34 = P2[2],AI 33 = P2[0],AI
7	I/O	I	P4[1]			<i>7</i> u ,	AI , P2[1] = 5		32 – P4[2],AI
8	I/O	I	P3[7]				AI , P4[3] = 6		QFN 31= P4[0],AI
9	I/O	1	P3[5]				AI , P4[1] 🗖 7		(Top View) 30= P3[6],AI
10	I/O	1	P3[3]				AI, P3[7] = 8		29 = P3[4], Al
11	I/O	I	P3[1]				AI, P3[5] P 9 AI, P3[3] P 1		28 ⊏ P3[2],AI 27 ⊏ P3[0],AI
12	IOHR	I	P1[7]	I ² C SCL, SPI SS			AI, P3[3] = 1 AI, P3[1] = 1		26 = XRES
13	IOHR	I	P1[5]	I ² C SDA, SPI MISO	AL, L	2 C SCL, SP	I SS, P1[7] = 1	∫~ 4 ∩ 0 ∣	E @ @ Q ∑ X X X ²⁵ ■ P1[6],Al
14 ^[49]			CCLK	OCD CPU clock output					
15 ^[49]			HCLK	OCD high speed clock output				I, P1[5] CCLK HCLK , P1[3]	71[1] D + D + D + D - D - D - 1[0] 11[0] 12]
16	IOHR	I	P1[3]	SPI CLK.				H O O H	003, P1[1] Vss D - L D - Vdd Vdd N, P1[2] DLK, P1[2] DLK, P1[2]
17	IOHR		P1[1]	ISSP CLK ^{[50],} I ² C SCL, SPI				K, Ø,	-, SPI MOSI, P1[1] Vss D + D - D - D - D - D - D - D - D - D - D -
17	IONK		FILIJ	MOSI				ICL M	EX SPI
18	Po	wer	V _{SS}	Ground connection ^[52]				2C SDA, SPI MSO, AI, P1[5] CCLK HCLK SPI CLK, AI, P1[3]	AIA
19	I/O		D+	USB D+				SDA	12C S
20	I/O		D-	USB D-				12C	E É
21	Po	wer	V _{DD}	Supply voltage					
22	IOHR	I	P1[0]	ISSP DATA ^[50] , I ² C SDA, SPI CLK ^[51]				12C SDA, SPI MSO, AI, P1[5] CCLK HCLK F50] SPI CLK, AI, P1[3]	AI,JSSP CLM, IZC SCL, SPI MOSI, P1[1] Vs D- B- AI,ISSP DATA', IZC SDA, SPI CLK, P1[0] AI, EXTCLK, P1[2] AI, EXTCLK, P1[4]
23	IOHR	I	P1[2]		Pin No.	Digital	Analog	Name	Description
24	IOHR	I	P1[4]	Optional external clock input (EXTCLK)	37	IOH	I	P0[0]	
25	IOHR		P1[6]		38	IOH		P0[2]	
26	In	put	XRES	Active high external reset with internal pull-down	39	IOH	Ι	P0[4]	
27	I/O	I	P3[0]		40	IOH		P0[6]	
28	I/O	I	P3[2]		41	P	ower	V_{DD}	Supply voltage
29	I/O		P3[4]		42 ^[49]			OCDO	OCD even data I/O
30	I/O		P3[6]		43 ^[49]			OCDE	OCD odd data output
31	I/O	I	P4[0]		44	IOH	Ι	P0[7]	
32	I/O		P4[2]		45	IOH		P0[5]	
33	I/O		P2[0]		46	IOH		P0[3]	Integrating input
34	I/O		P2[2]		47		ower	V _{SS}	Ground connection ^[52]
35	I/O		P2[4]		48	IOH		P0[1]	
36	I/O	Ι	P2[6]		СР	P	ower	V _{SS}	Center pad must be connected to ground

LEGEND A = Analog, I = Input, O = Output, NC = No Connection H = 5 mA High Output Drive, R = Regulated Output.

Notes

Notes
46. 38 GPIOs = 33 pins for capacitive sensing + 2 pins for I2C + 2 pins for USB + 1 pin for modulation capacitor.
47. This part is available in limited quantities for In-Circuit Debugging during prototype development. It is not available in production volumes.
48. The center pad (CP) on the QFN package must be connected to ground (V_{SS}) for best mechanical, thermal, and electrical performance. If not connected to ground, it must be electrically floated and not connected to any other signal.
49. This pin (associated with OCD part only) is required for connecting the device to ICE-Cube In-Circuit Emulator for firmware debugging purpose. To know more about the usage of ICE-Cube, refer to CY3215-DK PSoC[®] IN-CIRCUIT EMULATOR KIT GUIDE.
50. On Power-up, the SDA(P1[0]) drives a strong high for 256 sleep clock cycles and drives resistive low for 512 sleep clock cycles and both the pins transition to High impedance state. In both cases, a pull-up resistance on these lines combines with the pull-down resistance (5.6K ohm) and form a potential divider. Hence, during power-up or reset event, P1[1] and P1[0] may disturb the I2C bus. Use alternate pins if you encounter issues.
51. Alternate SPI clock.


51. Alternate SPI clock.

52. All VSS pins should be brought out to one common GND plane.

Electrical Specifications

This section presents the DC and AC electrical specifications of the CY8C20XX6A/S PSoC devices. For the latest electrical specifications, confirm that you have the most recent datasheet by visiting the web at http://www.cypress.com/psoc.

Figure 13. Voltage versus CPU Frequency

Absolute Maximum Ratings

Exceeding maximum ratings may shorten the useful life of the device. User guidelines are not tested.

Table 11. Absolute Maximum Ratings

Symbol	Description	Conditions	Min	Тур	Max	Units
T _{STG}	Storage temperature	Higher storage temperatures reduce data retention time. Recommended Storage Temperature is +25 °C ± 25 °C. Extended duration storage temperatures above 85 °C degrades reliability.	-55	+25	+125	°C
V _{DD}	Supply voltage relative to V_{SS}	_	-0.5	_	+6.0	V
V _{IO}	DC input voltage	_	$V_{\rm SS} - 0.5$	_	V _{DD} + 0.5	V
V _{IOZ} ^[53]	DC voltage applied to tristate	_	$V_{\rm SS} - 0.5$	_	V _{DD} + 0.5	V
I _{MIO}	Maximum current into any port pin	-	-25	-	+50	mA
ESD	Electrostatic discharge voltage	Human body model ESD	2000	-	-	V
LU	Latch-up current	In accordance with JESD78 standard	-	-	200	mA

Operating Temperature

Table 12. Operating Temperature

Symbol	Description	Conditions	Min	Тур	Мах	Units
T _A	Ambient temperature	_	-40	-	+85	°C
т _с	Commercial temperature range	_	0	-	70	°C
TJ		The temperature rise from ambient to junction is package specific. Refer the Thermal Impedances on page 38. The user must limit the power consumption to comply with this requirement.	40	_	+100	°C

Note

53. Port1 pins are hot-swap capable with I/O configured in High-Z mode, and pin input voltage above V_{DD}.

DC GPIO Specifications

The following tables list guaranteed maximum and minimum specifications for the voltage and temperature ranges: 3.0 V to 5.5 V and -40 °C \leq T_A \leq 85 °C, 2.4 V to 3.0 V and -40 °C \leq T_A \leq 85 °C, or 1.71 V to 2.4 V and -40 °C \leq T_A \leq 85 °C, respectively. Typical parameters apply to 5 V and 3.3 V at 25 C and are for design guidance only.

Table 14.	3.0 V to 5.	5 V DC GPIO	Specifications
-----------	-------------	-------------	----------------

Symbol	Description	Conditions	Min	Тур	Max	Units
R _{PU}	Pull-up resistor	_	4	5.60	8	kΩ
V _{OH1}	High output voltage Port 2 or 3 or 4 pins	$I_{OH} \le 10 \ \mu$ A, maximum of 10 mA source current in all I/Os	V _{DD} – 0.20	-	-	V
V _{OH2}	High output voltage Port 2 or 3 or 4 pins	I _{OH} = 1 mA, maximum of 20 mA source current in all I/Os	V _{DD} - 0.90	-	-	V
V _{OH3}	High output voltage Port 0 or 1 pins with LDO regulator Disabled for port 1	I _{OH} < 10 μA, maximum of 10 mA source current in all I/Os	V _{DD} – 0.20	-	-	V
V _{OH4}	High output voltage Port 0 or 1 pins with LDO regulator Disabled for port 1	I _{OH} = 5 mA, maximum of 20 mA source current in all I/Os	V _{DD} – 0.90	-	-	V
V _{OH5}	High output voltage Port 1 Pins with LDO Regulator Enabled for 3 V out	I_{OH} < 10 μ A, V_{DD} > 3.1 V, maximum of 4 I/Os all sourcing 5 mA	2.85	3.00	3.30	V
V _{OH6}	High output voltage Port 1 pins with LDO regulator enabled for 3 V out	I_{OH} = 5 mA, V_{DD} > 3.1 V, maximum of 20 mA source current in all I/Os	2.20	-	-	V
V _{OH7}	High output voltage Port 1 pins with LDO enabled for 2.5 V out	I_{OH} < 10 μ A, V _{DD} > 2.7 V, maximum of 20 mA source current in all I/Os	2.35	2.50	2.75	V
V _{OH8}	High output voltage Port 1 pins with LDO enabled for 2.5 V out	I _{OH} = 2 mA, V _{DD} > 2.7 V, maximum of 20 mA source current in all I/Os	1.90	-	-	V
V _{OH9}	High output voltage Port 1 pins with LDO enabled for 1.8 V out	I_{OH} < 10 μ A, V _{DD} > 2.7 V, maximum of 20 mA source current in all I/Os	1.60	1.80	2.10	V
V _{OH10}	High output voltage Port 1 pins with LDO enabled for 1.8 V out	I _{OH} = 1 mA, V _{DD} > 2.7 V, maximum of 20 mA source current in all I/Os	1.20	-	-	V
V _{OL}	Low output voltage	I_{OL} = 25 mA, V_{DD} > 3.3 V, maximum of 60 mA sink current on even port pins (for example, P0[2] and P1[4]) and 60 mA sink current on odd port pins (for example, P0[3] and P1[5])	_	_	0.75	v
V _{IL}	Input low voltage	-	-	-	0.80	V
V _{IH}	Input high voltage	_	2.00	-	-	V
V _H	Input hysteresis voltage	_	-	80	-	mV
IIL	Input leakage (Absolute Value)	_	-	0.001	1	μΑ
C _{PIN}	Pin capacitance	Package and pin dependent Temp = 25 °C	0.50	1.70	7	pF
V _{ILLVT3.3}	Input Low Voltage with low threshold enable set, Enable for Port1	Bit3 of IO_CFG1 set to enable low threshold voltage of Port1 input	0.8	V	-	-
V _{IHLVT3.3}	Input High Voltage with low threshold enable set, Enable for Port1	Bit3 of IO_CFG1 set to enable low threshold voltage of Port1 input	1.4	-	-	V
V _{ILLVT5.5}	Input Low Voltage with low threshold enable set, Enable for Port1	Bit3 of IO_CFG1 set to enable low threshold voltage of Port1 input	0.8	V	-	-
V _{IHLVT5.5}	Input High Voltage with low threshold enable set, Enable for Port1	Bit3 of IO_CFG1 set to enable low threshold voltage of Port1 input	1.7	-	-	V

Table 16. 1.71 V to 2.4 V DC GPIO Specifications (continued)

Symbol	Description	Conditions	Min	Тур	Max	Units
V _{IH}	Input high voltage	_	$0.65 \times V_{DD}$	-	_	V
V _H	Input hysteresis voltage	-	-	80	_	mV
IIL	Input leakage (absolute value)	-	-	1	1000	nA
C _{PIN}	Capacitive load on pins	Package and pin dependent temp = 25 °C	0.50	1.70	7	pF

Table 17. DC Characteristics – USB Interface

Symbol	Description	Conditions	Min	Тур	Max	Units
R _{USBI}	USB D+ pull-up resistance	With idle bus	900	-	1575	Ω
R _{USBA}	USB D+ pull-up resistance	While receiving traffic	1425	-	3090	Ω
V _{OHUSB}	Static output high	-	2.8	-	3.6	V
V _{OLUSB}	Static output low	-	-	-	0.3	V
V _{DI}	Differential input sensitivity	-	0.2	-		V
V _{CM}	Differential input common mode range	-	0.8	-	2.5	V
V _{SE}	Single ended receiver threshold	-	0.8	-	2.0	V
C _{IN}	Transceiver capacitance	-	-	-	50	pF
I _{IO}	High Z state data line leakage	On D+ or D- line	-10	-	+10	μΑ
R _{PS2}	PS/2 pull-up resistance	-	3000	5000	7000	Ω
R _{EXT}	External USB series resistor	In series with each USB pin	21.78	22.0	22.22	Ω

DC Analog Mux Bus Specifications

Table 18 lists guaranteed maximum and minimum specifications for the entire voltage and temperature ranges.

Table 18. DC Analog Mux Bus Specifications

Symbol	Description	Conditions	Min	Тур	Max	Units
R _{SW}	Switch resistance to common analog bus	_	-	_	800	Ω
R _{GND}	Resistance of initialization switch to V_{SS}	_	-	_	800	Ω

The maximum pin voltage for measuring $\rm R_{SW}$ and $\rm R_{GND}$ is 1.8 V

DC Low Power Comparator Specifications

Table 19 lists guaranteed maximum and minimum specifications for the entire voltage and temperature ranges.

Table 19. DC Comparator Specifications

Symbol	Description Conditions Min		Тур	Max	Units	
V _{LPC}	Low power comparator (LPC) common mode	Maximum voltage limited to V_{DD}	0.0	-	1.8	V
I _{LPC}	LPC supply current	_	-	10	40	μΑ
V _{OSLPC}	LPC voltage offset	-	-	3	30	mV

AC Chip-Level Specifications

Table 27 lists guaranteed maximum and minimum specifications for the entire voltage and temperature ranges.

Table 27. AC Chip-Level Specifications

Symbol	Description	Conditions	Min	Тур	Max	Units
F _{IMO24}	IMO frequency at 24 MHz Setting	_	22.8	24	25.2	MHz
F _{IMO12}	IMO frequency at 12 MHz setting	_	11.4	12	12.6	MHz
F _{IMO6}	IMO frequency at 6 MHz setting	_	5.7	6.0	6.3	MHz
F _{CPU}	CPU frequency	_	0.75	_	25.20	MHz
F _{32K1}	ILO frequency	_	15	32	50	kHz
F _{32K_U}	ILO untrimmed frequency	_	13	32	82	kHz
DCIMO	Duty cycle of IMO	_	40	50	60	%
DC _{ILO}	ILO duty cycle	_	40	50	60	%
SR _{POWER_UP}	Power supply slew rate	V _{DD} slew rate during power-up	Ι	_	250	V/ms
t _{XRST}	External reset pulse width at power-up	After supply voltage is valid	1	_	_	ms
t _{XRST2}	External reset pulse width after power-up ^[68]	Applies after part has booted	10	_	-	μS
t _{OS}	Startup time of ECO	_	-	1	_	s
		6 MHz IMO cycle-to-cycle jitter (RMS)	Ι	0.7	6.7	ns
		6 MHz IMO long term N (N = 32) cycle-to-cycle jitter (RMS)	-	4.3	29.3	ns
		6 MHz IMO period jitter (RMS)	-	0.7	3.3	ns
		12 MHz IMO cycle-to-cycle jitter (RMS)	Ι	0.5	5.2	ns
t _{JIT_IMO} ^[69]	N=32	12 MHz IMO long term N (N = 32) cycle-to-cycle jitter (RMS)	_	2.3	5.6	ns
		12 MHz IMO period jitter (RMS)	-	0.4	2.6	ns
		24 MHz IMO cycle-to-cycle jitter (RMS)	_	1.0	8.7	ns
		24 MHz IMO long term N (N = 32) cycle-to-cycle jitter (RMS)	_	1.4	6.0	ns
		24 MHz IMO period jitter (RMS)	-	0.6	4.0	ns

Notes 68. The minimum required XRES pulse length is longer when programming the device (see Table 33 on page 31). 69. Refer to Cypress Jitter Specifications application note, Understanding Datasheet Jitter Specifications for Cypress Timing Products – AN5054 for more information.

AC Programming Specifications

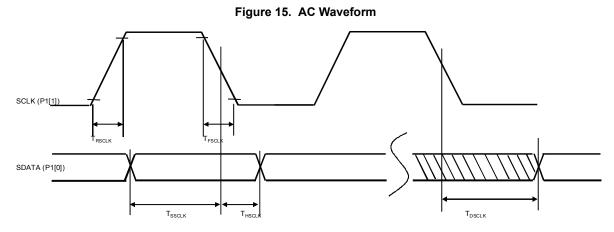


Table 33 lists the guaranteed maximum and minimum specifications for the entire voltage and temperature ranges.

Table 33. AC Programming Specifications

Symbol	Description	Conditions	Min	Тур	Max	Units
t _{RSCLK}	Rise time of SCLK –		1	_	20	ns
t _{FSCLK}	Fall time of SCLK	_	1	-	20	ns
t _{SSCLK}	Data setup time to falling edge of SCLK	-	40	-	-	ns
t _{HSCLK}	Data hold time from falling edge of SCLK	-	40	-	-	ns
F _{SCLK}	Frequency of SCLK	-	0	-	8	MHz
t _{ERASEB}	Flash erase time (block)	-	-	-	18	ms
t _{WRITE}	Flash block write time	-	-	-	25	ms
t _{DSCLK}	Data out delay from falling edge of SCLK	3.6 < V _{DD}	-	-	60	ns
t _{DSCLK3}	Data out delay from falling edge of SCLK	$3.0 \le V_{DD} \le 3.6$	-	-	85	ns
t _{DSCLK2}	Data out delay from falling edge of SCLK	$1.71 \le V_{DD} \le 3.0$	-	-	130	ns
t _{XRST3}	External reset pulse width after power-up	Required to enter programming mode when coming out of sleep	300	-	-	μS
t _{XRES}	XRES pulse length	-	300	-	-	μs
t _{VDDWAIT} [71]	V _{DD} stable to wait-and-poll hold off	-	0.1	-	1	ms
t _{VDDXRES} [71]	V _{DD} stable to XRES assertion delay	-	14.27	-	-	ms
t _{POLL}	SDATA high pulse time	-	0.01	-	200	ms
t _{ACQ} ^[71]	"Key window" time after a V _{DD} ramp acquire event, based on 256 ILO clocks.	_	3.20	-	19.60	ms
t _{XRESINI} [71]	"Key window" time after an XRES event, based on 8 ILO clocks	_	98	-	615	μS

Note

71. Valid from 5 to 50 °C. See the spec, CY8C20X66, CY8C20X46, CY8C20X36, CY7C643XX, CY7C604XX, CY8CTST2XX, CY8CTMG2XX, CY8C20X67, CY8C20X47, CY8C20X37, Programming Spec for more details.

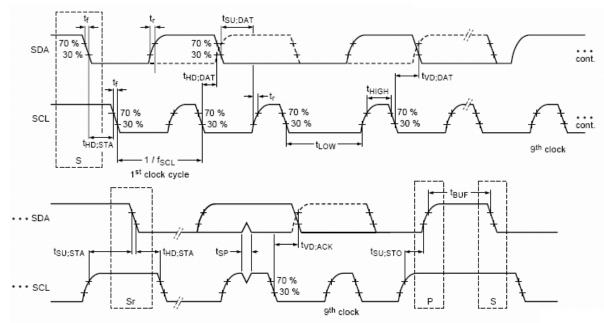

AC I²C Specifications

Table 34 lists guaranteed maximum and minimum specifications for the entire voltage and temperature ranges.

Table 34. AC Characteristics of the I²C SDA and SCL Pins

Symbol	Description		rd Mode	Fast Mode		Units
Symbol	Description	Min	Max	Min	Max	Units
f _{SCL}	SCL clock frequency	0	100	0	400	kHz
t _{HD;STA}	Hold time (repeated) START condition. After this period, the first clock pulse is generated	4.0	-	0.6	-	μs
t _{LOW}	LOW period of the SCL clock	4.7	-	1.3	_	μs
t _{HIGH}	HIGH Period of the SCL clock	4.0	-	0.6	-	μs
t _{SU;STA}	Setup time for a repeated START condition	4.7	-	0.6	-	μs
t _{HD;DAT}	Data hold time	0	3.45	0	0.90	μs
t _{SU;DAT}	Data setup time	250	-	100 ^[72]	-	ns
t _{SU;STO}	Setup time for STOP condition	4.0	-	0.6	_	μs
t _{BUF}	Bus free time between a STOP and START condition		-	1.3	_	μs
t _{SP}	Pulse width of spikes are suppressed by the input filter	_	-	0	50	ns

Note

72. A Fast-Mode I²C-bus device can be used in a standard mode I²C-bus system, but the requirement t_{SU:DAT} ≥ 250 ns must then be met. This automatically be the case if the device does not stretch the LOW period of the SCL signal. If such device does stretch the LOW period of the SCL signal, it must output the next data bit to the SDA line t_{max} + t_{SU:DAT} = 1000 + 250 = 1250 ns (according to the Standard-Mode I²C-bus specification) before the SCL line is released.

Table 35. SPI Master AC Specifications

Symbol	Description	Conditions	Min	Тур	Max	Units
F _{SCLK}	SCLK clock frequency	V _{DD} ≥ 2.4 V V _{DD} < 2.4 V			6 3	MHz MHz
DC	SCLK duty cycle	-	-	50	-	%
t _{SETUP}	MISO to SCLK setup time	V _{DD} ≥ 2.4 V V _{DD} < 2.4 V	60 100			ns ns
t _{HOLD}	SCLK to MISO hold time	-	40	-	-	ns
t _{OUT_VAL}	SCLK to MOSI valid time	MOSI valid time –		-	40	ns
t _{OUT_H}	MOSI high time	-	40	_	_	ns

Figure 17. SPI Master Mode 0 and 2

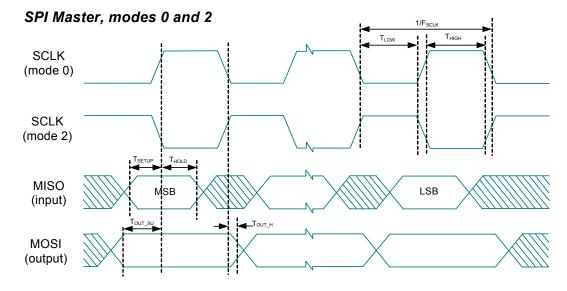
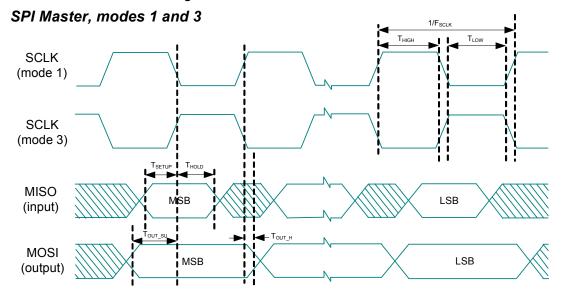



Figure 18. SPI Master Mode 1 and 3

CY3207ISSP In-System Serial Programmer (ISSP)

The CY3207ISSP is a production programmer. It includes protection circuitry and an industrial case that is more robust than the MiniProg in a production programming environment. Note that CY3207ISSP needs special software and is not compatible with PSoC Programmer. The kit includes:

Accessories (Emulation and Programming)

Table 40. Emulation and Programming Accessories

- CY3207 Programmer Unit
- PSoC ISSP Software CD
- 110 ~ 240 V Power Supply, Euro-Plug Adapter
- USB 2.0 Cable

Part Number	Pin Package	Flex-Pod Kit ^[75]	Foot Kit ^[76]	Adapter ^[77]				
CY8C20236A-24LKXI	16-pin QFN (No E-Pad)	CY3250-20246QFN	CY3250-20246QFN-POD	See note 74				
CY8C20246A-24LKXI	16-pin QFN (No E-Pad)	CY3250-20246QFN	CY3250-20246QFN-POD	See note 77				
CY8C20246AS-24LKXI	16-pin QFN (No E-Pad)		Not Supported					
CY8C20336A-24LQXI	24-pin QFN	CY3250-20346QFN	CY3250-20346QFN-POD	See note 74				
CY8C20346A-24LQXI	24-pin QFN	CY3250-20346QFN	CY3250-20346QFN-POD	See note 77				
CY8C20346AS-24LQXI	24-pin QFN		Not Supported					
CY8C20396A-24LQXI	24-pin QFN		Not Supported					
CY8C20436A-24LQXI	32-pin QFN	CY3250-20466QFN	CY3250-20466QFN-POD	See note 74				
CY8C20446A-24LQXI	32-pin QFN	CY3250-20466QFN	CY3250-20466QFN-POD	See note 77				
CY8C20446AS-24LQXI	32-pin QFN		Not Supported					
CY8C20466A-24LQXI	32-pin QFN	CY3250-20466QFN	CY3250-20466QFN-POD	See note 77				
CY8C20466AS-24LQXI	32-pin QFN		Not Supported					
CY8C20496A-24LQXI	32-pin QFN		Not Supported					
CY8C20536A-24PVXI	48-pin SSOP	CY3250-20566	CY3250-20566-POD	See note 77				
CY8C20546A-24PVXI	48-pin SSOP	CY3250-20566	CY3250-20566-POD	See note 77				
CY8C20566A-24PVXI	48-pin SSOP	CY3250-20566	CY3250-20566-POD	See note 77				

Third Party Tools

Several tools have been specially designed by third-party vendors to accompany PSoC devices during development and production. Specific details for each of these tools can be found at http://www.cypress.com under Documentation > Evaluation Boards.

Build a PSoC Emulator into Your Board

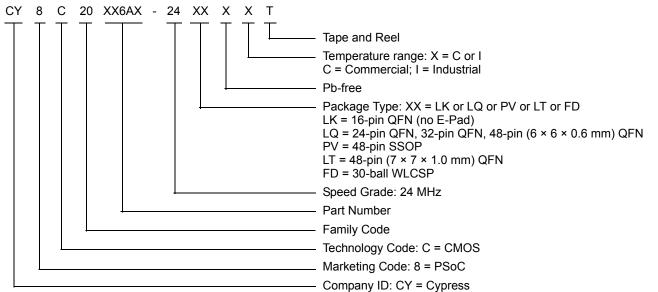
For details on how to emulate your circuit before going to volume production using an on-chip debug (OCD) non-production PSoC device, refer Application Note Debugging - Build a PSoC Emulator into Your Board – AN2323.

Notes

- 76. Foot kit includes surface mount feet that can be soldered to the target PCB.
- 77. Programming adapter converts non-DIP package to DIP footprint. Specific details and ordering information for each of the adapters can be found at http://www.emulation.com.

^{75.} Flex-Pod kit includes a practice flex-pod and a practice PCB, in addition to two flex-pods.

Table 41. PSoC Device Key Features and Ordering Information (continued)


Package	Ordering Code	Flash (Bytes)	SRAM (Bytes)		Digital I/O Pins	Analog Inputs ^[78]	XRES Pin	USB	ADC
24-pin (4 × 4 × 0.6 mm) QFN	CY8C20346AS-24LQXI	16 K	2 K	1	20	20	Yes	No	Yes
24-pin (4 × 4 × 0.6 mm) QFN (Tape and Reel)	CY8C20346AS-24LQXIT	16 K	2 K	1	20	20	Yes	No	Yes
32-pin (5 × 5 × 0.6 mm) QFN	CY8C20446AS-24LQXI	16 K	2 K	1	28	28	Yes	No	Yes
32-pin (5 × 5 × 0.6 mm) QFN (Tape and Reel)	CY8C20446AS-24LQXIT	16 K	2 K	1	28	28	Yes	No	Yes
32-pin (5 × 5 × 0.6 mm) QFN	CY8C20466AS-24LQXI	32 K	2 K	1	28	28	Yes	No	Yes
32-pin (5 × 5 × 0.6 mm) QFN (Tape and Reel)	CY8C20466AS-24LQXIT	32 K	2 K	1	28	28	Yes	No	Yes
48-pin (6 × 6 × 0.6 mm) QFN	CY8C20666AS-24LQXI	32 K	2 K	1	36	36	Yes	Yes	Yes
48-pin (6 × 6 × 0.6 mm) QFN (Tape and Reel)	CY8C20666AS-24LQXIT	32 K	2 K	1	36	36	Yes	Yes	Yes
48-pin (7 × 7 × 1.0 mm) QFN ^[79]	CY8C20666AS-24LTXI ^[79]	32 K	2 K	1	36	36	Yes	Yes	Yes
48-pin (7 × 7 × 1.0 mm) QFN (Tape and Reel) ^[79]	CY8C20666AS-24LTXIT [79]	32 K	2 K	1	36	36	Yes	Yes	Yes
48-pin (6 × 6 × 0.6 mm) QFN	CY8C20646AS-24LQXI	16 K	2 K	1	36	36	Yes	Yes	Yes
48-pin (6 × 6 × 0.6 mm) QFN (Tape and Reel)	CY8C20646AS-24LQXIT	16 K	2 K	1	36	36	Yes	Yes	Yes
48-pin (7 × 7 × 1.0 mm) QFN ^[79] CY8C20646AS-24LTXI ^[79]		16 K	2 K	1	36	36	Yes	Yes	Yes
48-pin (7 × 7 × 1.0 mm) QFN (Tape and Reel) ^[79]	CY8C20646AS-24LTXIT [79]	16 K	2 K	1	36	36	Yes	Yes	Yes

Notes

78. Dual-function Digital I/O Pins also connect to the common analog mux.

79. Not Recommended for New Designs.

Ordering Code Definitions

Acronyms

Table 42. Acronyms Used in this Document

Acronym	Description
AC	alternating current
ADC	analog-to-digital converter
API	application programming interface
CMOS	complementary metal oxide semiconductor
CPU	central processing unit
DAC	digital-to-analog converter
DC	direct current
EOP	end of packet
FSR	full scale range
GPIO	general purpose input/output
GUI	graphical user interface
l ² C	inter-integrated circuit
ICE	in-circuit emulator
IDAC	digital analog converter current
ILO	internal low speed oscillator
IMO	internal main oscillator
I/O	input/output
ISSP	in-system serial programming
LCD	liquid crystal display
LDO	low dropout (regulator)
LSB	least-significant bit
LVD	low voltage detect
MCU	micro-controller unit
MIPS	mega instructions per second
MISO	master in slave out
MOSI	master out slave in
MSB	most-significant bit
OCD	on-chip debugger
POR	power on reset
PPOR	precision power on reset
PSRR	power supply rejection ratio
PWRSYS	power system
PSoC [®]	Programmable System-on-Chip
SLIMO	slow internal main oscillator
SRAM	static random access memory
SNR	signal to noise ratio
QFN	quad flat no-lead
SCL	serial I2C clock
SDA	serial I2C data
SDATA	serial ISSP data
SPI	serial peripheral interface
SS	slave select
SSOP	shrink small outline package
тс	test controller
USB	universal serial bus
USB D+	USB Data+
USB D-	USB Data-
WLCSP	wafer level chip scale package
XTAL	crystal

Reference Documents

- Technical Reference Manual for CY8C20xx6 devices
- In-system Serial Programming (ISSP) protocol for 20xx6 (AN2026C)
- Host Sourced Serial Programming for 20xx6 devices (AN59389)

Document Conventions

Units of Measure

Table 43. Units of Measure

Symbol	Unit of Measure		
°C	degree Celsius		
dB	decibels		
fF	femtofarad		
g	gram		
Hz	hertz		
KB	1024 bytes		
Kbit	1024 bits		
KHz	kilohertz		
Ksps	kilo samples per second		
kΩ	kilohm		
MHz	megahertz		
MΩ	megaohm		
μA	microampere		
μF	microfarad		
μH	microhenry		
μS	microsecond		
μW	microwatt		
mA	milliampere		
ms	millisecond		
mV	millivolt		
nA	nanoampere		
nF	nanofarad		
ns	nanosecond		
nV	nanovolt		
W	ohm		
pА	picoampere		
pF	picofarad		
рр	peak-to-peak		
ppm	parts per million		
ps	picosecond		
sps	samples per second		
S	sigma: one standard deviation		
V	volt		
W	watt		

5. Missed Interrupt During Transition to Sleep

Problem Definition

If an interrupt is posted a short time (within 2.5 CPU cycles) before firmware commands the device to sleep, the interrupt will be missed.

Parameters Affected

No datasheet parameters are affected.

Trigger Condition(S)

Triggered by enabling sleep mode just prior to an interrupt.

Scope of Impact

The relevant interrupt service routine will not be run.

Workaround

None.

Fix Status

Will not be fixed

■ Changes

None

6. Wakeup from sleep with analog interrupt

Problem Definition

Device wakes up from sleep when an analog interrupt is trigger

Parameters Affected

No datasheet parameters are affected.

Trigger Condition(S)

Triggered by enabling analog interrupt during sleep mode when device operating temperature is 50 °C or above

Scope of Impact

Device unexpectedly wakes up from sleep

Workaround

Disable the analog interrupt before entering sleep and turn it back on upon wakeup.

Fix Status

Will not be fixed

Changes

None

Document History Page

0–6 Slide	nt Title: CY8 rs nt Number:		1.8 V Program	mable CapSense [®] Controller with SmartSense ™ Auto-tuning 1–33 Buttons,
Revision	ECN	Orig. of Change	Submission Date	Description of Change
**	2737924	SNV	07/14/2009	New silicon and document
*A	2764528	MATT	09/16/2009	Updated AC Chip Level Specifications Updated ADC User Module Electrical Specifications table Added Note 5. Added SR _{POWER UP} parameter. Updated Ordering information. Updated Capacitance on Crystal Pins
*B	2803229	VZD	11/10/2009	Added "Contents" on page 4. Added Note 6 on page 20. Edited Features section to include reference to Incremental ADC.
*C	2846083	DST / KEJO	01/12/2010	Updated "AC Programming Specifications" on page 31 per CDT 56531. Updated Idd typical values in "DC Chip-Level Specifications" on page 21. Added 30-pin WLCSP pin and package details. Added Contents on page 2.
*D	2935141	KEJO/ISW / SSHH	03/05/2010	Updated "Features" on page 1. Added "SmartSense" on page 5. Updated "PSoC [®] Functional Overview" on page 5. Removed SNR statement regarding on page 4 (Analog Multiplexer section). Updated Additional System Resources on page 6 with the I2C enhanced slave interface point. Removed references to "system level" in "Designing with PSoC Designer" on page 9. Changed TC CLK and TC DATA to ISSP CLK and ISSP DATA respectively in all the pinouts. Modified notes in Pinouts. Updated 30-ball pin diagram. Removed IMO frequency trim options diagram in "Electrical Specifications" on page 20. Updated and formatted values in DC and AC specifications. Updated Ordering information table. Updated 48-pin SSOP package diagram. Added 30-Ball WLCSP package spec 001-50669. Removed AC Analog Mux Bus Specifications section. Added SPI Master and Slave mode diagrams. Modified Definition for Timing for Fast/Standard Mode on the I2C Bus on page 28. Updated "Thermal Impedances" on page 38. Combined Development Tools with "Development Tool Selection" on page 39. Removed references to "system level". Updated "Code Definitions" on page 39. Added "Ordering Code Definitions" on page 43. Updated "Acronyms" on page 44. Added Glossary and "Reference Documents" on page 44. Changed datasheet status from Preliminary to Final
*E	3043291	SAAC	09/30/2010	Change: Added the line "Supports SmartSense" in the "Low power CapSense® block" bullet in the Features section. Impact: Helps to know that this part has the feature of Auto Tuning. Change: Replaced pod MPNs. Areas affected: Foot kit column of table 37. Change: Template and Styles update. Areas affected: Entire datasheet. Impact: Datasheet adheres to Cypress standards.
*F	3071632	JPX	10/26/2010	In Table 36 on page 34, modified t_{LOW} and t_{HIGH} min values to 42. Updated t_{SS_HIGH} min value to 50; removed max value.

Document History Page (continued)

Document Title: CY8C20XX6A/S, 1.8 V Programmable CapSense [®] Controller with SmartSense™ Auto-tuning 1–33 Buttons 0–6 Sliders Document Number: 001-54459				
Revision	ECN	Orig. of Change	Submission Date	Description of Change
*G	3247491	TTO/JPM/ ARVM/BVI	06/16/2011	Add 4 new parameters to Table 14 on page 22, and 2 new parameters to Table 15 on page 23. Changed Typ values for the following parameters: I_{DD24} , I_{DD12} , I_{DD6} , V_{OSLPC} . Added footnote # 49 and referred it to pin numbers 1, 14, 15, 42, and 43 under Table 10 on page 19. Added footnote # 53 and referred it to parameter V_{IOZ} under Table 11 on page 20. Added footnote # 69 and added reference to t_{JIT_IMO} specification under Table 27 on page 28. Included footnote # 69 and added reference to t_{JIT_IMO} specification under Table 27 on page 28. Updated Solder Reflow Specifications on page 38 as per specs 25-00090 and 25-00103. I _{SB0} Max value changed from 0.5 µA to 1.1 µA in Table 13 on page 21. Added Table 26 on page 27. Updated part numbers for "SmartSense_EMC" enabled CapSense controller.
*H	3367332	BTK / SSHH / JPM/TTO/ VMAD	09/09/2011	Added parameter " t_{OS} " to Table 27 on page 28. Added parameter " l_{SBI2C} " to Table 13 on page 21. Added Table 24 on page 27. Added Table 25 on page 27. Replaced text "Port 2 or 3 pins" with "Port 2 or 3 or 4 pins" in Table 14, Table 15, Table 16, and Table 28.
*	3371807	MATT	09/30/2011	Updated Packaging Information (Updated the next revision package outline for Figure 21, Figure 24 and included a new package outline Figure 26). Updated Ordering Information (Added new part numbers CY8C20636A-24LQXI, CY8C20636A-24LQXIT, CY8C20646A-24LQXI, CY8C20646A-24LQXIT, CY8C20666A-24LQXI, CY8C20666A-24LQXIT, CY8C20666AS-24LQXI, CY8C20666AS-24LQXIT, CY8C20646AS-24LQXI and CY8C20646AS-24LQXIT). Updated to new template.
*J	3401666	MATT	10/11/2011	No technical updates.
*K	3414479	KPOL	10/19/2011	Removed clock stretching feature on page 1. Removed I ² C enhanced slave interface point from Additional System Resources.
*L	3452591	BVI/UDYG	12/01/2011	Changed document title. Updated DC Chip-Level Specifications table. Updated Solder Reflow Specifications section. Updated Getting Started and Designing with PSoC Designer sections. Included Development Tools section. Updated Software under Development Tool Selection section.
*M	3473330	ANBA	12/22/2011	Updated DC Chip-Level Specifications under Electrical Specifications (updated maximum value of I_{SB0} parameter from 1.1 µA to 1.05 µA).
*N	3587003	DST	04/16/2012	Added note for WLCSP package on page 1. Added Sensing inputs to pin table captions. Updated Conditions for DC Reference Buffer Specifications. Updated t _{JIT_IMO} description in AC Chip-Level Specifications. Added note for t _{VDDWAIT} , t _{VDDXRES} , t _{ACQ} , and t _{XRESINI} specs. Removed WLCSP package outline.
*0	3638569	BVI	06/06/2012	Updated F_{SCLK} parameter in the Table 36, "SPI Slave AC Specifications," on page 34. Changed t_{OUT_HIGH} to t_{OUT_H} in Table 35, "SPI Master AC Specifications," on page 33. Updated package diagram 001-57280 to *C revision.