
Freescale Semiconductor - MC68HC11E0CFNE3 Datasheet

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated
circuits designed to perform specific tasks within larger
systems. These microcontrollers are essentially compact
computers on a single chip, containing a processor core,
memory, and programmable input/output peripherals.
They are called "embedded" because they are embedded
within electronic devices to control various functions,
rather than serving as standalone computers.
Microcontrollers are crucial in modern electronics,
providing the intelligence and control needed for a wide
range of applications.

Applications of "Embedded -
Microcontrollers"

Embedded microcontrollers are used in virtually every
sector of electronics, providing the necessary control and
processing power for a multitude of applications. In
consumer electronics, they manage the operations of
smartphones, home appliances, and wearable devices. In
automotive systems, microcontrollers control engine
functions, safety features, and infotainment systems.
Industrial applications rely on microcontrollers for
automation, robotics, and process control. Additionally,
microcontrollers are integral in medical devices, handling
functions such as monitoring, diagnostics, and control of
therapeutic equipment. Their versatility and
programmability make them essential components in
creating efficient, responsive, and intelligent electronic
systems.

Common Subcategories of "Embedded -
Microcontrollers"

Embedded microcontrollers can be categorized based on
their architecture, performance, and application focus.
Common subcategories include 8-bit, 16-bit, and 32-bit
microcontrollers, differentiated by their processing power
and memory capacity. 8-bit microcontrollers are typically
used in simple applications like basic control systems and
small devices. 16-bit microcontrollers offer a balance
between performance and complexity, suitable for
medium-scale applications like industrial automation. 32-
bit microcontrollers provide high performance and are
used in complex applications requiring advanced
processing, such as automotive systems and sophisticated
consumer electronics. Each subcategory serves a specific
range of applications, providing tailored solutions for
different performance and complexity needs.

Types of "Embedded - Microcontrollers"

There are various types of embedded microcontrollers,
each designed to meet specific application requirements.
General-purpose microcontrollers are versatile and used in
a wide range of applications, offering a balance of
performance, memory, and peripheral options. Special-
purpose microcontrollers are tailored for specific tasks,
such as automotive controllers, which include features like
built-in motor control peripherals and automotive-grade

Details

Product Status Active

Core Processor -

Core Size -

Speed -

Connectivity -

Peripherals -

Number of I/O -

Program Memory Size -

Program Memory Type -

EEPROM Size -

RAM Size -

Voltage - Supply (Vcc/Vdd) -

Data Converters -

Oscillator Type -

Operating Temperature -

Mounting Type -

Package / Case -

Supplier Device Package -

Purchase URL https://www.e-xfl.com/pro/item?MUrl=&PartUrl=mc68hc11e0cfne3

Email: info@E-XFL.COM Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

https://www.e-xfl.com/product/pdf/mc68hc11e0cfne3-4421367
https://www.e-xfl.com
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers

4.3 Data Types. 69
4.4 Opcodes and Operands. 70
4.5 Addressing Modes . 70
4.5.1 Immediate . 70
4.5.2 Direct . 70
4.5.3 Extended . 71
4.5.4 Indexed . 71
4.5.5 Inherent . 71
4.5.6 Relative . 71
4.6 Instruction Set . 71

Chapter 5
Resets and Interrupts

5.1 Introduction . 79
5.2 Resets . 79
5.2.1 Power-On Reset (POR) . 79
5.2.2 External Reset (RESET) . 80
5.2.3 Computer Operating Properly (COP) Reset. 80
5.2.4 Clock Monitor Reset. 81
5.2.5 System Configuration Options Register . 82
5.2.6 Configuration Control Register. 83
5.3 Effects of Reset . 83
5.3.1 Central Processor Unit (CPU) . 83
5.3.2 Memory Map . 84
5.3.3 Timer . 84
5.3.4 Real-Time Interrupt (RTI) . 84
5.3.5 Pulse Accumulator . 84
5.3.6 Computer Operating Properly (COP) . 84
5.3.7 Serial Communications Interface (SCI) . 84
5.3.8 Serial Peripheral Interface (SPI) . 84
5.3.9 Analog-to-Digital (A/D) Converter . 85
5.3.10 System . 85
5.4 Reset and Interrupt Priority . 85
5.4.1 Highest Priority Interrupt and Miscellaneous Register . 86
5.5 Interrupts . 87
5.5.1 Interrupt Recognition and Register Stacking . 88
5.5.2 Non-Maskable Interrupt Request (XIRQ) . 89
5.5.3 Illegal Opcode Trap . 89
5.5.4 Software Interrupt (SWI) . 90
5.5.5 Maskable Interrupts . 90
5.5.6 Reset and Interrupt Processing . 90
5.6 Low-Power Operation . 90
5.6.1 Wait Mode . 90
5.6.2 Stop Mode . 95
M68HC11E Family Data Sheet, Rev. 5.1

Freescale Semiconductor 9

Memory Map
Figure 2-5. Memory Map for MC68HC(7)11E20

Figure 2-6. Memory Map for MC68HC811E2

9000

AFFF
8 KBYTES ROM/EPROM *

 * 20 Kbytes ROM/EPROM are contained in two segments of 8 Kbytes and 12 Kbytes each.

FFC0

FFFF

NORMAL
MODES
INTERRUPT
VECTORS

64-BYTE REGISTER BLOCK

 768 BYTES RAM

SINGLE
CHIP

BOOTSTRAP SPECIAL
TEST

EXT

$0000

$1000

$B600

$D000

$FFFF

0000

1000

103F

BF00

EXPANDED

D000

FFFF

BFFF

BFC0

BFFF

SPECIAL MODES
INTERRUPT
VECTORS

B600

B7FF

512 BYTES EEPROM

12 KBYTES ROM/EPROM *

BOOT
ROM

EXT

EXT

02FF

EXT

EXT

$9000

EXT

EXTEXT

FFC0

FFFF

NORMAL
MODES
INTERRUPT
VECTORS

64-BYTE REGISTER BLOCK

 256 BYTES RAM

SINGLE
CHIP

BOOTSTRAP SPECIAL
TEST

EXT

$0000

$1000

$F800

$FFFF

0000

1000

103F

BF00

EXPANDED

F800

FFFF

BFFF

BFC0

BFFF

SPECIAL MODES
INTERRUPT
VECTORS

2048 BYTES EEPROM

BOOT
ROM

EXT EXT

00FFEXT
M68HC11E Family Data Sheet, Rev. 5.1

Freescale Semiconductor 33

Operating Modes and On-Chip Memory
M68HC11E Family Data Sheet, Rev. 5.1

56 Freescale Semiconductor

Conversion Process
3.4 Conversion Process

The A/D conversion sequence begins one E-clock cycle after a write to the A/D control/status register,
ADCTL. The bits in ADCTL select the channel and the mode of conversion.

An input voltage equal to VRL converts to $00 and an input voltage equal to VRH converts to $FF (full
scale), with no overflow indication. For ratiometric conversions of this type, the source of each analog
input should use VRH as the supply voltage and be referenced to VRL.

3.5 Channel Assignments

The multiplexer allows the A/D converter to select one of 16 analog signals. Eight of these channels
correspond to port E input lines to the MCU, four of the channels are internal reference points or test
functions, and four channels are reserved. Refer to Table 3-1.

3.6 Single-Channel Operation

The two types of single-channel operation are:
1. When SCAN = 0, the single selected channel is converted four consecutive times. The first result

is stored in A/D result register 1 (ADR1), and the fourth result is stored in ADR4. After the fourth
conversion is complete, all conversion activity is halted until a new conversion command is written
to the ADCTL register.

2. When SCAN = 1, conversions continue to be performed on the selected channel with the fifth
conversion being stored in register ADR1 (overwriting the first conversion result), the sixth
conversion overwriting ADR2, and so on.

Table 3-1. Converter Channel Assignments

Channel
Number

Channel
Signal

Result in ADRx
if MULT = 1

1 AN0 ADR1

2 AN1 ADR2

3 AN2 ADR3

4 AN3 ADR4

5 AN4 ADR1

6 AN5 ADR2

7 AN6 ADR3

8 AN7 ADR4

9 – 12 Reserved —

13 VRH
(1)

1. Used for factory testing

ADR1

14 VRL
(1) ADR2

15 (VRH)/2(1) ADR3

16 Reserved(1) ADR4
M68HC11E Family Data Sheet, Rev. 5.1

Freescale Semiconductor 61

Resets and Interrupts
Figure 5-5. Processing Flow Out of Reset (Sheet 2 of 2)

BIT I IN
CCR = 1?

2A

Y

N

ANY I-BIT
INTERRUPT

Y

N

PENDING?

FETCH OPCODE

ILLEGAL
OPCODE?

Y

N

WAI Y

N

INSTRUCTION?

SWI
INSTRUCTION?

Y

N

RTI
INSTRUCTION?

Y

N

EXECUTE THIS
INSTRUCTION

STACK CPU
REGISTERS

ANYN

Y

INTERRUPT
PENDING?

SET BIT I IN CCR

RESOLVE INTERRUPT
PRIORITY AND FETCH
VECTOR FOR HIGHEST
PENDING SOURCE

STACK CPU
REGISTERS

SET BIT I IN CCR

FETCH VECTOR
$FFF8, $FFF9

STACK CPU
REGISTERS

SET BIT I IN CCR

FETCH VECTOR
$FFF6, $FFF7

RESTORE CPU
REGISTERS

FROM STACK

1A

STACK CPU
REGISTERS

SEE FIGURE 5–2
M68HC11E Family Data Sheet, Rev. 5.1

92 Freescale Semiconductor

Low-Power Operation
Figure 5-7. Interrupt Source Resolution Within SCI

5.6.2 Stop Mode

Executing the STOP instruction while the S bit in the CCR is equal to 0 places the MCU in stop mode. If
the S bit is not 0, the stop opcode is treated as a no-op (NOP). Stop mode offers minimum power
consumption because all clocks, including the crystal oscillator, are stopped while in this mode. To exit
stop and resume normal processing, a logic low level must be applied to one of the external interrupts
(IRQ or XIRQ) or to the RESET pin. A pending edge-triggered IRQ can also bring the CPU out of stop.

Because all clocks are stopped in this mode, all internal peripheral functions also stop. The data in the
internal RAM is retained as long as VDD power is maintained. The CPU state and I/O pin levels are static
and are unchanged by stop. Therefore, when an interrupt comes to restart the system, the MCU resumes
processing as if there were no interruption. If reset is used to restart the system, a normal reset sequence
results in which all I/O pins and functions are also restored to their initial states.

To use the IRQ pin as a means of recovering from stop, the I bit in the CCR must be clear (IRQ not
masked). The XIRQ pin can be used to wake up the MCU from stop regardless of the state of the X bit in
the CCR, although the recovery sequence depends on the state of the X bit. If X is set to 0 (XIRQ not

FLAG Y

N

OR = 1?
Y

N

Y

N

TDRE = 1?

TC = 1?
Y

N

IDLE = 1?
Y

N

Y

N

Y

N

Y

N

ILIE = 1?

RIE = 1?

TIE = 1?

BEGIN

RE = 1?
Y

N

Y

N

TE = 1?

TCIE = 1?
Y

N

RE = 1?
Y

N

RDRF = 1?

VALID SCI REQUESTNO
VALID SCI REQUEST
M68HC11E Family Data Sheet, Rev. 5.1

Freescale Semiconductor 95

 Parallel Input/Output (I/O) Ports
M68HC11E Family Data Sheet, Rev. 5.1

104 Freescale Semiconductor

Serial Communications Interface (SCI)
Figure 7-10. Interrupt Source Resolution Within SCI

FLAG Y

N

OR = 1?
Y

N

Y

N

TDRE = 1?

TC = 1?
Y

N

IDLE = 1?
Y

N

Y

N

Y

N

Y

N

ILIE = 1?

RIE = 1?

TIE = 1?

BEGIN

RE = 1?
Y

N

Y

N

TE = 1?

TCIE = 1?
Y

N

RE = 1?
Y

N

RDRF = 1?

VALID SCI REQUESTNO
VALID SCI REQUEST
M68HC11E Family Data Sheet, Rev. 5.1

118 Freescale Semiconductor

 Serial Peripheral Interface (SPI)
8.5.3 Serial Clock

SCK, an input to a slave device, is generated by the master device and synchronizes data movement in
and out of the device through the MOSI and MISO lines. Master and slave devices are capable of
exchanging a byte of information during a sequence of eight clock cycles.

Four possible timing relationships can be chosen by using control bits CPOL and CPHA in the serial
peripheral control register (SPCR). Both master and slave devices must operate with the same timing.
The SPI clock rate select bits, SPR[1:0], in the SPCR of the master device, select the clock rate. In a slave
device, SPR[1:0] have no effect on the operation of the SPI.

8.5.4 Slave Select

The slave select (SS) input of a slave device must be externally asserted before a master device can
exchange data with the slave device. SS must be low before data transactions and must stay low for the
duration of the transaction.

The SS line of the master must be held high. If it goes low, a mode fault error flag (MODF) is set in the
serial peripheral status register (SPSR). To disable the mode fault circuit, write a 1 in bit 5 of the port D
data direction register. This sets the SS pin to act as a general-purpose output rather than the dedicated
input to the slave select circuit, thus inhibiting the mode fault flag. The other three lines are dedicated to
the SPI whenever the serial peripheral interface is on.

The state of the master and slave CPHA bits affects the operation of SS. CPHA settings should be
identical for master and slave. When CPHA = 0, the shift clock is the OR of SS with SCK. In this clock
phase mode, SS must go high between successive characters in an SPI message. When CPHA = 1, SS
can be left low between successive SPI characters. In cases where there is only one SPI slave MCU, its
SS line can be tied to VSS as long as only CPHA = 1 clock mode is used.

8.6 SPI System Errors

Two system errors can be detected by the SPI system. The first type of error arises in a multiple-master
system when more than one SPI device simultaneously tries to be a master. This error is called a mode
fault. The second type of error, write collision, indicates that an attempt was made to write data to the
SPDR while a transfer was in progress.

When the SPI system is configured as a master and the SS input line goes to active low, a mode fault
error has occurred — usually because two devices have attempted to act as master at the same time. In
cases where more than one device is concurrently configured as a master, there is a chance of contention
between two pin drivers. For push-pull CMOS drivers, this contention can cause permanent damage. The
mode fault mechanism attempts to protect the device by disabling the drivers. The MSTR control bit in the
SPCR and all four DDRD control bits associated with the SPI are cleared and an interrupt is generated
subject to masking by the SPIE control bit and the I bit in the CCR.

Other precautions may need to be taken to prevent driver damage. If two devices are made masters at
the same time, mode fault does not help protect either one unless one of them selects the other as slave.
The amount of damage possible depends on the length of time both devices attempt to act as master.

A write collision error occurs if the SPDR is written while a transfer is in progress. Because the SPDR is
not double buffered in the transmit direction, writes to SPDR cause data to be written directly into the SPI
shift register. Because this write corrupts any transfer in progress, a write collision error is generated. The
transfer continues undisturbed, and the write data that caused the error is not written to the shifter.
M68HC11E Family Data Sheet, Rev. 5.1

122 Freescale Semiconductor

Output Compare
9.3.3 Timer Input Capture 4/Output Compare 5 Register

Use TI4/O5 as either an input capture register or an output compare register, depending on the function
chosen for the PA3 pin. To enable it as an input capture pin, set the I4/O5 bit in the pulse accumulator
control register (PACTL) to logic level 1. To use it as an output compare register, set the I4/O5 bit to a
logic level 0. Refer to 9.7 Pulse Accumulator.

9.4 Output Compare

Use the output compare (OC) function to program an action to occur at a specific time — when the 16-bit
counter reaches a specified value. For each of the five output compare functions, there is a separate
16-bit compare register and a dedicated 16-bit comparator. The value in the compare register is
compared to the value of the free-running counter on every bus cycle. When the compare register
matches the counter value, an output compare status flag is set. The flag can be used to initiate the
automatic actions for that output compare function.

To produce a pulse of a specific duration, write a value to the output compare register that represents the
time the leading edge of the pulse is to occur. The output compare circuit is configured to set the
appropriate output either high or low, depending on the polarity of the pulse being produced. After a match
occurs, the output compare register is reprogrammed to change the output pin back to its inactive level
at the next match. A value representing the width of the pulse is added to the original value, and then
written to the output compare register. Because the pin state changes occur at specific values of the
free-running counter, the pulse width can be controlled accurately at the resolution of the free-running
counter, independent of software latencies. To generate an output signal of a specific frequency and duty
cycle, repeat this pulse-generating procedure.

The five 16-bit read/write output compare registers are: TOC1, TOC2, TOC3, and TOC4, and the TI4/O5.
TI4/O5 functions under software control as either IC4 or OC5. Each of the OC registers is set to $FFFF
on reset. A value written to an OC register is compared to the free-running counter value during each
E-clock cycle. If a match is found, the particular output compare flag is set in timer interrupt flag register
1 (TFLG1). If that particular interrupt is enabled in the timer interrupt mask register 1 (TMSK1), an interrupt
is generated. In addition to an interrupt, a specified action can be initiated at one or more timer output
pins. For OC[5:2], the pin action is controlled by pairs of bits (OMx and OLx) in the TCTL1 register. The
output action is taken on each successful compare, regardless of whether or not the OCxF flag in the
TFLG1 register was previously cleared.

Register name: Timer Input Capture 4/Output Compare 5 (High) Address: $101E

Bit 7 6 5 4 3 2 1 Bit 0

Read:
Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8

Write:

Reset: 1 1 1 1 1 1 1 1

Register name: Timer Input Capture 4/Output Compare 5 (Low) Address: $101F

Bit 7 6 5 4 3 2 1 Bit 0

Read:
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

Write:

Reset: 1 1 1 1 1 1 1 1

Figure 9-7. Timer Input Capture 4/Output
Compare 5 Register Pair (TI4/O5)
M68HC11E Family Data Sheet, Rev. 5.1

Freescale Semiconductor 133

 Electrical Characteristics
10.6 Supply Currents and Power Dissipation

Characteristics(1)

1. VDD = 5.0 Vdc ± 10%, VSS = 0 Vdc, TA = TL to TH, unless otherwise noted

Symbol Min Max Unit

Run maximum total supply current(2)

Single-chip mode2 MHz
3 MHz

Expanded multiplexed mode2 MHz
3 MHz

2. EXTAL is driven with a square wave, and
tCYC= 500 ns for 2 MHz rating
tCYC= 333 ns for 3 MHz rating
VIL ≤ 0.2 V
VIH ≥ VDD – 0.2 V
no dc loads

IDD

—
—
—
—

15
27
27
35

mA

Wait maximum total supply current(2)

(all peripheral functions shut down)
Single-chip mode2 MHz

3 MHz
Expanded multiplexed mode2 MHz

3 MHz

WIDD

—
—
—
—

6
15
10
20

mA

Stop maximum total supply current(2)

Single-chip mode, no clocks–40°C to +85°C
> +85°C to +105°C
> +105°C to +125°C

SIDD
—
—
—

25
50

100

µA

Maximum power dissipation
Single-chip mode2 MHz

3 MHz
Expanded multiplexed mode2 MHz

3 MHz

PD

—
—
—
—

85
150
150
195

mW
M68HC11E Family Data Sheet, Rev. 5.1

152 Freescale Semiconductor

MC68L11E9/E20 Supply Currents and Power Dissipation
Figure 10-1. Test Methods

Notes:
 1. Full test loads are applied during all dc electrical tests and ac timing measurements.
 2. During ac timing measurements, inputs are driven to 0.4 volts and VDD – 0.8 volts while timing

CLOCKS,
STROBES

INPUTS

VDD – 0.8 Volts

0.4 Volts

VDD~
NOMINAL TIMING

NOM

20% of VDD

70% of VDD

VDD – 0.8 VOLTS
0.4 VOLTS

VSS~

VDD~

NOM

OUTPUTS

0.4 VOLTS

DC TESTING

CLOCKS,
STROBES

INPUTS

20% of VDD

70% of VDD

VSS~

VDD~
SPEC TIMING

VDD – 0.8 VOLTS

20% of VDD

70% of VDD

0.4 VOLTS

VSS~

VDD~

SPEC

OUTPUTS

AC TESTING

(NOTE 2)

20% of VDD

70% of VDD

20% of VDD

VSS~

SPEC

 measurements are taken at 20% and 70% of VDD points.
M68HC11E Family Data Sheet, Rev. 5.1

Freescale Semiconductor 155

F

M
C

68L
11E

9/E
20 C

o
n

tro
l T

im
in

g

FFF2
(FFF4)

NEW
PC

FFF3
(FFF5)

 STOP instruction.
M
68H

C
11E

 Fam
ily D

ata S
h

eet, R
ev. 5.1

reescale S
em

iconductor
159

Figure 10-4. STOP Recovery Timing Diagram

PWIRQ

tSTOPDELAY
3

IRQ1

IRQ
or XIRQ

E

SP – 8SP – 8STOP
ADDR

STOP
ADDR + 1

ADDRESS4 STOP
ADDR

STOP
ADDR + 1

STOP
ADDR + 1

STOP
ADDR + 1

STOP
ADDR + 2

SP…SP–7

OPCODE

Resume program with instruction which follows the

Notes:
 1. Edge Sensitive IRQ pin (IRQE bit = 1)
 2. Level sensitive IRQ pin (IRQE bit = 0)

 4. XIRQ with X bit in CCR = 1.
 5. IRQ or (XIRQ with X bit in CCR = 0).

INTERNAL

ADDRESS5

CLOCKS

3. tSTOPDELAY = 4064 tCYC if DLY bit = 1 or 4 tCYC if DLY = 0.

Ordering Information and Mechanical Specifications
52-pin plastic leaded chip carrier (PLCC) (Continued)

OTPROM $0F

–40°C to +85°C
2 MHz MC68HC711E9CFN2

3 MHz MC68HC711E9CFN3

–40°C to +105°C 2 MHz MC68HC711E9VFN2

–40°C to +125°C 2 MHz MC68HC711E9MFN2

OTPROM, enhanced security
feature

$0F –40°C to +85°C 2 MHz MC68S711E9CFN2

20 Kbytes OTPROM $0F

0°C to +70°C 3 MHz MC68HC711E20FN3

–40°C to +85°C
2 MHz MC68HC711E20CFN2

3 MHz MC68HC711E20CFN3

–40°C to +105°C 2 MHz MC68HC711E20VFN2

–40°C to +125°C 2 MHz MC68HC711E20MFN2

No ROM, 2 Kbytes EEPROM $FF

0°C to +70°C 2 MHz MC68HC811E2FN2

–40°C to +85°C 2 MHz MC68HC811E2CFN2

–40°C to +105°C 2 MHz MC68HC811E2VFN2

–40°C to +125°C 2 MHz MC68HC811E2MFN2

64-pin quad flat pack (QFP)

BUFFALO ROM $0F –40°C to +85°C
2 MHz MC68HC11E9BCFU2

3 MHz MC68HC11E9BCFU3

No ROM $0D
–40°C to +85°C

2 MHz MC68HC11E1CFU2

3 MHz MC68HC11E1CFU3

–40°C to +105°C 2 MHz MC68HC11E1VFU2

No ROM, no EEPROM $0C
–40°C to +85°C 2 MHz MC68HC11E0CFU2

–40°C to +105°C 2 MHz MC68HC11E0VFU2

20 Kbytes OTPROM $0F

0°C to +70°°C 3 MHz MC68HC711E20FU3

–40°C to +85°C
2 MHz MC68HC711E20CFU2

3 MHz MC68HC711E20CFU3

–40°C to +105°C 2 MHz MC68HC711E20VFU2

–40°C to +125°C 2 MHz MC68HC711E20MFU2

52-pin thin quad flat pack (TQFP)

BUFFALO ROM $0F –40°C to +85°C
2 MHz MC68HC11E9BCPB2

3 MHz MC68HC11E9BCPB3

Description CONFIG Temperature Frequency MC Order Number
M68HC11E Family Data Sheet, Rev. 5.1

178 Freescale Semiconductor

Appendix A
Development Support

A.1 Introduction

This section provides information on the development support offered for the E-series devices.

A.2 M68HC11 E-Series Development Tools

A.3 EVS — Evaluation System

The EVS is an economical tool for designing, debugging, and evaluating target systems based on the
M68HC11. EVS features include:

• Monitor/debugger firmware

• One-line assembler/disassembler

• Host computer download capability

• Dual memory maps:
– 64-Kbyte monitor map that includes 16 Kbytes of monitor EPROM
– M68HC11 E-series user map that includes 64 Kbytes of emulation RAM

• MCU extension input/output (I/O) port for single-chip, expanded, and special-test operation modes

• RS-232C terminal and host I/O ports

• Logic analyzer connector

Device Package
Emulation

Module(1) (2)

1. Each MMDS11 system consists of a system console (M68MMDS11), an emulation module, a flex cable, and a target head.
2. A complete EVS consists of a platform board (M68HC11PFB), an emulation module, a flex cable, and a target head.

Flex
Cable(1) (2)

MMDS11
Target Head(1) (2)

SPGMR
Programming

Adapter(3)

3. Each SPGMR system consists of a universal serial programmer (M68SPGMR11) and a programming adapter. It can be
used alone or in conjunction with the MMDS11.

MC68HC11E9
MC68HC711E9

52 FN M68EM11E20 M68CBL11C M68TC11E20FN52 M68PA11E20FN52

52 PB M68EM11E20 M68CBL11C M68TC11E20PB52 M68PA11E20PB52

56 B M68EM11E20 M68CBL11B M68TC11E20B56 M68PA11E20B56

64 FU M68EM11E20 M68CBL11C M68TC11E20FU64 M68PA11E20FU64

MC68HC11E20
MC68HC711E20

52 FN M68EM11E20 M68CBL11C M68TC11E20FN52 M68PA11E20FN52

64 FU M68EM11E20 M68CBL11C M68TC11E20FU64 M68PA11E20FU64

MC68HC811E2
48 P M68EM11E20 M68CBL11B M68TB11E20P48 M68PA11A8P48

52 FN M68EM11E20 M68CBL11C M68TC11E20FN52 M68PA11E20FN52
M68HC11E Family Data Sheet, Rev. 5.1

Freescale Semiconductor 187

Basic Bootstrap Mode
Basic Bootstrap Mode

This section describes only basic functions of the bootstrap mode. Other functions of the bootstrap mode
are described in detail in the remainder of this application note.

When an M68HC11 is reset in bootstrap mode, the reset vector is fetched from a small internal read-only
memory (ROM) called the bootstrap ROM or boot ROM. The firmware program in this boot ROM then
controls the bootloading process, in this manner:

• First, the on-chip SCI (serial communications interface) is initialized. The first character received
($FF) determines which of two possible baud rates should be used for the remaining characters in
the download operation.

• Next, a binary program is received by the SCI system and is stored in RAM.

• Finally, a jump instruction is executed to pass control from the bootloader firmware to the user’s
loaded program.

Bootstrap mode is useful both at the component level and after the MCU has been embedded into a
finished user system.

At the component level, Freescale uses bootstrap mode to control a monitored burn-in program for the
on-chip electrically erasable programmable read-only memory (EEPROM). Units to be tested are loaded
into special circuit boards that each hold many MCUS. These boards are then placed in burn-in ovens.
Driver boards outside the ovens download an EEPROM exercise and diagnostic program to all MCUs in
parallel. The MCUs under test independently exercise their internal EEPROM and monitor programming
and erase operations. This technique could be utilized by an end user to load program information into
the EPROM or EEPROM of an M68HC11 before it is installed into an end product. As in the burn-in setup,
many M68HC11s can be gang programmed in parallel. This technique can also be used to program the
EPROM of finished products after final assembly.

Freescale also uses bootstrap mode for programming target devices on the M68HC11 evaluation
modules (EVM). Because bootstrap mode is a privileged mode like special test, the EEPROM-based
configuration register (CONFIG) can be programmed using bootstrap mode on the EVM.

The greatest benefits from bootstrap mode are realized by designing the finished system so that bootstrap
mode can be used after final assembly. The finished system need not be a single-chip mode application
for the bootstrap mode to be useful because the expansion bus can be enabled after resetting the MCU
in bootstrap mode. Allowing this capability requires almost no hardware or design cost and the addition
of this capability is invisible in the end product until it is needed.

The ability to control the embedded processor through downloaded programs is achieved without the
disassembly and chip-swapping usually associated with such control. This mode provides an easy way
to load non-volatile memories such as EEPROM with calibration tables or to program the application
firmware into a one-time programmable (OTP) MCU after final assembly.

Another powerful use of bootstrap mode in a finished assembly is for final test. Short programs can be
downloaded to check parts of the system, including components and circuitry external to the embedded
MCU. If any problems appear during product development, diagnostic programs can be downloaded to
find the problems, and corrected routines can be downloaded and checked before incorporating them into
the main application program.
M68HC11 Bootstrap Mode, Rev. 1.1

194 Freescale Semiconductor

Main Bootloader Program
Figure 2. Automatic Detection of Baud Rate

Samples taken at [7] detect the failing edge of the start bit and verify it is a logic 0. Samples taken at the
middle of what the receiver interprets as the first five bit times [8] detect logic 0s. The sample taken at the
middle of what the receiver interprets as bit 5 [9] may detect either a 0 or a 1 because the receive data
has a rising transition at about this time. The samples for bits 6 and 7 detect 1s, causing the receiver to
think the received character was $C0 or $E0 [10] at 7812 baud instead of the $FF which was sent at 1200
baud. The stop bit sample detects a 1 as expected [11], but this detection is actually in the middle of bit
0 of the 1200 baud $FF character. The SCI receiver is not confused by the rest of the 1200 baud $FF
character because the receive data line is high [12] just as it would be for the idle condition. If a character
other than $FF is sent as the first character, an SCI receive error could result.

Main Bootloader Program

Figure 3 is a flowchart of the main bootloader program in the MC68HC711E9. This bootloader
demonstrates the most important features of the bootloaders used on all M68HC11 Family members. For
complete listings of other M68HC11 versions, refer to Listing 3. MC68HC711E9 Bootloader ROM at the
end of this application note, and to Appendix B of the M68HC11 Reference Manual, Freescale document
order number M68HC11RM/AD.

The reset vector in the boot ROM points to the start [1] of this program. The initialization block [2]
establishes starting conditions and sets up the SCI and port D. The stack pointer is set because there are
push and pull instructions in the bootloader program. The X index register is pointed at the start of the
register block ($1000) so indexed addressing can be used. Indexed addressing takes one less byte of
ROM space than extended instructions, and bit manipulation instructions are not available in extended
addressing forms. The port D wire-OR mode (DWOM) bit in the serial peripheral interface control register
(SPCR) is set to configure port D for wired-OR operation to minimize potential conflicts with external
systems that use the PD1/TxD pin as an input. The baud rate for the SCI is initially set to 7812 baud at a
2-MHz E-clock rate but can automatically switch to 1200 baud based on the first character received. The
SCI receiver and transmitter are enabled. The receiver is required by the bootloading process, and the
transmitter is used to transmit data back to the host computer for optional verification. The last item in the
initialization is to set an intercharacter delay constant used to terminate the download when the host
computer stops sending data to the MC68HC711E9. This delay constant is stored in the timer output
compare 1 (TOC1) register, but the on-chip timer is not used in the bootloader program. This example

START$FF CHARACTER
@ 7812 BAUD

[6]

BIT 0 BIT 1 BIT 2 BIT 3 BIT 4 BIT 5 BIT 7BIT 6 STOP Tx DATA LINE IDLES HIGH

START$FF CHARACTER
@ 1200 BAUD

BIT 0 BIT 1

0 1S 1 1 1 1 1 1 1 1
Rx DATA SAMPLES

0 0S 0 0 0 0 ? 1 1 1
Rx DATA SAMPLES
(FOR 7812 BAUD)

$FF

$C0
or $E0

[12]

[1]
[2]

[3]

[4]

[5]

[7]
[9]

[10]

[11][8]
M68HC11 Bootstrap Mode, Rev. 1.1

198 Freescale Semiconductor

EPROM Programming Utility
Figure 4. Host and MCU Activity during EPROM PROGRAM Utility

D1

��
��

$FF

P1

D2

�
�

V1

P2

��
��

V2

D3

P3

D4

��
��

V3

P4

�
�

V4

D5

EPROM PROGRAMMING

MCU RECEIVE DATA (FROM HOST)

MCU TRANSMIT DATA (VERIFY)

��
��$FF

�
� V1

��
��V2

��
��V3

�
�V4VERIFY DATA TO HOST

(SAME AS MCU Tx DATA)

MC68HC711E9
EXECUTING
"PROGRAM" LOOP

HOST SENDING
DATA FOR
MCU EPROM[3]

[4] [5]

[6]
[1]

[2]

[7]

[8]
[9]

[10]

[11]
[12]

[13]

[14]
[15]

SEND $FF

START

INITIALIZE...
X = PROGRAM TIME
Y = FIRST ADDRESS

$BF00 - PROGRAM

WAIT1

ANY DATA RECEIVED ?
NO

YES

PROGRAM BYTE

READ PROGRAMMED DATA
AND SEND TO VERIFY

POINT TO NEXT LOCATION
TO BE PROGRAMMED

INDICATES READY
TO HOST SEND FIRST DATA BYTE

START

HOST NORMALLY WAITS FOR $FF
FROM MCU BEFORE SENDING DATA

FOR EPROM PROGRAMMING

DATA_LOOP

MORE DATA TO SEND ?
NO

YES

SEND NEXT DATA

INDICATE ERROR

VERIFY DATA RECEIVED ?
NO

YES

VERIFY DATA CORRECT ?
NO

YES

MORE TO VERIFY ?

NO

YES

DONE

PROGRAM CONTINUES
AS LONG AS DATA

IS RECEIVED

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[3]

[4]

[5]

[6]

[7]

PROGRAM Utility in MCU Driver Program in HOST
M68HC11 Bootstrap Mode, Rev. 1.1

202 Freescale Semiconductor

Driving Boot Mode from Another M68HC11
Driving Boot Mode from Another M68HC11

A second M68HC11 system can easily act as the host to drive bootstrap loading of an M68HC11 MCU.
This method is used to examine and program non-volatile memories in target M68HC11s in Freescale
EVMs. The following hardware and software example will demonstrate this and other bootstrap mode
features.

The schematic in Figure 6 shows the circuitry for a simple EPROM duplicator for the MC68HC711E9. The
circuitry is built in the wire-wrap area of an M68HC11EVBU evaluation board to simplify construction. The
schematic shows only the important portions of the EVBU circuitry to avoid confusion. To see the
complete EVBU schematic, refer to the M68HC11EVBU Universal Evaluation Board User’s Manual,
Freescale document order number M68HC11EVBU/D.

The default configuration of the EVBU must be changed to make the appropriate connections to the
circuitry in the wire-wrap area and to configure the master MCU for bootstrap mode. A fabricated jumper
must be installed at J6 to connect the XTAL output of the master MCU to the wire-wrap connector P5,
which has been wired to the EXTAL input of the target MCU. Cut traces that short across J8 and J9 must
be cut on the solder side of the printed circuit board to disconnect the normal SCI connections to the
RS232 level translator (U4) of the EVBU. The J8 and J9 connections can be restored easily at a later time
by installing fabricated jumpers on the component side of the board. A fabricated jumper must be installed
across J3 to configure the master MCU for bootstrap mode.

One MC68HC711E9 is first programmed by other means with a desired 12-Kbyte program in its EPROM
and a small duplicator program in its EEPROM. Alternately, the ROM program in an MC68HC11E9 can
be copied into the EPROM of a target MC68HC711E9 by programming only the duplicator program into
the EEPROM of the master MC68HC11E9. The master MCU is installed in the EVBU at socket U3. A
blank MC68HC711E9 to be programmed is placed in the socket in the wire-wrap area of the EVBU (U6).

With the VPP power switch off, power is applied to the EVBU system. As power is applied to the EVBU,
the master MCU (U3) comes out of reset in bootstrap mode. Target MCU (U6) is held in reset by the PB7
output of master MCU (U3). The PB7 output of U3 is forced to 0 when U3 is reset. The master MCU will
later release the reset signal to the target MCU under software control. The RxD and TxD pins of the target
MCU (U6) are high-impedance inputs while U6 is in reset so they will not affect the TxD and RxD signals
of the master MCU (U3) while U3 is coming out of reset. Since the target MCU is being held in reset with
MODA and MODB at 0, it is configured for the PROG EPROM emulation mode, and PB7 is the output
enable signal for the EPROM data I/O (input/output) pins. Pullup resistor R7 causes the port D pins,
including RxD and TxD, to remain in the high-impedance state so they do not interfere with the RxD and
TxD pins of the master MCU as it comes out of reset.

As U3 leaves reset, its mode pins select bootstrap mode so the bootloader firmware begins executing. A
break is sent out the TxD pin of U3. Pullup resistor R10 and resistor R9 cause the break character to be
seen at the RxD pin of U3. The bootloader performs a jump to the start of EEPROM in the master MCU
(U3) and starts executing the duplicator program. This sequence demonstrates how to use bootstrap
mode to pass control to the start of EEPROM after reset.

The complete listing for the duplicator program in the EEPROM of the master MCU is provided in
Listing 1. MCU-to-MCU Duplicator Program.
M68HC11 Bootstrap Mode, Rev. 1.1

Freescale Semiconductor 205

Listing 2. BASIC Program for Personal Computer
Listing 2. BASIC Program for Personal Computer

1 ' ***
2 ' *
3 ' * E9BUF.BAS - A PROGRAM TO DEMONSTRATE THE USE OF THE BOOT MODE
4 ' * ON THE HC11 BY PROGRAMMING AN HC711E9 WITH
5 ' * BUFFALO 3.4
6 ' *
7 ' * REQUIRES THAT THE S-RECORDS FOR BUFFALO (BUF34.S19)
8 ' * BE AVAILABLE IN THE SAME DIRECTORY OR FOLDER
9 ' *
10 '* THIS PROGRAM HAS BEEN RUN BOTH ON A MS-DOS COMPUTER
11 '* USING QUICKBASIC 4.5 AND ON A MACINTOSH USING
12 '* QUICKBASIC 1.0.
14 '*
15 '**
25 H$ = "0123456789ABCDEF" 'STRING TO USE FOR HEX CONVERSIONS
30 DEFINT B, I: CODESIZE% = 8192: ADRSTART= 57344!
35 BOOTCOUNT = 25 'NUMBER OF BYTES IN BOOT CODE
40 DIM CODE%(CODESIZE%) 'BUFFALO 3.4 IS 8K BYTES LONG
45 BOOTCODE$ = "" 'INITIALIZE BOOTCODE$ TO NULL
49 REM ***** READ IN AND SAVE THE CODE TO BE BOOT LOADED *****
50 FOR I = 1 TO BOOTCOUNT '# OF BYTES IN BOOT CODE
55 READ Q$
60 A$ = MID$(Q$, 1, 1)
65 GOSUB 7000 'CONVERTS HEX DIGIT TO DECIMAL
70 TEMP = 16 * X 'HANG ON TO UPPER DIGIT
75 A$ = MID$(Q$, 2, 1)
80 GOSUB 7000
85 TEMP = TEMP + X
90 BOOTCODE$ = BOOTCODE$ + CHR$(TEMP) 'BUILD BOOT CODE
95 NEXT I
96 REM ***** S-RECORD CONVERSION STARTS HERE *****
97 FILNAM$="BUF34.S19" 'DEFAULT FILE NAME FOR S-RECORDS
100 CLS
105 PRINT "Filename.ext of S-record file to be downloaded (";FILNAM$;") ";
107 INPUT Q$
110 IF Q$<>"" THEN FILNAM$=Q$
120 OPEN FILNAM$ FOR INPUT AS #1
130 PRINT : PRINT "Converting "; FILNAM$; " to binary..."
999 REM ***** SCANS FOR 'S1' RECORDS *****
1000 GOSUB 6000 'GET 1 CHARACTER FROM INPUT FILE
1010 IF FLAG THEN 1250 'FLAG IS EOF FLAG FROM SUBROUTINE
1020 IF A$ <> "S" THEN 1000
1022 GOSUB 6000
1024 IF A$ <> "1" THEN 1000
1029 REM ***** S1 RECORD FOUND, NEXT 2 HEX DIGITS ARE THE BYTE COUNT *****
1030 GOSUB 6000
1040 GOSUB 7000 'RETURNS DECIMAL IN X
1050 BYTECOUNT = 16 * X 'ADJUST FOR HIGH NIBBLE
1060 GOSUB 6000
1070 GOSUB 7000
1080 BYTECOUNT = BYTECOUNT + X 'ADD LOW NIBBLE
M68HC11 Bootstrap Mode, Rev. 1.1

Freescale Semiconductor 215

