
NXP USA Inc. - MC68HC11E1CFNE2R Datasheet

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated
circuits designed to perform specific tasks within larger
systems. These microcontrollers are essentially compact
computers on a single chip, containing a processor core,
memory, and programmable input/output peripherals.
They are called "embedded" because they are embedded
within electronic devices to control various functions,
rather than serving as standalone computers.
Microcontrollers are crucial in modern electronics,
providing the intelligence and control needed for a wide
range of applications.

Applications of "Embedded -
Microcontrollers"

Embedded microcontrollers are used in virtually every
sector of electronics, providing the necessary control and
processing power for a multitude of applications. In
consumer electronics, they manage the operations of
smartphones, home appliances, and wearable devices. In
automotive systems, microcontrollers control engine
functions, safety features, and infotainment systems.
Industrial applications rely on microcontrollers for
automation, robotics, and process control. Additionally,
microcontrollers are integral in medical devices, handling
functions such as monitoring, diagnostics, and control of
therapeutic equipment. Their versatility and
programmability make them essential components in
creating efficient, responsive, and intelligent electronic
systems.

Common Subcategories of "Embedded -
Microcontrollers"

Embedded microcontrollers can be categorized based on
their architecture, performance, and application focus.
Common subcategories include 8-bit, 16-bit, and 32-bit
microcontrollers, differentiated by their processing power
and memory capacity. 8-bit microcontrollers are typically
used in simple applications like basic control systems and
small devices. 16-bit microcontrollers offer a balance
between performance and complexity, suitable for
medium-scale applications like industrial automation. 32-
bit microcontrollers provide high performance and are
used in complex applications requiring advanced
processing, such as automotive systems and sophisticated
consumer electronics. Each subcategory serves a specific
range of applications, providing tailored solutions for
different performance and complexity needs.

Types of "Embedded - Microcontrollers"

There are various types of embedded microcontrollers,
each designed to meet specific application requirements.
General-purpose microcontrollers are versatile and used in
a wide range of applications, offering a balance of
performance, memory, and peripheral options. Special-
purpose microcontrollers are tailored for specific tasks,
such as automotive controllers, which include features like
built-in motor control peripherals and automotive-grade

Details

Product Status Obsolete

Core Processor HC11

Core Size 8-Bit

Speed 3MHz

Connectivity SCI, SPI

Peripherals POR, WDT

Number of I/O 38

Program Memory Size -

Program Memory Type ROMless

EEPROM Size 512 x 8

RAM Size 512 x 8

Voltage - Supply (Vcc/Vdd) 4.5V ~ 5.5V

Data Converters A/D 8x8b

Oscillator Type Internal

Operating Temperature -40°C ~ 85°C (TA)

Mounting Type Surface Mount

Package / Case 52-LCC (J-Lead)

Supplier Device Package 52-PLCC (19.1x19.1)

Purchase URL https://www.e-xfl.com/product-detail/nxp-semiconductors/mc68hc11e1cfne2r

Email: info@E-XFL.COM Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

https://www.e-xfl.com/product/pdf/mc68hc11e1cfne2r-4448559
https://www.e-xfl.com
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers

Operating Modes and On-Chip Memory
Figure 2-8. RAM Standby MODB/VSTBY Connections

The bootloader program is contained in the internal bootstrap ROM. This ROM, which appears as internal
memory space at locations $BF00–$BFFF, is enabled only if the MCU is reset in special bootstrap mode.

In expanded modes, the ROM/EPROM/OTPROM (if present) is enabled out of reset and located at the
top of the memory map if the ROMON bit in the CONFIG register is set. ROM or EPROM is enabled out
of reset in single-chip and bootstrap modes, regardless of the state of ROMON.

For devices with 512 bytes of EEPROM, the EEPROM is located at $B600–$B7FF and has the same read
cycle time as the internal ROM. The 512 bytes of EEPROM cannot be remapped to other locations.

For the MC68HC811E2, EEPROM is located at $F800–$FFFF and can be remapped to any 4-Kbyte
boundary. EEPROM mapping control bits (EE[3:0] in CONFIG) determine the location of the 2048 bytes
of EEPROM and are present only on the MC68HC811E2. Refer to 2.3.3.1 System Configuration Register
for a description of the MC68HC811E2 CONFIG register.

EEPROM can be programmed or erased by software and an on-chip charge pump, allowing EEPROM
changes using the single VDD supply.

2.3.2 Mode Selection

The four mode variations are selected by the logic states of the MODA and MODB pins during reset. The
MODA and MODB logic levels determine the logic state of SMOD and the MDA control bits in the highest
priority I-bit interrupt and miscellaneous (HPRIO) register.

After reset is released, the mode select pins no longer influence the MCU operating mode. In single-chip
operating mode, the MODA pin is connected to a logic level 0. In expanded mode, MODA is normally
connected to VDD through a pullup resistor of 4.7 kΩ. The MODA pin also functions as the load instruction
register LIR pin when the MCU is not in reset. The open-drain active low LIR output pin drives low during
the first E cycle of each instruction. The MODB pin also functions as standby power input (VSTBY), which
allows RAM contents to be maintained in absence of VDD.

Refer to Table 2-1, which is a summary of mode pin operation, the mode control bits, and the four
operating modes.

4.7 k

MAX
690

VBATT

+
4.8-V
NiCd

VDD

VDD

VOUT
TO MODB/VSTBY
OF M68HC11
M68HC11E Family Data Sheet, Rev. 5.1

40 Freescale Semiconductor

Memory Map
NOSEC — Security Disable Bit
NOSEC is invalid unless the security mask option is specified before the MCU is manufactured. If the
security mask option is omitted NOSEC always reads 1. The enhanced security feature is available in
the MC68S711E9 MCU. The enhancement to the standard security feature protects the EPROM as
well as RAM and EEPROM.

0 = Security enabled
1 = Security disabled

NOCOP — COP System Disable Bit
Refer to Chapter 5 Resets and Interrupts.

1 = COP disabled
0 = COP enabled

ROMON — ROM/EPROM/OTPROM Enable Bit
When this bit is 0, the ROM or EPROM is disabled and that memory space becomes externally
addressed. In single-chip mode, ROMON is forced to 1 to enable ROM/EPROM regardless of the state
of the ROMON bit.

0 = ROM disabled from the memory map
1 = ROM present in the memory map

EEON — EEPROM Enable Bit
When this bit is 0, the EEPROM is disabled and that memory space becomes externally addressed.

0 = EEPROM removed from the memory map
1 = EEPROM present in the memory map

2.3.3.2 RAM and I/O Mapping Register

The internal registers used to control the operation of the MCU can be relocated on 4-Kbyte boundaries
within the memory space with the use of the RAM and I/O mapping register (INIT). This 8-bit
special-purpose register can change the default locations of the RAM and control registers within the
MCU memory map. It can be written only once within the first 64 E-clock cycles after a reset in normal
modes, and then it becomes a read-only register.

RAM[3:0] — RAM Map Position Bits
These four bits, which specify the upper hexadecimal digit of the RAM address, control position of RAM
in the memory map. RAM can be positioned at the beginning of any 4-Kbyte page in the memory map.
It is initialized to address $0000 out of reset. Refer to Table 2-4.

REG[3:0] — 64-Byte Register Block Position
These four bits specify the upper hexadecimal digit of the address for the 64-byte block of internal
registers. The register block, positioned at the beginning of any 4-Kbyte page in the memory map, is
initialized to address $1000 out of reset. Refer to Table 2-5.

Address: $103D

Bit 7 6 5 4 3 2 1 Bit 0

Read:
RAM3 RAM2 RAM1 RAM0 REG3 REG2 REG1 REG0

Write:

Reset: 0 0 0 0 0 0 0 1

Figure 2-12. RAM and I/O Mapping Register (INIT)
M68HC11E Family Data Sheet, Rev. 5.1

Freescale Semiconductor 45

Operating Modes and On-Chip Memory
MBE — Multiple-Byte Programming Enable Bit
When multiple-byte programming is enabled, address bit 5 is considered a don’t care so that bytes with
address bit 5 = 0 and address bit 5 = 1 both get programmed. MBE can be read in any mode and
always reads 0 in normal modes. MBE can be written only in special modes.

0 = EPROM array configured for normal programming
1 = Program two bytes with the same data

Bit 6 — Unimplemented
Always reads 0

ELAT — EPROM/OTPROM Latch Control Bit
When ELAT = 1, writes to EPROM cause address and data to be latched and the EPROM/OTPROM
cannot be read. ELAT can be read any time. ELAT can be written any time except when PGM = 1; then
the write to ELAT is disabled.

0 = EPROM/OTPROM address and data bus configured for normal reads
1 = EPROM/OTPROM address and data bus configured for programming

EXCOL — Select Extra Columns Bit
0 = User array selected
1 = User array is disabled and extra columns are accessed at bits [7:0]. Addresses use bits [13:5]

and bits [4:0] are don’t care. EXCOL can be read and written only in special modes and always
returns 0 in normal modes.

EXROW — Select Extra Rows Bit
0 = User array selected
1 = User array is disabled and two extra rows are available. Addresses use bits [7:0] and bits [13:8]

are don’t care. EXROW can be read and written only in special modes and always returns 0 in
normal modes.

T[1:0] — EPROM Test Mode Select Bits
These bits allow selection of either gate stress or drain stress test modes. They can be read and written
only in special modes and always read 0 in normal modes.

Address: $1036

Bit 7 6 5 4 3 2 1 Bit 0

Read:
MBE ELAT EXCOL EXROW T1 T0 PGM

Write:

Reset: 0 0 0 0 0 0 0 0

= Unimplemented

Figure 2-15. MC68HC711E20 EPROM Programming
Control Register (EPROG)

T1 T0 Function Selected

0 0 Normal mode

0 1 Reserved

1 0 Gate stress

1 1 Drain stress
M68HC11E Family Data Sheet, Rev. 5.1

50 Freescale Semiconductor

Analog-to-Digital (A/D) Converter
Figure 3-1. A/D Converter Block Diagram

Figure 3-2. Electrical Model of an A/D Input Pin (Sample Mode)

8-BIT CAPACITIVE DAC
WITH SAMPLE AND HOLD

SUCCESSIVE APPROXIMATION
REGISTER AND CONTROL

RESULT

PE0
AN0

PE1
AN1

PE2
AN2

PE3
AN3

PE4
AN4

PE5
AN5

PE6
AN6

PE7
AN7

ANALOG
MUX

VRH

VRl

ADCTL A/D CONTROL

C
C

F

SC
AN

M
U

LT
C

D
C

C
C

B
C

A

INTERNAL
DATA BUS

ADR1 A/D RESULT 1 ADR2 A/D RESULT 2 ADR3 A/D RESULT 3 ADR4 A/D RESULT 4

RESULT REGISTER INTERFACE

DIFFUSION/POLY

< 2 pF

COUPLER

400 nA
JUNCTION
LEAKAGE

+ ~20 V
– ~0.7 V

*

* THIS ANALOG SWITCH IS CLOSED ONLY DURING THE 12-CYCLE SAMPLE TIME.

VRL

INPUT

+ ~12V
– ~0.7V

PROTECTION
DEVICE

ð 4 kΩ

DUMMY N-CHANNEL
OUTPUT DEVICE

ANALOG
INPUT

PIN

~ 20 pF
DAC

CAPACITANCE
M68HC11E Family Data Sheet, Rev. 5.1

58 Freescale Semiconductor

Interrupts
end of the interrupt service routine, the return-from-interrupt instruction is executed and the saved
registers are pulled from the stack in reverse order so that normal program execution can resume. Refer
to Chapter 4 Central Processor Unit (CPU).

5.5.2 Non-Maskable Interrupt Request (XIRQ)

Non-maskable interrupts are useful because they can always interrupt CPU operations. The most
common use for such an interrupt is for serious system problems, such as program runaway or power
failure. The XIRQ input is an updated version of the NMI (non-maskable interrupt) input of earlier MCUs.

Upon reset, both the X bit and I bit of the CCR are set to inhibit all maskable interrupts and XIRQ. After
minimum system initialization, software can clear the X bit by a TAP instruction, enabling XIRQ interrupts.
Thereafter, software cannot set the X bit. Thus, an XIRQ interrupt is a non-maskable interrupt. Because
the operation of the I-bit-related interrupt structure has no effect on the X bit, the internal XIRQ pin remains
unmasked. In the interrupt priority logic, the XIRQ interrupt has a higher priority than any source that is
maskable by the I bit. All I-bit-related interrupts operate normally with their own priority relationship.

When an I-bit-related interrupt occurs, the I bit is automatically set by hardware after stacking the CCR
byte. The X bit is not affected. When an X-bit-related interrupt occurs, both the X and I bits are
automatically set by hardware after stacking the CCR. A return-from-interrupt instruction restores the X
and I bits to their pre-interrupt request state.

5.5.3 Illegal Opcode Trap

Because not all possible opcodes or opcode sequences are defined, the MCU includes an illegal opcode
detection circuit, which generates an interrupt request. When an illegal opcode is detected and the
interrupt is recognized, the current value of the program counter is stacked. After interrupt service is
complete, reinitialize the stack pointer so repeated execution of illegal opcodes does not cause stack
underflow. Left uninitialized, the illegal opcode vector can point to a memory location that contains an
illegal opcode. This condition causes an infinite loop that causes stack underflow. The stack grows until
the system crashes.

The illegal opcode trap mechanism works for all unimplemented opcodes on all four opcode map pages.
The address stacked as the return address for the illegal opcode interrupt is the address of the first byte
of the illegal opcode. Otherwise, it would be almost impossible to determine whether the illegal opcode
had been one or two bytes. The stacked return address can be used as a pointer to the illegal opcode so
the illegal opcode service routine can evaluate the offending opcode.

Table 5-5. Stacking Order on Entry to Interrupts

Memory Location CPU Registers

SP PCL

SP–1 PCH

SP–2 IYL

SP–3 IYH

SP–4 IXL

SP–5 IXH

SP–6 ACCA

SP–7 ACCB

SP–8 CCR
M68HC11E Family Data Sheet, Rev. 5.1

Freescale Semiconductor 89

Resets and Interrupts
masked), the MCU starts up, beginning with the stacking sequence leading to normal service of the XIRQ
request. If X is set to 1 (XIRQ masked or inhibited), then processing continues with the instruction that
immediately follows the STOP instruction, and no XIRQ interrupt service is requested or pending.

Because the oscillator is stopped in stop mode, a restart delay may be imposed to allow oscillator
stabilization upon leaving stop. If the internal oscillator is being used, this delay is required; however, if a
stable external oscillator is being used, the DLY control bit can be used to bypass this startup delay. The
DLY control bit is set by reset and can be optionally cleared during initialization. If the DLY equal to 0
option is used to avoid startup delay on recovery from stop, then reset should not be used as the means
of recovering from stop, as this causes DLY to be set again by reset, imposing the restart delay. This same
delay also applies to power-on reset, regardless of the state of the DLY control bit, but does not apply to
a reset while the clocks are running.
M68HC11E Family Data Sheet, Rev. 5.1

96 Freescale Semiconductor

Serial Communications Interface (SCI)
Table 7-1. Baud Rate Values

Prescale
Divide

Baud
Set

Divide

Crystal Frequency (MHz)

4.00 4.9152 8.00 10.00 12.00 16.00

Prescaler Selects Bus Frequency (MHz)

SCP2 SCP1 SCP0 SCR2 SCR1 SCR0 1.00 1.23 2.00 2.50 3.00 4.00

0
0
0
0
0
0
0
0

0
0
0
0
0
0
0
0

0
0
0
0
0
0
0
0

0
0
0
0
1
1
1
1

0
0
1
1
0
0
1
1

0
1
0
1
0
1
0
1

1
1
1
1
1
1
1
1

1
2
4
8

16
32
64
128

62500
31250
15625
7813
3906
1953
977
488

76800
38400
19200
9600
4800
2400
1200
600

125000
62500
31250
15625
7813
3906
1953
977

156250
78125
39063
19531
9766
4883
2441
1221

187500
93750
46875
23438
11719
5859
2930
1465

250000
125000
62500
31250
15625
7813
3906
1953

0
0
0
0
0
0
0
0

0
0
0
0
0
0
0
0

1
1
1
1
1
1
1
1

0
0
0
0
1
1
1
1

0
0
1
1
0
0
1
1

0
1
0
1
0
1
0
1

3
3
3
3
3
3
3
3

1
2
4
8

16
32
64
128

20833
10417
5208
2604
1302
651
326
163

25600
12800
6400
3200
1600
800
400
200

41667
20833
10417
5208
2604
1302
651
326

52083
26042
13021
6510
3255
1628
814
407

62500
31250
15625
7813
3906
1953
977
488

83333
41667
20833
10417
5208
2604
1302
651

0
0
0
0
0
0
0
0

1
1
1
1
1
1
1
1

0
0
0
0
0
0
0
0

0
0
0
0
1
1
1
1

0
0
1
1
0
0
1
1

0
1
0
1
0
1
0
1

4
4
4
4
4
4
4
4

1
2
4
8

16
32
64
128

15625
7813
3906
1953
977
488
244
122

19200
9600
4800
2400
1200
600
300
150

31250
15625
7813
3906
1953
977
488
244

39063
19531
9766
4883
2441
1221
610
305

46875
23438
11719
5859
2930
1465
732
366

62500
31250
15625
7813
3906
1953
977
488

0
0
0
0
0
0
0
0

1
1
1
1
1
1
1
1

1
1
1
1
1
1
1
1

0
0
0
0
1
1
1
1

0
0
1
1
0
0
1
1

0
1
0
1
0
1
0
1

13
13
13
13
13
13
13
13

1
2
4
8

16
32
64
128

4808
2404
1202
601
300
150
75
38

5908
2954
1477
738
369
185
92
46

9615
4808
2404
1202
601
300
150
75

12019
6010
3005
1502
751
376
188
94

14423
7212
3606
1803
901
451
225
113

19231
9615
4808
2404
1202
601
300
150

1
1
1
1
1
1
1
1

0
0
0
0
0
0
0
0

0
0
0
0
0
0
0
0

0
0
0
0
1
1
1
1

0
0
1
1
0
0
1
1

0
1
0
1
0
1
0
1

39
39
39
39
39
39
39
39

1
2
4
8

16
32
64
128

1603
801
401
200
100
50
25
13

1969
985
492
246
123
62
31
15

3205
1603
801
401
200
100
50
25

4006
2003
1002
501
250
125
63
31

4808
2404
1202
601
300
150
75
38

6410
3205
1603
801
401
200
100
50

Shaded areas reflect standard baud rates.
On MC68HC(7)11E20 do not set SCP1 or SCP0 when SCP2 is 1.
M68HC11E Family Data Sheet, Rev. 5.1

114 Freescale Semiconductor

 Serial Peripheral Interface (SPI)
Figure 8-1. SPI Block Diagram

8.4 Clock Phase and Polarity Controls

Software can select one of four combinations of serial clock phase and polarity using two bits in the SPI
control register (SPCR). The clock polarity is specified by the CPOL control bit, which selects an active
high or active low clock, and has no significant effect on the transfer format. The clock phase (CPHA)
control bit selects one of two different transfer formats. The clock phase and polarity should be identical
for the master SPI device and the communicating slave device. In some cases, the phase and polarity
are changed between transfers to allow a master device to communicate with peripheral slaves having
different requirements.

When CPHA equals 0, the SS line must be negated and reasserted between each successive serial byte.
Also, if the slave writes data to the SPI data register (SPDR) while SS is low, a write collision error results.

When CPHA equals 1, the SS line can remain low between successive transfers.

8--BIT SHIFT REGISTER

READ DATA BUFFER

MSB LSB

MISO
PD2

MOSI
PD3

SCK
PD4

SS
PD5

DIVIDER

÷2 ÷4 ÷16 ÷32

INTERNAL
MCU CLOCK

SELECT

S

M

M

S

S
M

PI
N

 C
O

N
TR

O
L

LO
G

IC

CLOCK
LOGIC

CLOCK

SP
IF

SP
E

D
W

O
M

IN
ST

R

C
PO

L

C
PH

A

SP
R

I

SP
R

O

SPI CONTROL REGISTER

M
ST

D

SE
C

D
W

O
M

SP
R

I

SP
R

O

MSTR
SPE

SPI CONTROL

SP
IF

W
C

O
L

M
O

D
E

SPI STATUS REGISTER

SPI INTERRUPT
REQUEST

INTERNAL
DATA BUS
M68HC11E Family Data Sheet, Rev. 5.1

120 Freescale Semiconductor

 Serial Peripheral Interface (SPI)
8.5.3 Serial Clock

SCK, an input to a slave device, is generated by the master device and synchronizes data movement in
and out of the device through the MOSI and MISO lines. Master and slave devices are capable of
exchanging a byte of information during a sequence of eight clock cycles.

Four possible timing relationships can be chosen by using control bits CPOL and CPHA in the serial
peripheral control register (SPCR). Both master and slave devices must operate with the same timing.
The SPI clock rate select bits, SPR[1:0], in the SPCR of the master device, select the clock rate. In a slave
device, SPR[1:0] have no effect on the operation of the SPI.

8.5.4 Slave Select

The slave select (SS) input of a slave device must be externally asserted before a master device can
exchange data with the slave device. SS must be low before data transactions and must stay low for the
duration of the transaction.

The SS line of the master must be held high. If it goes low, a mode fault error flag (MODF) is set in the
serial peripheral status register (SPSR). To disable the mode fault circuit, write a 1 in bit 5 of the port D
data direction register. This sets the SS pin to act as a general-purpose output rather than the dedicated
input to the slave select circuit, thus inhibiting the mode fault flag. The other three lines are dedicated to
the SPI whenever the serial peripheral interface is on.

The state of the master and slave CPHA bits affects the operation of SS. CPHA settings should be
identical for master and slave. When CPHA = 0, the shift clock is the OR of SS with SCK. In this clock
phase mode, SS must go high between successive characters in an SPI message. When CPHA = 1, SS
can be left low between successive SPI characters. In cases where there is only one SPI slave MCU, its
SS line can be tied to VSS as long as only CPHA = 1 clock mode is used.

8.6 SPI System Errors

Two system errors can be detected by the SPI system. The first type of error arises in a multiple-master
system when more than one SPI device simultaneously tries to be a master. This error is called a mode
fault. The second type of error, write collision, indicates that an attempt was made to write data to the
SPDR while a transfer was in progress.

When the SPI system is configured as a master and the SS input line goes to active low, a mode fault
error has occurred — usually because two devices have attempted to act as master at the same time. In
cases where more than one device is concurrently configured as a master, there is a chance of contention
between two pin drivers. For push-pull CMOS drivers, this contention can cause permanent damage. The
mode fault mechanism attempts to protect the device by disabling the drivers. The MSTR control bit in the
SPCR and all four DDRD control bits associated with the SPI are cleared and an interrupt is generated
subject to masking by the SPIE control bit and the I bit in the CCR.

Other precautions may need to be taken to prevent driver damage. If two devices are made masters at
the same time, mode fault does not help protect either one unless one of them selects the other as slave.
The amount of damage possible depends on the length of time both devices attempt to act as master.

A write collision error occurs if the SPDR is written while a transfer is in progress. Because the SPDR is
not double buffered in the transmit direction, writes to SPDR cause data to be written directly into the SPI
shift register. Because this write corrupts any transfer in progress, a write collision error is generated. The
transfer continues undisturbed, and the write data that caused the error is not written to the shifter.
M68HC11E Family Data Sheet, Rev. 5.1

122 Freescale Semiconductor

Output Compare
9.4.2 Timer Compare Force Register

The CFORC register allows forced early compares. FOC[1:5] correspond to the five output compares.
These bits are set for each output compare that is to be forced. The action taken as a result of a forced
compare is the same as if there were a match between the OCx register and the free-running counter,
except that the corresponding interrupt status flag bits are not set. The forced channels trigger their
programmed pin actions to occur at the next timer count transition after the write to CFORC.

The CFORC bits should not be used on an output compare function that is programmed to toggle its
output on a successful compare because a normal compare that occurs immediately before or after the
force can result in an undesirable operation.

Register name: Timer Output Compare 3 Register (High) Address: $101A

Bit 7 6 5 4 3 2 1 Bit 0

Read:
Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8

Write:

Reset: 1 1 1 1 1 1 1 1

Register name: Timer Output Compare 3 Register (Low) Address: $101B

Bit 7 6 5 4 3 2 1 Bit 0

Read:
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

Write:

Reset: 1 1 1 1 1 1 1 1

Figure 9-10. Timer Output Compare 3 Register Pair (TOC3)

Register name: Timer Output Compare 4 Register (High) Address: $101C

Bit 7 6 5 4 3 2 1 Bit 0

Read:
Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8

Write:

Reset: 1 1 1 1 1 1 1 1

Register name: Timer Output Compare 4 Register (Low) Address: $101D

Bit 7 6 5 4 3 2 1 Bit 0

Read:
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

Write:

Reset: 1 1 1 1 1 1 1 1

Figure 9-11. Timer Output Compare 4 Register Pair (TOC4)

Address: $100B

Bit 7 6 5 4 3 2 1 Bit 0

Read:
FOC1 FOC2 FOC3 FOC4 FOC5

Write:

Reset: 0 0 0 0 0 0 0 0

= Unimplemented

Figure 9-12. Timer Compare Force Register (CFORC)
M68HC11E Family Data Sheet, Rev. 5.1

Freescale Semiconductor 135

Pulse Accumulator
9.7.1 Pulse Accumulator Control Register

Four of this register’s bits control an 8-bit pulse accumulator system. Another bit enables either the OC5
function or the IC4 function, while two other bits select the rate for the real-time interrupt system.

DDRA7 — Data Direction for Port A Bit 7
Refer to Chapter 6 Parallel Input/Output (I/O) Ports.

PAEN — Pulse Accumulator System Enable Bit
0 = Pulse accumulator disabled
1 = Pulse accumulator enabled

PAMOD — Pulse Accumulator Mode Bit
0 = Event counter
1 = Gated time accumulation

PEDGE — Pulse Accumulator Edge Control Bit
This bit has different meanings depending on the state of the PAMOD bit, as shown in Table 9-7.

DDRA3 — Data Direction for Port A Bit 3
Refer to Chapter 6 Parallel Input/Output (I/O) Ports.

I4/O5 — Input Capture 4/Output Compare 5 Bit
0 = Output compare 5 function enable (no IC4)
1 = Input capture 4 function enable (no OC5)

RTR[1:0] — RTI Interrupt Rate Select Bits
Refer to 9.5 Real-Time Interrupt (RTI).

Address: $1026

Bit 7 6 5 4 3 2 1 Bit 0

Read:
DDRA7 PAEN PAMOD PEDGE DDRA3 I4/O5 RTR1 RTR0

Write:

Reset: 0 0 0 0 0 0 0 0

Figure 9-25. Pulse Accumulator Control Register (PACTL)

Table 9-7. Pulse Accumulator Edge Control

PAMOD PEDGE Action on Clock

0 0 PAI falling edge increments the counter.

0 1 PAI rising edge increments the counter.

1 0 A 0 on PAI inhibits counting.

1 1 A 1 on PAI inhibits counting.
M68HC11E Family Data Sheet, Rev. 5.1

Freescale Semiconductor 145

 Electrical Characteristics
10.9 Control Timing

Characteristic(1) (2)

1. VDD = 5.0 Vdc ±10%, VSS = 0 Vdc, TA = TL to TH, all timing is shown with respect to 20% VDD and 70% VDD, unless oth-
erwise noted

2. RESET is recognized during the first clock cycle it is held low. Internal circuitry then drives the pin low for four clock cycles,
releases the pin, and samples the pin level two cycles later to determine the source of the interrupt. Refer to Chapter 5
Resets and Interrupts for further detail.

Symbol
1.0 MHz 2.0 MHz 3.0 MHz

Unit
Min Max Min Max Min Max

Frequency of operation fo dc 1.0 dc 2.0 dc 3.0 MHz

E-clock period tCYC
100
0

— 500 — 333 — ns

Crystal frequency fXTAL — 4.0 — 8.0 — 12.0 MHz

External oscillator frequency 4 fo dc 4.0 dc 8.0 dc 12.0 MHz

Processor control setup time
tPCSU = 1/4 tCYC+ 50 ns

tPCSU 300 — 175 — 133 — ns

Reset input pulse width
To guarantee external reset vector
Minimum input time (can be pre-empted by internal reset)

PWRSTL 8
1

—
—

8
1

—
—

8
1

—
—

tCYC

Mode programming setup time tMPS 2 — 2 — 2 — tCYC

Mode programming hold time tMPH 10 — 10 — 10 — ns

Interrupt pulse width, IRQ edge-sensitive mode
PWIRQ = tCYC + 20 ns

PWIRQ
102
0

— 520 — 353 — ns

Wait recovery startup time tWRS — 4 — 4 — 4 tCYC

Timer pulse width input capture pulse accumulator input
PWTIM = tCYC + 20 ns

PWTIM
102
0

— 520 — 353 — ns
M68HC11E Family Data Sheet, Rev. 5.1

156 Freescale Semiconductor

Appendix A
Development Support

A.1 Introduction

This section provides information on the development support offered for the E-series devices.

A.2 M68HC11 E-Series Development Tools

A.3 EVS — Evaluation System

The EVS is an economical tool for designing, debugging, and evaluating target systems based on the
M68HC11. EVS features include:

• Monitor/debugger firmware

• One-line assembler/disassembler

• Host computer download capability

• Dual memory maps:
– 64-Kbyte monitor map that includes 16 Kbytes of monitor EPROM
– M68HC11 E-series user map that includes 64 Kbytes of emulation RAM

• MCU extension input/output (I/O) port for single-chip, expanded, and special-test operation modes

• RS-232C terminal and host I/O ports

• Logic analyzer connector

Device Package
Emulation

Module(1) (2)

1. Each MMDS11 system consists of a system console (M68MMDS11), an emulation module, a flex cable, and a target head.
2. A complete EVS consists of a platform board (M68HC11PFB), an emulation module, a flex cable, and a target head.

Flex
Cable(1) (2)

MMDS11
Target Head(1) (2)

SPGMR
Programming

Adapter(3)

3. Each SPGMR system consists of a universal serial programmer (M68SPGMR11) and a programming adapter. It can be
used alone or in conjunction with the MMDS11.

MC68HC11E9
MC68HC711E9

52 FN M68EM11E20 M68CBL11C M68TC11E20FN52 M68PA11E20FN52

52 PB M68EM11E20 M68CBL11C M68TC11E20PB52 M68PA11E20PB52

56 B M68EM11E20 M68CBL11B M68TC11E20B56 M68PA11E20B56

64 FU M68EM11E20 M68CBL11C M68TC11E20FU64 M68PA11E20FU64

MC68HC11E20
MC68HC711E20

52 FN M68EM11E20 M68CBL11C M68TC11E20FN52 M68PA11E20FN52

64 FU M68EM11E20 M68CBL11C M68TC11E20FU64 M68PA11E20FU64

MC68HC811E2
48 P M68EM11E20 M68CBL11B M68TB11E20P48 M68PA11A8P48

52 FN M68EM11E20 M68CBL11C M68TC11E20FN52 M68PA11E20FN52
M68HC11E Family Data Sheet, Rev. 5.1

Freescale Semiconductor 187

Development Support
A.4 Modular Development System (MMDS11)

The M68MMDS11 modular development system (MMDS11) is an emulator system for developing
embedded systems based on an M68HC11 microcontroller unit (MCU). The MMDS11 provides a bus
state analyzer (BSA) and real-time memory windows. The unit's integrated development environment
includes an editor, an assembler, user interface, and source-level debug. These features significantly
reduce the time necessary to develop and debug an embedded MCU system. The unit's compact size
requires a minimum of desk space.

The MMDS11 is one component of Freescale's modular approach to MCU-based product development.
This modular approach allows easy configuration of the MMDS11 to fit a wide range of requirements. It
also reduces development system cost by allowing the user to purchase only the modular components
necessary to support the particular MCU derivative.

MMDS11 features include:

• Real-time, non-intrusive, in-circuit emulation at the MCU’s operating frequency

• Real-time bus state analyzer
– 8 K x 64 real-time trace buffer
– Display of real-time trace data as raw data, disassembled instructions, raw data and

disassembled instructions, or assembly-language source code
– Four hardware triggers for commencing trace and to provide breakpoints
– Nine triggering modes
– As many as 8190 pre- or post-trigger points for trace data
– 16 general-purpose logic clips, four of which can be used to trigger the bus state analyzer

sequencer
– 16-bit time tag or an optional 24-bit time tag that reduces the logic clips traced from 16 to eight

• Four data breakpoints (hardware breakpoints)

• Hardware instruction breakpoints over either the 64-Kbyte M68HC11 memory map or over a
1-Mbyte bank switched memory map

• 32 real-time variables, nine of which can be displayed in the variables window. These variables
may be read or written while the MCU is running

• 32 bytes of real-time memory can be displayed in the memory window. This memory may be read
or written while the MCU is running

• 64 Kbytes of fast emulation memory (SRAM)

• Current-limited target input/output connections

• Six software-selectable oscillator clock sources: five internally generated frequencies and an
external frequency via a bus analyzer logic clip

• Command and response logging to MS-DOS® disk files to save session history

• SCRIPT command for automatic execution of a sequence of MMDS11 commands

• Assembly or C-language source-level debugging with global variable viewing

• Host/emulator communications speeds as high as 57,600 baud for quick program loading

® MS-DOS is a registered trademark of Microsoft Corporation.
M68HC11E Family Data Sheet, Rev. 5.1

188 Freescale Semiconductor

Main Bootloader Program
illustrates the extreme measures used in the bootloader firmware to minimize memory usage. However,
such measures are not usually considered good programming technique because they are misleading to
someone trying to understand the program or use it as an example.

After initialization, a break character is transmitted [3] by the SCI. By connecting the TxD pin to the RxD
pin (with a pullup because of port D wired-OR mode), this break will be received as a $00 character and
cause an immediate jump [4] to the start of the on-chip EEPROM ($B600 in the MC68HC711E9). This
feature is useful to pass control to a program in EEPROM essentially from reset. Refer to Common
Bootstrap Mode Problems before using this feature.

If the first character is received as $FF, the baud rate is assumed to be the default rate (7812 baud at a
2-MHz E-clock rate). If $FF was sent at 1200 baud by the host, the SCI will receive the character as $E0
or $C0 because of the baud rate mismatch, and the bootloader will switch to 1200 baud [5] for the rest of
the download operation. When the baud rate is switched to 1200 baud, the delay constant used to monitor
the intercharacter delay also must be changed to reflect the new character time.

At [6], the Y index register is initialized to $0000 to point to the start of on-chip RAM. The index register Y
is used to keep track of where the next received data byte will be stored in RAM. The main loop for loading
begins at [7].

The number of data bytes in the downloaded program can be any number between 0 and 512 bytes (the
size of on-chip RAM). This procedure is called "variable-length download" and is accomplished by ending
the download sequence when an idle time of at least four character times occurs after the last character
to be downloaded. In M68HC11 Family members which have 256 bytes of RAM, the download length is
fixed at exactly 256 bytes plus the leading $FF character.

The intercharacter delay counter is started [8] by loading the delay constant from TOC1 into the X index
register. The 19-E-cycle wait loop is executed repeatedly until either a character is received [9] or the
allowed intercharacter delay time expires [10]. For 7812 baud, the delay constant is 10,241 E cycles (539
x 19 E cycles per loop). Four character times at 7812 baud is 10,240 E cycles (baud prescale of 4 x baud
divider of 4 x 16 internal SCI clocks/bit time x 10 bit times/character x 4 character times). The delay from
reset to the initial $FF character is not critical since the delay counter is not started until after the first
character ($FF) is received.

To terminate the bootloading sequence and jump to the start of RAM without downloading any data to the
on-chip RAM, simply send $FF and nothing else. This feature is similar to the jump to EEPROM at [4]
except the $FF causes a jump to the start of RAM. This procedure requires that the RAM has been loaded
with a valid program since it would make no sense to jump to a location in uninitialized memory.

After receiving a character, the downloaded byte is stored in RAM [11]. The data is transmitted back to
the host [12] as an indication that the download is progressing normally. At [13], the RAM pointer is
incremented to the next RAM address. If the RAM pointer has not passed the end of RAM, the main
download loop (from [7] to [14]) is repeated.

When all data has been downloaded, the bootloader goes to [16] because of an intercharacter delay
timeout [10] or because the entire 512-byte RAM has been filled [15]. At [16], the X and Y index registers
are set up for calling the PROGRAM utility routine, which saves the user from having to do this in a
downloaded program. The PROGRAM utility is fully explained in EPROM Programming Utility. The final
step of the bootloader program is to jump to the start of RAM [17], which starts the user’s downloaded
program.
M68HC11 Bootstrap Mode, Rev. 1.1

Freescale Semiconductor 199

Listing 1. MCU-to-MCU Duplicator Program
 27 **
 28 *
 29 B600 7F103D BEGIN CLR INIT Moves Registers to $0000-3F
 30 B603 8604 LDAA #$04 Pattern for DWOM off, no SPI
 31 B605 9728 STAA SPCR Turns off DWOM in EVBU MCU
 32 B607 8680 LDAA #RESET
 33 B609 9704 STAA PORTB Release reset to target MCU
 34 B60B 132E20FC WT4BRK BRCLR SCSR RDRF WT4BRK Loop till char received
 35 B60F 86FF LDAA #$FF Leading char for bootload ...
 36 B611 972F STAA SCDR to target MCU
 37 B613 CEB675 LDX #BLPROG Point at program for target
 38 B616 8D53 BLLOOP BSR SEND1 Bootload to target
 39 B618 8CB67D CPX #ENDBPR Past end ?
 40 B61B 26F9 BNE BLLOOP Continue till all sent
 41 *****
 42 * Delay for about 4 char times to allow boot related
 43 * SCI communications to finish before clearing
 44 * Rx related flags
 45 B61D CE06A7 LDX #1703 # of 6 cyc loops
 46 B620 09 DLYLP DEX [3]
 47 B621 26FD BNE DLYLP [3] Total loop time = 6 cyc
 48 B623 962E LDAA SCSR Read status (RDRF will be set)
 49 B625 962F LDAA SCDR Read SCI data reg to clear RDRF
 50 *****
 51 * Now wait for character from target to indicate it's ready for
 52 * data to be programmed into EPROM
 53 B627 132E20FC WT4FF BRCLR SCSR RDRF WT4FF Wait for RDRF
 54 B62B 962F LDAA SCDR Clear RDRF, don't need data
 55 B62D CED000 LDX #EPSTRT Point at start of EPROM
 56 * Handle turn-on of Vpp
 57 B630 18CE523D WT4VPP LDY #21053 Delay counter (about 200ms)
 58 B634 150402 BCLR PORTB RED Turn off RED LED
 59 B637 960A DLYLP2 LDAA PORTE [3] Wait for Vpp to be ON
 60 B639 2AF5 BPL WT4VPP [3] Vpp sense is on port E MSB
 61 B63B 140402 BSET PORTB RED [6] Turn on RED LED
 62 B63E 1809 DEY [4]
 63 B640 26F5 BNE DLYLP2 [3] Total loop time = 19 cyc
 64 * Vpp has been stable for 200ms
 65
 66 B642 18CED000 LDY #EPSTRT X=Tx pointer, Y=verify pointer
 67 B646 8D23 BSR SEND1 Send first data to target
 68 B648 8C0000 DATALP CPX #0 X points at $0000 after last
 69 B64B 2702 BEQ VERF Skip send if no more
 70 B64D 8D1C BSR SEND1 Send another data char
 71 B64F 132E20FC VERF BRCLR SCSR RDRF VERF Wait for Rx ready
 72 B653 962F LDAA SCDR Get char and clr RDRF
 73 B655 18A100 CMPA 0,Y Does char verify ?
 74 B658 2705 BEQ VERFOK Skip error if OK
 75 B65A 150403 BCLR PORTB (RED+GREEN) Turn off LEDs
 76 B65D 2007 BRA DUNPRG Done (programming failed)
 77 B65F
 78 B65F 1808 VERFOK INY Advance verify pointer
 79 B661 26E5 BNE DATALP Continue till all done
 80 B663
 81 B663 140401 BSET PORTB GREEN Grn LED ON
M68HC11 Bootstrap Mode, Rev. 1.1

Freescale Semiconductor 209

Driving Boot Mode from a Personal Computer
A problem arose with the BASIC programming technique used. The draft versions of this program tried
saving the object code bytes directly as binary in a string array. This caused "Out of Memory" or "Out of
String Space" errors on both a 2-Mbyte Macintosh and a 640-Kbyte PC. The solution was to make the
array an integer array and perform the integer-to-binary conversion on each byte as it is sent to the target
part.

The one compromise made to accommodate both Macintosh and PC versions of BASIC is in lines 1500
and 1505. Use line 1500 and comment out line 1505 if the program is to be run on a Macintosh, and,
conversely, use line 1505 and comment out line 1500 if a PC is used.

After the COM port is opened, the code to be bootloaded is modified by adding the $FF to the start of the
string. $FF synchronizes the bootloader in the MC68HC711E9 to 1200 baud. The entire string is simply
sent to the COM port by PRINTing the string. This is possible since the string is actually queued in
BASIC’s COM buffer, and the operating system takes care of sending the bytes out one at a time. The
M68HC11 echoes the data received for verification. No automatic verification is provided, though the data
is printed to the screen for manual verification.

Once the MCU has received this bootloaded code, the bootloader automatically jumps to it. The small
bootloaded program in turn includes a jump to the EPROM programming routine in the boot ROM.

Refer to the previous explanation of the EPROM Programming Utility for the following discussion. The
host system sends the first byte to be programmed through the COM port to the SCI of the MCU. The SCI
port on the MCU buffers one byte while receiving another byte, increasing the throughput of the EPROM
programming operation by sending the second byte while the first is being programmed.

When the first byte has been programmed, the MCU reads the EPROM location and sends the result back
to the host system. The host then compares what was actually programmed to what was originally sent.
A message indicating which byte is being verified is displayed in the lower half of the screen. If there is
an error, it is displayed at the top of the screen.

As soon as the first byte is verified, the third byte is sent. In the meantime, the MCU has already started
programming the second byte. This process of verifying and queueing a byte continues until the host
finishes sending data. If the programming is completely successful, no error messages will have been
displayed at the top of the screen. Subroutines follow the end of the program to handle some of the
repetitive tasks. These routines are short, and the commenting in the source code should be sufficient
explanation.

Modifications

This example programmed version 3.4 of the BUFFALO monitor into the EPROM of an MC68HC711E9;
the changes to the BASIC program to download some other program are minor.

The necessary changes are:
1. In line 30, the length of the program to be downloaded must be assigned to the variable

CODESIZE%.
2. Also in line 30, the starting address of the program is assigned to the variable ADRSTART.
3. In line 9570, the start address of the program is stored in the third and fourth items in that DATA

statement in hexadecimal.
4. If any changes are made to the number of bytes in the boot code in the DATA statements in lines

9500–9580, then the new count must be set in the variable "BOOTCOUNT" in line 25.
M68HC11 Bootstrap Mode, Rev. 1.1

Freescale Semiconductor 213

Listing 3. MC68HC711E9 Bootloader ROM
107 * This routine uses 2 bytes of stack space
108 * Routine does not return. Reset to exit.
109 **
110 BF13 PRGROUT EQU *
111 BF13 3C PSHX Save program delay constant
112 BF14 CE1000 LDX #$1000 Point to internal registers
113 BF17
114 * Send $FF to indicate ready for program data
115
116 BF17 1F2E80FC BRCLR SCSR,X $80 * Wait for TDRE
117 BF1B 86FF LDAA #$FF
118 BF1D A72F STAA SCDAT,X
119
120 BF1F WAIT1 EQU *
121 BF1F 1F2E20FC BRCLR SCSR,X $20 * Wait for RDRF
122 BF23 E62F LDAB SCDAT,X Get received byte
123 BF25 18E100 CMPB $0,Y See if already programmed
124 BF28 271D BEQ DONEIT If so, skip prog cycle
125 BF2A 8620 LDAA #ELAT Put EPROM in prog mode
126 BF2C A73B STAA PPROG,X
127 BF2E 18E700 STAB 0,Y Write the data
128 BF31 8621 LDAA #ELAT+EPGM
129 BF33 A73B STAA PPROG,X Turn on prog voltage
130 BF35 32 PULA Pull delay constant
131 BF36 33 PULB into D-reg
132 BF37 37 PSHB But also keep delay
133 BF38 36 PSHA keep delay on stack
134 BF39 E30E ADDD TCNT,X Delay const + present TCNT
135 BF3B ED16 STD TOC1,X Schedule OC1 (2ms delay)
136 BF3D 8680 LDAA #OC1F
137 BF3F A723 STAA TFLG1,X Clear any previous flag
138
139 BF41 1F2380FC BRCLR TFLG1,X OC1F * Wait for delay to expire
140 BF45 6F3B CLR PPROG,X Turn off prog voltage
141 *
142 BF47 DONEIT EQU *
143 BF47 1F2E80FC BRCLR SCSR,X $80 * Wait for TDRE
144 BF4B 18A600 LDAA $0,Y Read from EPROM and...
145 BF4E A72F STAA SCDAT,X Xmit for verify
146 BF50 1808 INY Point at next location
147 BF52 20CB BRA WAIT1 Back to top for next
148 * Loops indefinitely as long as more data sent.
149
150 **
151 * Main bootloader starts here
152 **
153 * RESET vector points to here
154
155 BF54 BEGIN EQU *
156 BF54 8E01FF LDS #RAMEND Initialize stack pntr
157 BF57 CE1000 LDX #$1000 Point at internal regs
158 BF5A 1C2820 BSET SPCR,X $20 Select port D wire-OR mode
159 BF5D CCA20C LDD #$A20C BAUD in A, SCCR2 in B
160 BF60 A72B STAA BAUD,X SCPx = ÷4, SCRx = ÷4
161 * Writing 1 to MSB of BAUD resets count chain
M68HC11 Bootstrap Mode, Rev. 1.1

224 Freescale Semiconductor

Listing 3. MC68HC711E9 Bootloader ROM
M68HC11 Bootstrap Mode, Rev. 1.1

228 Freescale Semiconductor

Freescale Semiconductor
Engineering Bulletin

EB188
Rev. 0.1, 07/2005
Enabling the Security Feature
on M68HC811E2 Devices
with PCbug11 on the
M68HC711E9PGMR
By Edgar Saenz

Austin, Texas

Introduction

The PCbug11 software, needed along with the M68HC711E9PGMR to program MC68HC811E2 devices,
is available from the download section of the Microcontroller Worldwide Web site

http://www.freescale.com

Retrieve the file pcbug342.exe (a self-extracting archive) from the MCU11 directory.

Some Freescale evaluation board products also are shipped with PCbug11.

NOTE
For specific information about any of the PCbug11 commands, see the
appropriate sections in the PCbug11 User's Manual (part number
M68PCBUG11/D2), which is available from the Freescale Literature
http://www.freescale.com. The file is also on the software download system
and is called pcbug11.pdf.
© Freescale Semiconductor, Inc., 2005. All rights reserved.

http://www.freescale.com
http://www.freescale.com

