E·XFL

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Obsolete
Core Processor	HC11
Core Size	8-Bit
Speed	3MHz
Connectivity	SCI, SPI
Peripherals	POR, WDT
Number of I/O	38
Program Memory Size	-
Program Memory Type	ROMIess
EEPROM Size	512 x 8
RAM Size	512 x 8
Voltage - Supply (Vcc/Vdd)	4.5V ~ 5.5V
Data Converters	A/D 8x8b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	52-LCC (J-Lead)
Supplier Device Package	52-PLCC (19.1×19.1)
Purchase URL	https://www.e-xfl.com/product-detail/nxp-semiconductors/mc68hc11e1cfne2

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

List of Chapters

Chapter 1 General Description
Chapter 2 Operating Modes and On-Chip Memory
Chapter 3 Analog-to-Digital (A/D) Converter
Chapter 4 Central Processor Unit (CPU)65
Chapter 5 Resets and Interrupts
Chapter 6 Parallel Input/Output (I/O) Ports97
Chapter 7 Serial Communications Interface (SCI)
Chapter 8 Serial Peripheral Interface (SPI)119
Chapter 9 Timing Systems
Chapter 10 Electrical Characteristics149
Chapter 11 Ordering Information and Mechanical Specifications
Appendix A Development Support187
Appendix B EVBU Schematic191
AN1060 — M68HC11 Bootstrap Mode193
EB184 — Enabling the Security Feature on the MC68HC711E9 Devices with PCbug11 on the M68HC711E9PGMR229
EB188 — Enabling the Security Feature on M68HC811E2 Devices with PCbug11 on the M68HC711E9PGMR233
EB296 — Programming MC68HC711E9 Devices with PCbug11 and the M68HC11EVBU

Table of Contents

10.15	Expansion Bus Timing Characteristics	168
10.16	MC68L11E9/E20 Expansion Bus Timing Characteristics	169
10.17	Serial Peripheral Interface Timing Characteristics	171
10.18	MC68L11E9/E20 Serial Peirpheral Interface Characteristics	172
10.19	EEPROM Characteristics	175
10.20	MC68L11E9/E20 EEPROM Characteristics	175
10.21	EPROM Characteristics	175

Chapter 11

Ordering Information and Mechanical Specifications

11.1	Introduction
11.2	Standard Device Ordering Information 177
11.3	Custom ROM Device Ordering Information 179
11.4	Extended Voltage Device Ordering Information (3.0 Vdc to 5.5 Vdc) 181
11.5	52-Pin Plastic-Leaded Chip Carrier (Case 778) 182
11.6	52-Pin Windowed Ceramic-Leaded Chip Carrier (Case 778B) 183
11.7	64-Pin Quad Flat Pack (Case 840C) 184
11.8	52-Pin Thin Quad Flat Pack (Case 848D) 185
11.9	56-Pin Dual in-Line Package (Case 859) 186
11.10	48-Pin Plastic DIP (Case 767)

Appendix A Development Support

A.1	Introduction	187
A.2	M68HC11 E-Series Development Tools	187
A.3	EVS — Evaluation System	187
A.4	Modular Development System (MMDS11)	188
A.5	SPGMR11 — Serial Programmer for M68HC11 MCUs	189

Appendix B EVBU Schematic

AN1060 — M68HC11 Bootstrap Mode	193
EB184 — Enabling the Security Feature on the MC68HC711E9 Devices with PCbug11 on the M68HC711E9PGMR	229
EB188 — Enabling the Security Feature on M68HC811E2 Devices with PCbug11 on the M68HC711E9PGMR	233
EB296 — Programming MC68HC711E9 Devices with PCbug11 and the M68HC11EVBU	237

Operating Modes and On-Chip Memory

Addr.	Register Name		Bit 7	6	5	4	3	2	1	Bit 0		
	Analog-to-Digital Results	Read:	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0		
\$1031	Register 1 (ADR1)	Write:										
	See page 64.	Reset:		Indeterminate after reset								
	Analog-to-Digital Results	Read:	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0		
\$1032	Register 2 (ADR2)	Write:										
	See page 64.	Reset:				Indetermina	ate after reset					
	Analog-to-Digital Results	Read:	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0		
\$1033	Register 3 (ADR3)	Write:										
	See page 64.	Reset:				Indetermina	ate after reset					
	Analog-to-Digital Results	Read:	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0		
\$1034	Register 4 (ADR4)	Write:										
	See page 64.	Reset:			-	Indetermina	ate after reset					
	Block Protect Register	Read:				PTCON	BPBT3	BPRT2	BPRT1	BPBT0		
\$1035	(BPROT)	Write:				Troon	Dirito	DITTL	Britti	Billio		
	See page 52.	Reset:	0	0	0	1	1	1	1	1		
	EPROM Programming Control	Read:	MBE		FLAT	EXCOL	EXBOW	T1	то	PGM		
\$1036	Register (EPROG) ⁽¹⁾	Write:				_/						
	See page 53.	Reset:	0	0	0	0	0	0	0	0		
\$1037	Reserved		R	R	R	R	R	R	R	R		
1. MC68	HC711E20 only	1	_	_	-	_		_	-	_		
\$1038	Reserved		R	R	R	R	R	R	R	R		
					1	[[
	System Configuration Options	Read:	ADPU	CSEL	IRQE ⁽¹⁾	DLY ⁽¹⁾	CME		CR1 ⁽¹⁾	CR0 ⁽¹⁾		
\$1039	Register (OPTION)	Write:										
	000 pago 10.	Reset:	0	0	0	1	0	0	0	0		
\$100	Arm/Reset COP Timer Circuitry	Read:	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0		
\$103A	See page 81.	vvrite:	0	0								
	000 px30 0	Reset:	0	0	0	0	0	0	0	0		
#100D	EPROM and EEPROM Program-	Read:	ODD	EVEN	ELAT ⁽²⁾	BYTE	ROW	ERASE	EELAT	EPGM		
\$103B	ming Control Register (PPROG) See page 49.	vvrite:	0	0								
	000 px30 .0.	Reset:	0	0	0	0	0	0	0	0		
\$1000	Highest Priority I Bit Interrupt and	Read:	RBOOT	SMOD	MDA	IRV(NE)	PSEL3	PSEL2	PSEL1	PSEL0		
\$103C	Miscellaneous Register (HPRIO) See page 41.	write:	0	0						0		
	000 pago 11.	Reset:	0	0	0	0	0	1	1	0		
M400	RAM and I/O Mapping Register	Head:	RAM3	RAM2	RAM1	RAM0	REG3	REG2	REG1	REG0		
\$103D	(INLI) See page 45	write:	0	0				0				
	000 page 10.	Heset:	U	U	U	U	U Decemient	U	U	I		
			- ا ماما		react	К	= Heserved	U = Unafi	eciea			
			I = IIIUetel	minale aller	reset							

Figure 2-7. Register and Control Bit Assignments (Sheet 5 of 6)

M68HC11E Family Data Sheet, Rev. 5.1

PGM — EPROM Programming Voltage Enable Bit

PGM can be read any time and can be written only when ELAT = 1.

- 0 = Programming voltage to EPROM array disconnected
- 1 = Programming voltage to EPROM array connected

2.5 EEPROM

Some E-series devices contain 512 bytes of on-chip EEPROM. The MC68HC811E2 contains 2048 bytes of EEPROM with selectable base address. All E-series devices contain the EEPROM-based CONFIG register.

2.5.1 EEPROM and CONFIG Programming and Erasure

The erased state of an EEPROM bit is 1. During a read operation, bit lines are precharged to 1. The floating gate devices of programmed bits conduct and pull the bit lines to 0. Unprogrammed bits remain at the precharged level and are read as ones. Programming a bit to 1 causes no change. Programming a bit to 0 changes the bit so that subsequent reads return 0.

When appropriate bits in the BPROT register are cleared, the PPROG register controls programming and erasing the EEPROM. The PPROG register can be read or written at any time, but logic enforces defined programming and erasing sequences to prevent unintentional changes to EEPROM data. When the EELAT bit in the PPROG register is cleared, the EEPROM can be read as if it were a ROM.

The on-chip charge pump that generates the EEPROM programming voltage from V_{DD} uses MOS capacitors, which are relatively small in value. The efficiency of this charge pump and its drive capability are affected by the level of V_{DD} and the frequency of the driving clock. The load depends on the number of bits being programmed or erased and capacitances in the EEPROM array.

The clock source driving the charge pump is software selectable. When the clock select (CSEL) bit in the OPTION register is 0, the E clock is used; when CSEL is 1, an on-chip resistor-capacitor (RC) oscillator is used.

The EEPROM programming voltage power supply voltage to the EEPROM array is not enabled until there has been a write to PPROG with EELAT set and PGM cleared. This must be followed by a write to a valid EEPROM location or to the CONFIG address, and then a write to PPROG with both the EELAT and EPGM bits set. Any attempt to set both EELAT and EPGM during the same write operation results in neither bit being set.

2.5.1.1 Block Protect Register

This register prevents inadvertent writes to both the CONFIG register and EEPROM. The active bits in this register are initialized to 1 out of reset and can be cleared only during the first 64 E-clock cycles after reset in the normal modes. When these bits are cleared, the associated EEPROM section and the CONFIG register can be programmed or erased. EEPROM is only visible if the EEON bit in the CONFIG register is set. The bits in the BPROT register can be written to 1 at any time to protect EEPROM and the CONFIG register. In test or bootstrap modes, write protection is inhibited and BPROT can be written repeatedly. Address ranges for protected areas of EEPROM differ significantly for the MC68HC811E2. Refer to Figure 2-16.

Operating Modes and On-Chip Memory

Analog-to-Digital (A/D) Converter

Figure 3-1. A/D Converter Block Diagram

* THIS ANALOG SWITCH IS CLOSED ONLY DURING THE 12-CYCLE SAMPLE TIME.

3.2.3 Digital Control

All A/D converter operations are controlled by bits in register ADCTL. In addition to selecting the analog input to be converted, ADCTL bits indicate conversion status and control whether single or continuous conversions are performed. Finally, the ADCTL bits determine whether conversions are performed on single or multiple channels.

3.2.4 Result Registers

Four 8-bit registers ADR[4:1] store conversion results. Each of these registers can be accessed by the processor in the CPU. The conversion complete flag (CCF) indicates when valid data is present in the result registers. The result registers are written during a portion of the system clock cycle when reads do not occur, so there is no conflict.

3.2.5 A/D Converter Clocks

The CSEL bit in the OPTION register selects whether the A/D converter uses the system E clock or an internal RC oscillator for synchronization. When E-clock frequency is below 750 kHz, charge leakage in the capacitor array can cause errors, and the internal oscillator should be used. When the RC clock is used, additional errors can occur because the comparator is sensitive to the additional system clock noise.

3.2.6 Conversion Sequence

A/D converter operations are performed in sequences of four conversions each. A conversion sequence can repeat continuously or stop after one iteration. The conversion complete flag (CCF) is set after the fourth conversion in a sequence to show the availability of data in the result registers. Figure 3-3 shows the timing of a typical sequence. Synchronization is referenced to the system E clock.

Figure 3-3. A/D Conversion Sequence

When this control bit is clear, the four requested conversions are performed once to fill the four result registers. When this control bit is set, conversions are performed continuously with the result registers updated as data becomes available.

MULT — Multiple Channel/Single Channel Control Bit

When this bit is clear, the A/D converter system is configured to perform four consecutive conversions on the single channel specified by the four channel select bits CD:CA (bits [3:0] of the ADCTL register). When this bit is set, the A/D system is configured to perform a conversion on each of four channels where each result register corresponds to one channel.

NOTE

When the multiple-channel continuous scan mode is used, extra care is needed in the design of circuitry driving the A/D inputs. The charge on the capacitive DAC array before the sample time is related to the voltage on the previously converted channel. A charge share situation exists between the internal DAC capacitance and the external circuit capacitance. Although the amount of charge involved is small, the rate at which it is repeated is every 64 μ s for an E clock of 2 MHz. The RC charging rate of the external circuit must be balanced against this charge sharing effect to avoid errors in accuracy. Refer to M68HC11 Reference Manual, Freescale document order number M68HC11RM/AD, for further information.

CD:CA — Channel Selects D:A Bits

Refer to Table 3-2. When a multiple channel mode is selected (MULT = 1), the two least significant channel select bits (CB and CA) have no meaning and the CD and CC bits specify which group of four channels is to be converted.

Channel Select Control Bits	Channel Signal	Result in ADRx if MULT = 1
CD:CC:CB:CA		
0000	AN0	ADR1
0001	AN1	ADR2
0010	AN2	ADR3
0011	AN3	ADR4
0100	AN4	ADR1
0101	AN5	ADR2
0110	AN6	ADR3
0111	AN7	ADR4
10XX	Reserved	—
1100	V _{RH} ⁽¹⁾	ADR1
1101	V _{RL} ⁽¹⁾	ADR2
1110	(V _{RH})/2 ⁽¹⁾	ADR3
1111	Reserved ⁽¹⁾	ADR4

Table 3-2. A/D Converter Channel Selection

1. Used for factory testing

Central Processor Unit (CPU)

4.2.1 Accumulators A, B, and D

Accumulators A and B are general-purpose 8-bit registers that hold operands and results of arithmetic calculations or data manipulations. For some instructions, these two accumulators are treated as a single double-byte (16-bit) accumulator called accumulator D. Although most instructions can use accumulators A or B interchangeably, these exceptions apply:

- The ABX and ABY instructions add the contents of 8-bit accumulator B to the contents of 16-bit register X or Y, but there are no equivalent instructions that use A instead of B.
- The TAP and TPA instructions transfer data from accumulator A to the condition code register or from the condition code register to accumulator A. However, there are no equivalent instructions that use B rather than A.
- The decimal adjust accumulator A (DAA) instruction is used after binary-coded decimal (BCD) arithmetic operations, but there is no equivalent BCD instruction to adjust accumulator B.
- The add, subtract, and compare instructions associated with both A and B (ABA, SBA, and CBA) only operate in one direction, making it important to plan ahead to ensure that the correct operand is in the correct accumulator.

4.2.2 Index Register X (IX)

The IX register provides a 16-bit indexing value that can be added to the 8-bit offset provided in an instruction to create an effective address. The IX register can also be used as a counter or as a temporary storage register.

4.2.3 Index Register Y (IY)

The 16-bit IY register performs an indexed mode function similar to that of the IX register. However, most instructions using the IY register require an extra byte of machine code and an extra cycle of execution time because of the way the opcode map is implemented. Refer to 4.4 Opcodes and Operands for further information.

4.2.4 Stack Pointer (SP)

The M68HC11 CPU has an automatic program stack. This stack can be located anywhere in the address space and can be any size up to the amount of memory available in the system. Normally, the SP is initialized by one of the first instructions in an application program. The stack is configured as a data structure that grows downward from high memory to low memory. Each time a new byte is pushed onto the stack, the SP is decremented. Each time a byte is pulled from the stack, the SP is incremented. At any given time, the SP holds the 16-bit address of the next free location in the stack. Figure 4-2 is a summary of SP operations.

When a subroutine is called by a jump-to-subroutine (JSR) or branch-to- subroutine (BSR) instruction, the address of the instruction after the JSR or BSR is automatically pushed onto the stack, least significant byte first. When the subroutine is finished, a return-from-subroutine (RTS) instruction is executed. The RTS pulls the previously stacked return address from the stack and loads it into the program counter. Execution then continues at this recovered return address.

When an interrupt is recognized, the current instruction finishes normally, the return address (the current value in the program counter) is pushed onto the stack, all of the CPU registers are pushed onto the stack, and execution continues at the address specified by the vector for the interrupt.

-

Instruction Set

		D	Addressing	lı lı	Instruction Condition		Conditio		Condition Codes					
Minemonic	Operation	Description	Mode	Opcode	Operand	Cycles	S	Х	Н	I	Ν	Z	V	С
BGT (rel)	Branch if > Zero	? Z + (N ⊕ V) = 0	REL	2E	rr	3	—	—	_	—	—	_	-	_
BHI (rel)	Branch if Higher	? C + Z = 0	REL	22	rr	3	_	-	—	_		_	_	
BHS (rel)	Branch if Higher or Same	? C = 0	REL	24	rr	3	—	_	_	_	-	_	_	_
BITA (opr)	Bit(s) Test A	A • M	A IMM	85	ii	2	—	—	—	—	Δ	Δ	0	_
	with Memory		A DIR	95	dd	3								
				85	hh II ff	4								l
			A IND,X	18 A5	ff	5								
BITB (opr)	Bit(s) Test B	B • M	B IMM	C5	ii	2	_	_	_	_	Δ	Δ	0	
2.1.2 (op.)	with Memory	5	B DIR	D5	dd	3					-	-	Ũ	
			B EXT	F5	hh ll	4								l
			B IND,X	E5	ff	4								
			B IND,Y	18 E5	ff	5								
BLE (rel)	Branch if Δ Zero	? Z + (N ⊕ V) = 1	REL	2F	rr	3	—	—	—	—	—	—		_
BLO (rel)	Branch if Lower	? C = 1	REL	25	rr	3	—	—	—	—	—	—	_	_
BLS (rel)	Branch if Lower or Same	? C + Z = 1	REL	23	rr	3	—	-	_	—	—	—	_	_
BLT (rel)	Branch if < Zero	? N ⊕ V = 1	REL	2D	rr	3	—	—	—	—	—	—	—	—
BMI (rel)	Branch if Minus	? N = 1	REL	2B	rr	3	—	—	—	—	—	—	_	_
BNE (rel)	Branch if not =	? Z = 0	REL	26	rr	3	-	_	_	_	—	_	_	_
	Zero													
BPL (rel)	Branch if Plus	? N = 0	REL	2A	rr	3	—	—	—	—	—	—	_	—
BRA (rel)	Branch Always	? 1 = 1	REL	20	rr	3	—	—	—	—	—	—	—	—
BRCLR(opr)	Branch if	? M • mm = 0	DIR	13	dd mm	6	—	—	—	—	—	—	—	—
(msk)	Bit(s) Clear		IND,X	1F	rr	7								
(rei)			IND, Y	18 1F	ff mm	8								
					ff mm									
					rr									
BRN (rel)	Branch Never	? 1 = 0	REL	21	rr	3	—	_	_	_	_	_	_	_
BRSET(opr)	Branch if Bit(s)	? (M) • mm = 0	DIR	12	dd mm	6	_	_	_	_	_	_		_
(msk)	Set		IND,X	1E	rr	7								
(rel)			IND,Y	18 1E	ff mm	8								
					rr									
					rr									
BSET (opr)	Set Bit(s)	M + mm → M	DIR	14	dd mm	6	_	_	_	_	Δ	Δ	0	
(msk)	OCT DI((3)		IND.X	10	ff mm	7							U	
(- /			IND,Y	18 1C	ff mm	8								
BSR (rel)	Branch to	See Figure 3–2	REL	8D	rr	6	_	_	_	_	_	_		_
	Subroutine	-												
BVC (rel)	Branch if Overflow Clear	? V = 0	REL	28	rr	3	—	_	—	—	-	—	_	—
BVS (rel)	Branch if Overflow Set	? V = 1	REL	29	rr	3	—	—	_	_	-	_	_	_
CBA	Compare A to B	A – B	INH	11	_	2	—	_	_	—	Δ	Δ	Δ	Δ
CLC	Clear Carry Bit	$0 \Rightarrow C$	INH	0C	_	2	—	_	_	_	—	_	_	0
CLI	Clear Interrupt Mask	$0 \Rightarrow I$	INH	0E	-	2	_	-	_	0	—	_	_	_
CLR (opr)	Clear Memory	$0 \Rightarrow M$	EXT	7F	hh ll	6	—	_	_	—	0	1	0	0
	Byte		IND,X	6F	ff	6								
			IND,Y	18 6F	ff	7								
CLRA	Clear Accumulator A	$0 \Rightarrow A$	A INH	4F	—	2	—	_	_	—	0	1	0	0
CLRB	Clear Accumulator B	$0 \Rightarrow B$	B INH	5F		2		_	_	_	0	1	0	0
CLV	Clear Overflow Flag	$0 \Rightarrow V$	INH	0A	_	2	—	_	_	_	-	_	0	_
CMPA (opr)	Compare A to	A – M	A IMM	81	ii	2	_	_	_	_	Δ	Δ	Δ	Δ
	Memory		A DIR	91	dd	3								
				ы В1	nn 11 ff	4								
			A IND,Y	18 A1	ff	5								

Parallel Input/Output (I/O) Ports

PORTCL is used in the handshake clearing mechanism. When an active edge occurs on the STRA pin, port C data is latched into the PORTCL register. Reads of this register return the last value latched into PORTCL and clear STAF flag (following a read of PIOC with STAF set).

Figure 6-6. Port C Data Direction Register (DDRC)

DDRC[7:0] — Port C Data Direction Bits

In the 3-state variation of output handshake mode, clear the corresponding DDRC bits. Refer to Figure 10-13. 3-State Variation of Output Handshake Timing Diagram (STRA Enables Output Buffer).

- 0 = Input
- 1 = Output

6.5 Port D

In all modes, port D bits [5:0] can be used either for general-purpose I/O or with the serial communications interface (SCI) and serial peripheral interface (SPI) subsystems. During reset, port D pins PD[5:0] are configured as high-impedance inputs (DDRD bits cleared).

Figure 6-7. Port D Data Register (PORTD)

Bits [7:6] — Unimplemented

Always read 0

DDRD[5:0] — Port D Data Direction Bits

When DDRD bit 5 is 1 and MSTR = 1 in SPCR, PD5/ \overline{SS} is a general-purpose output and mode fault logic is disabled.

0 = Input

1 = Output

Chapter 8 Serial Peripheral Interface (SPI)

8.1 Introduction

The serial peripheral interface (SPI), an independent serial communications subsystem, allows the MCU to communicate synchronously with peripheral devices, such as:

- Frequency synthesizers
- Liquid crystal display (LCD) drivers
- Analog-to-digital (A/D) converter subsystems
- Other microprocessors

The SPI is also capable of inter-processor communication in a multiple master system. The SPI system can be configured as either a master or a slave device. When configured as a master, data transfer rates can be as high as one-half the E-clock rate (1.5 Mbits per second for a 3-MHz bus frequency). When configured as a slave, data transfers can be as fast as the E-clock rate (3 Mbits per second for a 3-MHz bus frequency).

8.2 Functional Description

The central element in the SPI system is the block containing the shift register and the read data buffer. The system is single buffered in the transmit direction and double buffered in the receive direction. This means that new data for transmission cannot be written to the shifter until the previous transfer is complete; however, received data is transferred into a parallel read data buffer so the shifter is free to accept a second serial character. As long as the first character is read out of the read data buffer before the next serial character is ready to be transferred, no overrun condition occurs. A single MCU register address is used for reading data from the read data buffer and for writing data to the shifter.

The SPI status block represents the SPI status functions (transfer complete, write collision, and mode fault) performed by the serial peripheral status register (SPSR). The SPI control block represents those functions that control the SPI system through the serial peripheral control register (SPCR).

Refer to Figure 8-1, which shows the SPI block diagram.

8.3 SPI Transfer Formats

During an SPI transfer, data is simultaneously transmitted and received. A serial clock line synchronizes shifting and sampling of the information on the two serial data lines. A slave select line allows individual selection of a slave SPI device; slave devices that are not selected do not interfere with SPI bus activities. On a master SPI device, the select line can optionally be used to indicate a multiple master bus contention. Refer to Figure 8-2.

Timing Systems

10.10 MC68L11E9/E20 Control Timing

Characteristic(1) (2)		1.0	MHz	2.0	llmit		
Characteristic	Symbol	Min	Max	Min	Max	Unit	
Frequency of operation	f _o	dc	1.0	dc	2.0	MHz	
E-clock period	t _{CYC}	1000	—	500	—	ns	
Crystal frequency	f _{XTAL}	—	4.0		8.0	MHz	
External oscillator frequency	4 f _o	dc	4.0	dc	8.0	MHz	
Processor control setup time $t_{PCSU} = 1/4 t_{CYC} + 75 ns$	t _{PCSU}	325	_	200	_	ns	
Reset input pulse width To guarantee external reset vector Minimum input time (can be pre-empted by internal reset)	PW _{RSTL}	8 1	_	8 1	_	t _{CYC}	
Mode programming setup time	t _{MPS}	2	_	2	—	t _{CYC}	
Mode programming hold time	t _{MPH}	10	_	10		ns	
Interrupt pulse width, \overline{IRQ} edge-sensitive mode PW _{IRQ} = t _{CYC} + 20 ns	PW _{IRQ}	1020	_	520	_	ns	
Wait recovery startup time	t _{WRS}	—	4		4	t _{CYC}	
Timer pulse width input capture pulse accumulator input $PW_{TIM} = t_{CYC} + 20 \text{ ns}$	PW _{TIM}	1020	_	520	_	ns	

1. V_{DD} = 3.0 Vdc to 5.5 Vdc, V_{SS} = 0 Vdc, T_A = T_L to T_H, all timing is shown with respect to 20% V_{DD} and 70% V_{DD}, unless otherwise noted

2. RESET is recognized during the first clock cycle it is held low. Internal circuitry then drives the pin low for four clock cycles, releases the pin, and samples the pin level two cycles later to determine the source of the interrupt. Refer to Chapter 5 Resets and Interrupts for further detail.

Notes:

- 1. Rising edge sensitive input
- 2. Falling edge sensitive input
- 3. Maximum pulse accumulator clocking rate is E-clock frequency divided by 2.

Figure 10-2. Timer Inputs

Electrical Characteristics

Note: RESET also causes recovery from WAIT.

Figure 10-5. WAIT Recovery from Interrupt Timing Diagram

160

Electrical Characteristics

10.15 Expansion Bus Timing Characteristics

Num	Characteristic(1)	Symbol	1.0 MHz		2.0 MHz		3.0 MHz		Unit
Num	Characteristic	Symbol	Min	Max	Min	Max	Min	Max	Unit
	Frequency of operation (E-clock frequency)	f _o	dc	1.0	dc	2.0	dc	3.0	MHz
1	Cycle time	t _{CYC}	1000	—	500	—	333	-	ns
2	Pulse width, E low ⁽²⁾ , PW _{EL} = 1/2 t_{CYC} -23 ns	PW _{EL}	477	—	227	_	146		ns
3	Pulse width, E high ⁽²⁾ , PW _{EH} = $1/2 t_{CYC}$ -28 ns	PW _{EH}	472	_	222	_	141	_	ns
4a	E and AS rise time	t _r	_	20	—	20		20	ns
4b	E and AS fall time	t _f	—	20	—	20	—	15	ns
9	Address hold time ^{(2) (3)a} , $t_{AH} = 1/8 t_{CYC}$ –29.5 ns	t _{AH}	95.5	_	33	_	26	_	ns
12	Non-multiplexed address valid time to E rise $t_{AV} = PW_{EL} - (t_{ASD} + 80 \text{ ns})^{(2)} {}^{(3)a}$	t _{AV}	281.5	_	94	_	54	_	ns
17	Read data setup time	t _{DSR}	30	—	30	—	30	_	ns
18	Read data hold time, max = t _{MAD}	t _{DHR}	0	145.5	0	83	0	51	ns
19	Write data delay time, $t_{DDW} = 1/8 t_{CYC} + 65.5 ns^{(2)} s^{(3)a}$	t _{DDW}	—	190.5	—	128		71	ns
21	Write data hold time, $t_{DHW} = 1/8 t_{CYC} - 29.5 \text{ ns}^{(2)} (^{3)a}$	t _{DHW}	95.5	_	33	_	26	_	ns
22	Multiplexed address valid time to E rise $t_{AVM} = PW_{EL} - (t_{ASD} + 90 \text{ ns})^{(2)} {}^{(3)a}$	t _{AVM}	271.5	_	84	_	54	_	ns
24	Multiplexed address valid time to AS fall $t_{ASL} = PW_{ASH} -70 \text{ ns}^{(2)}$	t _{ASL}	151	_	26	_	13		ns
25	Multiplexed address hold time $t_{AHL} = 1/8 t_{CYC}-29.5 \text{ ns}^{(2)} {}^{(3)b}$	t _{AHL}	95.5	_	33	_	31	_	ns
26	Delay time, E to AS rise, $t_{ASD} = 1/8 t_{CYC} - 9.5 \text{ ns}^{(2)}$ (3)a	t _{ASD}	115.5	_	53	—	31	_	ns
27	Pulse width, AS high, $PW_{ASH} = 1/4 t_{CYC} - 29 ns^{(2)}$	PW _{ASH}	221	_	96	—	63	_	ns
28	Delay time, AS to E rise, $t_{ASED} = 1/8 t_{CYC}$ –9.5 ns ^{(2) (3)b}	t _{ASED}	115.5	_	53	—	31	_	ns
29	MPU address access time ^{(3)a} $t_{ACCA} = t_{CYC} - (PW_{EL} - t_{AVM}) - t_{DSR} - t_{f}$	t _{ACCA}	744.5	_	307	_	196		ns
35	MPU access time, $t_{ACCE} = PW_{EH} - t_{DSR}$	t _{ACCE}	_	442	—	192		111	ns
36	Multiplexed address delay (Previous cycle MPU read) $t_{MAD} = t_{ASD} + 30 \text{ ns}^{(2)} \text{ (3)a}$	t _{MAD}	145.5	_	83	_	51	_	ns

1. V_{DD} = 5.0 Vdc ±10%, V_{SS} = 0 Vdc, T_A = T_L to T_H , all timing is shown with respect to 20% V_{DD} and 70% V_{DD} , unless otherwise noted

2. Formula only for dc to 2 MHz

3. Input clocks with duty cycles other than 50% affect bus performance. Timing parameters affected by input clock duty cycle are identified by (a) and (b). To recalculate the approximate bus timing values, substitute the following expressions in place of 1/8 t_{CYC} in the above formulas, where applicable: (a) (1–dc) \times 1/4 t_{CYC}

(b) dc \times 1/4 t_{CYC}

Where:

dc is the decimal value of duty cycle percentage (high time)

Listing 3. MC68HC711E9 Bootloader ROM

1		*******	*****	******	******	* * * * * * * * * * * * * * * * * * * *
2		* BOOTLO	ADER F	IRMWARE F	OR 68HC	711E9 - 21 Aug 89
3		* * * * * * * * *	* * * * * *	******	******	******
4		* Feature	es of	this boot	loader a	are
5		*				
6		* Auto b	aud se	lect betw	veen 781;	2 5 and 1200 (8 MHz)
7		* 0 = 51	2 hvte	variable	length	download
, 0		$*$ J_{1}	s prepo	OM of CD6	ing if 1	advinioad byto - \$00
0				ility aub	routino	to program EDBOM
10		* INDIOAD	- 00 + - 10	lity Suc		to program EFROM
11		* Magle T		LILY SUDI		to dump memory to nost
10		* Mask I	.D. al	. 98604 =	・ キャネネネネネネ ウ \ T E A	• • • • • • • • • • • • • • • • • • •
12		* D	7			~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~
13		* REVISIO	511 A -			
14		*				
15		* Fixed J	oug in	PROGRAM	routine	where the first byte
16		* program	nmed 1	nto the E	PROM was	s not transmitted for
17		* verify	•			
18		* Also a	dded t	O PROGRAM	I routine	e a skip of bytes
19		* which w	were a	lready pr	rogramme	d to the value desired.
20		*				
21		* This ne	ew ver	sion allc	ws varia	able length download
22		* by quit	tting	reception	of char	racters when an idle
23		* of at 1	least	four char	acter t	imes occurs
24		*				
25		* * * * * * * * *	* * * * * *	******	******	* * * * * * * * * * * * * * * * * * * *
26						
27		* EQUATE:	S FOR	USE WITH	INDEX O	FFSET = \$1000
28		*				
29	0008	PORTD	EQU	\$08		
30	000E	TCNT	EQU	\$0E		
31	0016	TOC1	EOU	\$16		
32	0023	TFLG1	EOU	\$23		
33		* BIT EO	JATES	FOR TFLG1		
34	0080	OC1F	EOU	\$80		
35		*	-20	400		
36	0028	SPCR	EOU	\$28		(FOR DWOM BIT)
37	002B	BAIID	EOII	\$2B		(1011 2001 211)
3 Q	0020	SCCR2	EQU FOII	\$2D		
30	0025	SCCR	EQU EOII	੍ਰੋ <u>ਟ</u> ਵਿ੨ਸ		
10	0025	SCOR	EQU	925 ¢97		
40	002F	DDDOC	EQU	γ∠r ¢op		
41	0036	+ DIT FOI				
42	0000	~ BII EQU	JAIES	FOR PPROG	1	
43	0020	ELAT	EQU	Ş∠U #21		
44	0001	EPGM	EQU	ŞUI		
45		~				
46			a			
47		* MEMORY	CONFI	GURATION	EQUATES	
48		*				
49	B600	EEPMSTR	EQU	\$B600		Start of EEPROM
50	B7FF	EEPMEND	EQU	\$B7FF		End of EEPROM
51		*				

M68HC11 Bootstrap Mode, Rev. 1.1


```
Listing 3. MC68HC711E9 Bootloader ROM
```

52 D000 EPRMSTR EQU \$D000 Start of EPROM 53 FFFF EPRMEND EQU \$FFFF End of EPROM 54 * 55 0000 RAMSTR EQU \$0000 56 01FF EQU \$01FF RAMEND 57 58 * DELAY CONSTANTS 59 * 60 0DB0 DELAYS EQU 3504 Delay at slow baud 61 021B DELAYF EOU 539 Delay at fast baud 62 2 ms programming delay 63 1068 PROGDEL EQU 4200 64 At 2.1 MHz 65 66 67 BF00 ORG \$BF00 68 69 * Next two instructions provide a predictable place 70 * to call PROGRAM and UPLOAD even if the routines 71 72 * change size in future versions. 73 74 BF00 7EBF13 EPROM programming utility PROGRAM JMP PRGROUT 75 BF03 UPLOAD EQU Upload utility * 76 77 * UPLOAD - Utility subroutine to send data from 78 79 * inside the MCU to the host via the SCI interface. * Prior to calling UPLOAD set baud rate, turn on SCI 80 81 * and set Y=first address to upload. 82 * Bootloader leaves baud set, SCI enabled, and 83 * Y pointing at EPROM start (\$D000) so these default 84 * values do not have to be changed typically. 85 * Consecutive locations are sent via SCI in an * infinite loop. Reset stops the upload process. 86 87 Point to internal registers 88 BF03 CE1000 #\$1000 LDX 89 BF06 18A600 UPLOOP LDAA Ο,Υ Read byte Wait for TDRE 90 BF09 1F2E80FC BRCLR SCSR,X \$80 * 91 BF0D A72F Send it STAA SCDAT,X 92 BF0F 1808 INY 93 BF11 20F3 BRA UPLOOP Next... 94 95 96 * PROGRAM - Utility subroutine to program EPROM. * Prior to calling PROGRAM set baud rate, turn on SCI 97 98 * set X=2ms prog delay constant, and set Y=first 99 * address to program. SP must point to RAM. * Bootloader leaves baud set, SCI enabled, X=4200 100 * and Y pointing at EPROM start (\$D000) so these 101 * default values don't have to be changed typically. 102 103 * Delay constant in X should be equivalent to 2 ms at 2.1 MHz X=4200; at 1 MHz X=2000. 104 * * An external voltage source is required for EPROM 105 106 * programming.

M68HC11 Bootstrap Mode, Rev. 1.1

NEWONE	BF9B	*00196	00189						
NOTZERO	BF7E	*00176	00174						
OC1F	0080	*00034	00136	00139					
PORTD	0008	*00029	00168						
PPROG	003B	*00041	00126	00129	00140				
PRGROUT	BF13	*00110	00074						
PROGDEL	1068	*00063	00205						
PROGRAM	BF00	*00074							
RAMEND	01FF	*00056	00156	00201					
RAMSTR	0000	*00055	00184	00207					
SCCR2	002D	*00038	00162	00167	00169				
SCDAT	002F	*00040	00091	00118	00122	00145	00172	00197	00199
SCSR	002E	*00039	00090	00116	00121	00143	00171	00189	
SPCR	0028	*00036	00158						
STAR	BFAA	*00204	00194						
TCNT	000E	*00030	00134						
TFLG1	0023	*00032	00137	00139					
TOC1	0016	*00031	00135	00164	00182	00187			
UPLOAD	BF03	*00075							
UPLOOP	BF06	*00089	00093						
WAIT	BF8E	*00186	00202						
WAIT1	BF1F	*00120	00147						
WTLOOP	BF90	*00188	00193						
Labels: 35									
Last Program Address: \$BFFF									
Last Storage Address: \$0000									

0

Program Bytes: \$0100 256 Storage Bytes: \$0000

