# E·XFL



#### Welcome to E-XFL.COM

#### What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

#### Details

| Product Status             | Obsolete                                                                |
|----------------------------|-------------------------------------------------------------------------|
| Core Processor             | HC11                                                                    |
| Core Size                  | 8-Bit                                                                   |
| Speed                      | 2MHz                                                                    |
| Connectivity               | SCI, SPI                                                                |
| Peripherals                | POR, WDT                                                                |
| Number of I/O              | 38                                                                      |
| Program Memory Size        | 12KB (12K x 8)                                                          |
| Program Memory Type        | OTP                                                                     |
| EEPROM Size                | 512 x 8                                                                 |
| RAM Size                   | 512 x 8                                                                 |
| Voltage - Supply (Vcc/Vdd) | 4.5V ~ 5.5V                                                             |
| Data Converters            | A/D 8x8b                                                                |
| Oscillator Type            | Internal                                                                |
| Operating Temperature      | -40°C ~ 85°C (TA)                                                       |
| Mounting Type              | Surface Mount                                                           |
| Package / Case             | 52-LCC (J-Lead)                                                         |
| Supplier Device Package    | 52-PLCC (19.1x19.1)                                                     |
| Purchase URL               | https://www.e-xfl.com/product-detail/nxp-semiconductors/mc68hc711e9cfn2 |

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong



**General Description** 

| Port/Bit | Single-Chip and<br>Bootstrap Modes | Expanded and<br>Test Modes |  |  |  |  |  |  |
|----------|------------------------------------|----------------------------|--|--|--|--|--|--|
| PA0      | PA0/IC3                            |                            |  |  |  |  |  |  |
| PA1      | PA1/IC2                            |                            |  |  |  |  |  |  |
| PA2      | PA2                                | /IC1                       |  |  |  |  |  |  |
| PA3      | PA3/OC5                            | /IC4/OC1                   |  |  |  |  |  |  |
| PA4      | PA4/OC                             | C4/OC1                     |  |  |  |  |  |  |
| PA5      | PA5/00                             | C3/OC1                     |  |  |  |  |  |  |
| PA6      | PA6/OC                             | C2/OC1                     |  |  |  |  |  |  |
| PA7      | PA7/PA                             | AI/OC1                     |  |  |  |  |  |  |
| PB0      | PB0                                | ADDR8                      |  |  |  |  |  |  |
| PB1      | PB1                                | ADDR9                      |  |  |  |  |  |  |
| PB2      | PB2                                | ADDR10                     |  |  |  |  |  |  |
| PB3      | PB3                                | ADDR11                     |  |  |  |  |  |  |
| PB4      | PB4                                | ADDR12                     |  |  |  |  |  |  |
| PB5      | PB5                                | ADDR13                     |  |  |  |  |  |  |
| PB6      | PB6                                | ADDR14                     |  |  |  |  |  |  |
| PB7      | PB7                                | ADDR15                     |  |  |  |  |  |  |
| PC0      | PC0                                | ADDR0/DATA0                |  |  |  |  |  |  |
| PC1      | PC1                                | ADDR1/DATA1                |  |  |  |  |  |  |
| PC2      | PC2                                | ADDR2/DATA2                |  |  |  |  |  |  |
| PC3      | PC3                                | ADDR3/DATA3                |  |  |  |  |  |  |
| PC4      | PC4                                | ADDR4/DATA4                |  |  |  |  |  |  |
| PC5      | PC5                                | ADDR5/DATA5                |  |  |  |  |  |  |
| PC6      | PC6                                | ADDR6/DATA6                |  |  |  |  |  |  |
| PC7      | PC7                                | ADDR7/DATA7                |  |  |  |  |  |  |
| PD0      | PD0,                               | /RxD                       |  |  |  |  |  |  |
| PD1      | PD1                                | /TxD                       |  |  |  |  |  |  |
| PD2      | PD2/                               | MISO                       |  |  |  |  |  |  |
| PD3      | PD3/                               | MOSI                       |  |  |  |  |  |  |
| PD4      | PD4/                               | ŚCK                        |  |  |  |  |  |  |
| PD5      | PD5                                | 5/SS                       |  |  |  |  |  |  |
| _        | STRA                               | AS                         |  |  |  |  |  |  |
| —        | STRB                               | R/W                        |  |  |  |  |  |  |
| PE0      | PE0/                               | /AN0                       |  |  |  |  |  |  |
| PE1      | PE1/                               | /AN1                       |  |  |  |  |  |  |
| PE2      | PE3/                               | /AN2                       |  |  |  |  |  |  |
| PE3      | PE3/                               | /AN3                       |  |  |  |  |  |  |
| PE4      | PE4/                               | /AN4                       |  |  |  |  |  |  |
| PE5      | PE5/                               | /AN5                       |  |  |  |  |  |  |
| PE6      | PE6/                               | /AN6                       |  |  |  |  |  |  |
| PE7      | PE7/AN7                            |                            |  |  |  |  |  |  |

## Table 1-1. Port Signal Functions

# NP

**Memory Map** 

| Addr.  | Register Name                                   |                 | Bit 7       | 6            | 5      | 4          | 3               | 2         | 1     | Bit 0 |
|--------|-------------------------------------------------|-----------------|-------------|--------------|--------|------------|-----------------|-----------|-------|-------|
| \$100D | Output Compare 1 Data Register<br>(OC1D)        | Read:<br>Write: | OC1D7       | OC1D6        | OC1D5  | OC1D4      | OC1D3           |           |       |       |
|        | See page 136.                                   | Reset:          | 0           | 0            | 0      | 0          | 0               | 0         | 0     | 0     |
|        | Timer Counter Register High                     | Read:           | Bit 15      | Bit 14       | Bit 13 | Bit 12     | Bit 11          | Bit 10    | Bit 9 | Bit 8 |
| \$100E | DE (TCNTH)                                      | Write:          |             |              |        |            |                 |           |       |       |
|        | See page 137.                                   | Reset:          | 0           | 0            | 0      | 0          | 0               | 0         | 0     | 0     |
|        | Timer Counter Register Low                      | Read:           | Bit 7       | Bit 6        | Bit 5  | Bit 4      | Bit 3           | Bit 2     | Bit 1 | Bit 0 |
| \$100F | (TCNTL)                                         | Write:          |             |              |        |            |                 |           |       |       |
|        | See page 137.                                   | Reset:          | 0           | 0            | 0      | 0          | 0               | 0         | 0     | 0     |
| \$1010 | Timer Input Capture 1 Register<br>High (TIC1H)  | Read:<br>Write: | Bit 15      | Bit 14       | Bit 13 | Bit 12     | Bit 11          | Bit 10    | Bit 9 | Bit 8 |
|        | See page 132.                                   | Reset:          |             |              |        | Indetermin | ate after reset |           |       |       |
| \$1011 | Timer Input Capture 1 Register<br>Low (TIC1L)   | Read:<br>Write: | Bit 7       | Bit 6        | Bit 5  | Bit 4      | Bit 3           | Bit 2     | Bit 1 | Bit 0 |
|        | See page 132.                                   | Reset:          |             |              |        | Indetermin | ate after reset |           |       |       |
| \$1012 | Timer Input Capture 2 Register<br>High (TIC2H)  | Read:<br>Write: | Bit 15      | Bit 14       | Bit 13 | Bit 12     | Bit 11          | Bit 10    | Bit 9 | Bit 8 |
|        | See page 132.                                   | Reset:          |             |              |        | Indetermin | ate after reset |           |       |       |
| \$1013 | TImer Input Capture 2 Register<br>Low (TIC2L)   | Read:<br>Write: | Bit 7       | Bit 6        | Bit 5  | Bit 4      | Bit 3           | Bit 2     | Bit 1 | Bit 0 |
|        | See page 132.                                   | Reset:          |             |              |        | Indetermin | ate after reset |           |       |       |
| \$1014 | Timer Input Capture 3 Register<br>High (TIC3H)  | Read:<br>Write: | Bit 15      | Bit 14       | Bit 13 | Bit 12     | Bit 11          | Bit 10    | Bit 9 | Bit 8 |
|        | See page 132.                                   | Reset:          |             |              |        | Indetermin | ate after reset |           |       |       |
| \$1015 | Timer Input Capture 3 Register<br>Low (TIC3L)   | Read:<br>Write: | Bit 7       | Bit 6        | Bit 5  | Bit 4      | Bit 3           | Bit 2     | Bit 1 | Bit 0 |
|        | See page 132.                                   | Reset:          |             |              |        | Indetermin | ate after reset |           |       |       |
| \$1016 | Timer Output Compare 1 Register<br>High (TOC1H) | Read:<br>Write: | Bit 15      | Bit 14       | Bit 13 | Bit 12     | Bit 11          | Bit 10    | Bit 9 | Bit 8 |
|        | See page 134.                                   | Reset:          | 1           | 1            | 1      | 1          | 1               | 1         | 1     | 1     |
| \$1017 | Timer Output Compare 1 Register<br>Low (TOC1L)  | Read:<br>Write: | Bit 7       | Bit 6        | Bit 5  | Bit 4      | Bit 3           | Bit 2     | Bit 1 | Bit 0 |
|        | See page 134.                                   | Reset:          | 1           | 1            | 1      | 1          | 1               | 1         | 1     | 1     |
| \$1018 | Timer Output Compare 2 Register<br>High (TOC2H) | Read:<br>Write: | Bit 15      | Bit 14       | Bit 13 | Bit 12     | Bit 11          | Bit 10    | Bit 9 | Bit 8 |
|        | See page 134.                                   | Reset:          | 1           | 1            | 1      | 1          | 1               | 1         | 1     | 1     |
|        |                                                 |                 |             | = Unimplen   | nented | R          | = Reserved      | U = Unaff | ected |       |
|        |                                                 |                 | I = Indeter | minate after | reset  |            |                 |           |       |       |

Figure 2-7. Register and Control Bit Assignments (Sheet 2 of 6)

M68HC11E Family Data Sheet, Rev. 5.1



# Chapter 3 Analog-to-Digital (A/D) Converter

## 3.1 Introduction

The analog-to-digital (A/D) system, a successive approximation converter, uses an all-capacitive charge redistribution technique to convert analog signals to digital values.

## 3.2 Overview

The A/D system is an 8-channel, 8-bit, multiplexed-input converter. The converter does not require external sample and hold circuits because of the type of charge redistribution technique used. A/D converter timing can be synchronized to the system E clock or to an internal resistor capacitor (RC) oscillator.

The A/D converter system consists of four functional blocks: multiplexer, analog converter, digital control, and result storage. Refer to Figure 3-1.

## 3.2.1 Multiplexer

The multiplexer selects one of 16 inputs for conversion. Input selection is controlled by the value of bits CD:CA in the ADCTL register. The eight port E pins are fixed-direction analog inputs to the multiplexer, and additional internal analog signal lines are routed to it.

Port E pins also can be used as digital inputs. Digital reads of port E pins are not recommended during the sample portion of an A/D conversion cycle, when the gate signal to the N-channel input gate is on. Because no P-channel devices are directly connected to either input pins or reference voltage pins, voltages above  $V_{DD}$  do not cause a latchup problem, although current should be limited according to maximum ratings. Refer to Figure 3-2, which is a functional diagram of an input pin.

## 3.2.2 Analog Converter

Conversion of an analog input selected by the multiplexer occurs in this block. It contains a digital-to-analog capacitor (DAC) array, a comparator, and a successive approximation register (SAR). Each conversion is a sequence of eight comparison operations, beginning with the most significant bit (MSB). Each comparison determines the value of a bit in the successive approximation register.

The DAC array performs two functions. It acts as a sample and hold circuit during the entire conversion sequence and provides comparison voltage to the comparator during each successive comparison.

The result of each successive comparison is stored in the SAR. When a conversion sequence is complete, the contents of the SAR are transferred to the appropriate result register.

A charge pump provides switching voltage to the gates of analog switches in the multiplexer. Charge pump output must stabilize between 7 and 8 volts within up to 100  $\mu$ s before the converter can be used. The charge pump is enabled by the ADPU bit in the OPTION register.



**Central Processor Unit (CPU)** 

| Masaasia   | Onevetien                         | Description                                         | Addressing Instruction          |                                     |                            | Condition Codes            |                            |          |                       |   |   |   |   |   |   |   |   |
|------------|-----------------------------------|-----------------------------------------------------|---------------------------------|-------------------------------------|----------------------------|----------------------------|----------------------------|----------|-----------------------|---|---|---|---|---|---|---|---|
| winemonic  | Operation                         | Description                                         |                                 | Mode                                | Ор                         | code                       | Ор                         | erand    | Cycles                | S | Х | Н | I | Ν | Z | V | С |
| CMPB (opr) | Compare B to<br>Memory            | B – M                                               | B<br>B<br>B<br>B<br>B<br>B<br>B | IMM<br>DIR<br>EXT<br>IND,X<br>IND Y | 18                         | C1<br>D1<br>F1<br>E1<br>F1 | ii<br>dd<br>hh<br>ff<br>ff | 11       | 2<br>3<br>4<br>5      |   | _ | _ | _ | Δ | Δ | Δ | Δ |
| COM (opr)  | Ones<br>Complement<br>Memory Byte | $FF - M \Rightarrow M$                              |                                 | EXT<br>IND,X<br>IND,Y               | 18                         | 73<br>63<br>63             | hh<br>ff<br>ff             | 11       | 6<br>6<br>7           | _ | - | - | _ | Δ | Δ | 0 | 1 |
| COMA       | Ones<br>Complement<br>A           | $FF - A \Rightarrow A$                              | A                               | INH                                 |                            | 43                         |                            | -        | 2                     |   | _ | — | _ | Δ | Δ | 0 | 1 |
| COMB       | Ones<br>Complement<br>B           | $FF - B \Rightarrow B$                              | В                               | INH                                 |                            | 53                         |                            | _        | 2                     |   | _ | _ | _ | Δ | Δ | 0 | 1 |
| CPD (opr)  | Compare D to<br>Memory 16-Bit     | D – M : M + 1                                       |                                 | IMM<br>DIR<br>EXT<br>IND,X<br>IND,Y | 1A<br>1A<br>1A<br>1A<br>CD | 83<br>93<br>B3<br>A3<br>A3 | jj<br>dd<br>hh<br>ff<br>ff | kk<br>11 | 5<br>6<br>7<br>7<br>7 |   | _ | _ | _ | Δ | Δ | Δ | Δ |
| CPX (opr)  | Compare X to<br>Memory 16-Bit     | IX – M : M + 1                                      |                                 | IMM<br>DIR<br>EXT<br>IND,X<br>IND,Y | CD                         | 8C<br>9C<br>BC<br>AC<br>AC | jj<br>dd<br>hh<br>ff<br>ff | kk<br>11 | 4<br>5<br>6<br>7      |   | _ | _ |   | Δ | Δ | Δ | Δ |
| CPY (opr)  | Compare Y to<br>Memory 16-Bit     | IY – M : M + 1                                      |                                 | IMM<br>DIR<br>EXT<br>IND,X<br>IND,Y | 18<br>18<br>18<br>1A<br>18 | 8C<br>9C<br>BC<br>AC<br>AC | jj<br>dd<br>hh<br>ff<br>ff | kk<br>11 | 5<br>6<br>7<br>7<br>7 |   | _ | _ |   | Δ | Δ | Δ | Δ |
| DAA        | Decimal Adjust<br>A               | Adjust Sum to BCD                                   |                                 | INH                                 |                            | 19                         |                            | _        | 2                     | I | — | — | _ | Δ | Δ | Δ | Δ |
| DEC (opr)  | Decrement<br>Memory Byte          | $M - 1 \Rightarrow M$                               |                                 | EXT<br>IND,X<br>IND,Y               | 18                         | 7A<br>6A<br>6A             | hh<br>ff<br>ff             | 11       | 6<br>6<br>7           |   | - |   | — | Δ | Δ | Δ | - |
| DECA       | Decrement<br>Accumulator<br>A     | $A - 1 \Rightarrow A$                               | A                               | INH                                 |                            | 4A                         |                            | _        | 2                     |   | - | _ | _ | Δ | Δ | Δ | _ |
| DECB       | Decrement<br>Accumulator<br>B     | $B - 1 \Rightarrow B$                               | В                               | INH                                 |                            | 5A                         |                            | _        | 2                     |   | _ |   | _ | Δ | Δ | Δ | _ |
| DES        | Decrement<br>Stack Pointer        | $SP - 1 \Rightarrow SP$                             |                                 | INH                                 |                            | 34                         |                            | _        | 3                     | Ι | — | _ | — | — | — | — | Ι |
| DEX        | Decrement<br>Index Register<br>X  | $IX - 1 \Rightarrow IX$                             |                                 | INH                                 |                            | 09                         |                            | _        | 3                     |   | - | _ | _ | _ | Δ | - | _ |
| DEY        | Decrement<br>Index Register<br>Y  | $IY - 1 \Rightarrow IY$                             |                                 | INH                                 | 18                         | 09                         |                            | _        | 4                     |   | _ |   | — |   | Δ | _ | _ |
| EORA (opr) | Exclusive OR A with Memory        | $A \oplus M \Rightarrow A$                          | A<br>A<br>A<br>A                | IMM<br>DIR<br>EXT<br>IND,X<br>IND,Y | 18                         | 88<br>98<br>B8<br>A8<br>A8 | ii<br>dd<br>hh<br>ff<br>ff | 11       | 2<br>3<br>4<br>4<br>5 | I | _ | _ | _ | Δ | Δ | 0 | _ |
| EORB (opr) | Exclusive OR B with Memory        | $B \oplus M \Rightarrow B$                          | B<br>B<br>B<br>B                | IMM<br>DIR<br>EXT<br>IND,X<br>IND,Y | 18                         | C8<br>D8<br>F8<br>E8<br>E8 | ii<br>dd<br>hh<br>ff<br>ff | 11       | 2<br>3<br>4<br>4<br>5 |   | _ | _ |   | Δ | Δ | 0 | _ |
| FDIV       | Fractional                        | $D / IX \Rightarrow \overline{IX; r \Rightarrow D}$ |                                 | INH                                 |                            | 03                         |                            | _        | 41                    | — | _ | _ | _ | _ | Δ | Δ | Δ |
| IDIV       | Integer Divide<br>16 by 16        | $D  /  IX \Rightarrow IX;  r \Rightarrow D$         |                                 | INH                                 |                            | 02                         |                            | _        | 41                    | _ | _ | _ | _ | — | Δ | 0 | Δ |
| INC (opr)  | Increment<br>Memory Byte          | $M + 1 \Rightarrow M$                               |                                 | EXT<br>IND,X<br>IND,Y               | 18                         | 7C<br>6C<br>6C             | hh<br>ff<br>ff             | 11       | 6<br>6<br>7           |   | _ | _ | _ | Δ | Δ | Δ | _ |
| INCA       | Increment<br>Accumulator<br>A     | $A + 1 \Rightarrow A$                               | A                               | INH                                 |                            | 4C                         |                            | -        | 2                     | — | - | — | _ | Δ | Δ | Δ | - |

## Table 4-2. Instruction Set (Sheet 3 of 7)



Resets and Interrupts

## 5.2.5 System Configuration Options Register



1. Can be written only once in first 64 cycles out of reset in normal mode or at any time in special modes

= Unimplemented

### Figure 5-2. System Configuration Options Register (OPTION)

#### ADPU — Analog-to-Digital Converter Power-Up Bit

Refer to Chapter 3 Analog-to-Digital (A/D) Converter.

#### CSEL — Clock Select Bit

Refer to Chapter 3 Analog-to-Digital (A/D) Converter.

#### IRQE — Configure IRQ for Edge-Sensitive-Only Operation Bit

 $0 = \overline{IRQ}$  is configured for level-sensitive operation.

 $1 = \overline{IRQ}$  is configured for edge-sensitive-only operation.

#### DLY — Enable Oscillator Startup Delay Bit

Refer to Chapter 2 Operating Modes and On-Chip Memory and Chapter 3 Analog-to-Digital (A/D) Converter.

#### CME — Clock Monitor Enable Bit

This control bit can be read or written at any time and controls whether or not the internal clock monitor circuit triggers a reset sequence when the system clock is slow or absent. When it is clear, the clock monitor circuit is disabled, and when it is set, the clock monitor circuit is enabled. Reset clears the CME bit.

0 = Clock monitor circuit disabled

1 = Slow or stopped clocks cause reset

#### Bit 2 — Unimplemented

Always reads 0

### CR[1:0] — COP Timer Rate Select Bit

The internal E clock is first divided by 2<sup>15</sup> before it enters the COP watchdog system. These control bits determine a scaling factor for the watchdog timer. See Table 5-1 for specific timeout settings.



end of the interrupt service routine, the return-from-interrupt instruction is executed and the saved registers are pulled from the stack in reverse order so that normal program execution can resume. Refer to Chapter 4 Central Processor Unit (CPU).

| Memory Location | CPU Registers |
|-----------------|---------------|
| SP              | PCL           |
| SP-1            | PCH           |
| SP-2            | IYL           |
| SP–3            | IYH           |
| SP-4            | IXL           |
| SP–5            | IXH           |
| SP–6            | ACCA          |
| SP–7            | ACCB          |
| SP–8            | CCR           |

| Table 5-5. | Stacking | Order | on Entry | / to | Interru | pts |
|------------|----------|-------|----------|------|---------|-----|
|            |          |       | -        |      |         |     |

## 5.5.2 Non-Maskable Interrupt Request (XIRQ)

Non-maskable interrupts are useful because they can always interrupt CPU operations. The most common use for such an interrupt is for serious system problems, such as program runaway or power failure. The XIRQ input is an updated version of the NMI (non-maskable interrupt) input of earlier MCUs.

Upon reset, both the X bit and I bit of the CCR are set to inhibit all maskable interrupts and  $\overline{XIRQ}$ . After minimum system initialization, software can clear the X bit by a TAP instruction, enabling  $\overline{XIRQ}$  interrupts. Thereafter, software cannot set the X bit. Thus, an  $\overline{XIRQ}$  interrupt is a non-maskable interrupt. Because the operation of the I-bit-related interrupt structure has no effect on the X bit, the internal  $\overline{XIRQ}$  pin remains unmasked. In the interrupt priority logic, the  $\overline{XIRQ}$  interrupt has a higher priority than any source that is maskable by the I bit. All I-bit-related interrupts operate normally with their own priority relationship.

When an I-bit-related interrupt occurs, the I bit is automatically set by hardware after stacking the CCR byte. The X bit is not affected. When an X-bit-related interrupt occurs, both the X and I bits are automatically set by hardware after stacking the CCR. A return-from-interrupt instruction restores the X and I bits to their pre-interrupt request state.

## 5.5.3 Illegal Opcode Trap

Because not all possible opcodes or opcode sequences are defined, the MCU includes an illegal opcode detection circuit, which generates an interrupt request. When an illegal opcode is detected and the interrupt is recognized, the current value of the program counter is stacked. After interrupt service is complete, reinitialize the stack pointer so repeated execution of illegal opcodes does not cause stack underflow. Left uninitialized, the illegal opcode vector can point to a memory location that contains an illegal opcode. This condition causes an infinite loop that causes stack underflow. The stack grows until the system crashes.

The illegal opcode trap mechanism works for all unimplemented opcodes on all four opcode map pages. The address stacked as the return address for the illegal opcode interrupt is the address of the first byte of the illegal opcode. Otherwise, it would be almost impossible to determine whether the illegal opcode had been one or two bytes. The stacked return address can be used as a pointer to the illegal opcode so the illegal opcode service routine can evaluate the offending opcode.



**Low-Power Operation** 



Figure 5-7. Interrupt Source Resolution Within SCI

## 5.6.2 Stop Mode

Executing the STOP instruction while the S bit in the CCR is equal to 0 places the MCU in stop mode. If the S bit is not 0, the stop opcode is treated as a no-op (NOP). Stop mode offers minimum power consumption because all clocks, including the crystal oscillator, are stopped while in this mode. To exit stop and resume normal processing, a logic low level must be applied to one of the external interrupts (IRQ or XIRQ) or to the RESET pin. A pending edge-triggered IRQ can also bring the CPU out of stop.

Because all clocks are stopped in this mode, all internal peripheral functions also stop. The data in the internal RAM is retained as long as  $V_{DD}$  power is maintained. The CPU state and I/O pin levels are static and are unchanged by stop. Therefore, when an interrupt comes to restart the system, the MCU resumes processing as if there were no interruption. If reset is used to restart the system, a normal reset sequence results in which all I/O pins and functions are also restored to their initial states.

To use the  $\overline{IRQ}$  pin as a means of recovering from stop, the I bit in the CCR must be clear ( $\overline{IRQ}$  not masked). The  $\overline{XIRQ}$  pin can be used to wake up the MCU from stop regardless of the state of the X bit in the CCR, although the recovery sequence depends on the state of the X bit. If X is set to 0 ( $\overline{XIRQ}$  not



#### Serial Communications Interface (SCI)



Note: Refer to Figure B-1. EVBU Schematic Diagram for an example of connecting RxD to a PC.

Figure 7-2. SCI Receiver Block Diagram

M68HC11E Family Data Sheet, Rev. 5.1

![](_page_9_Picture_0.jpeg)

## 7.5.2 Address-Mark Wakeup

The serial characters in this type of wakeup consist of seven (eight if M = 1) information bits and an MSB, which indicates an address character (when set to 1, or mark). The first character of each message is an addressing character (MSB = 1). All receivers in the system evaluate this character to determine if the remainder of the message is directed toward this particular receiver. As soon as a receiver determines that a message is not intended for it, the receiver activates the RWU function by using a software write to set the RWU bit. Because setting RWU inhibits receiver-related flags, there is no further software overhead for the rest of this message.

When the next message begins, its first character has its MSB set, which automatically clears the RWU bit and enables normal character reception. The first character whose MSB is set is also the first character to be received after wakeup because RWU gets cleared before the stop bit for that frame is serially received. This type of wakeup allows messages to include gaps of idle time, unlike the idle-line method, but there is a loss of efficiency because of the extra bit time for each character (address bit) required for all characters.

## 7.6 SCI Error Detection

Three error conditions – SCDR overrun, received bit noise, and framing – can occur during generation of SCI system interrupts. Three bits (OR, NF, and FE) in the serial communications status register (SCSR) indicate if one of these error conditions exists.

The overrun error (OR) bit is set when the next byte is ready to be transferred from the receive shift register to the SCDR and the SCDR is already full (RDRF bit is set). When an overrun error occurs, the data that caused the overrun is lost and the data that was already in SCDR is not disturbed. The OR is cleared when the SCSR is read (with OR set), followed by a read of the SCDR.

The noise flag (NF) bit is set if there is noise on any of the received bits, including the start and stop bits. The NF bit is not set until the RDRF flag is set. The NF bit is cleared when the SCSR is read (with FE equal to 1) followed by a read of the SCDR.

When no stop bit is detected in the received data character, the framing error (FE) bit is set. FE is set at the same time as the RDRF. If the byte received causes both framing and overrun errors, the processor only recognizes the overrun error. The framing error flag inhibits further transfer of data into the SCDR until it is cleared. The FE bit is cleared when the SCSR is read (with FE equal to 1) followed by a read of the SCDR.

## 7.7 SCI Registers

Five addressable registers are associated with the SCI:

- Four control and status registers:
  - Serial communications control register 1 (SCCR1)
  - Serial communications control register 2 (SCCR2)
  - Baud rate register (BAUD)
  - Serial communications status register (SCSR)
- One data register:
  - Serial communications data register (SCDR)

The SCI registers are the same for all M68HC11 E-series devices with one exception. The SCI system for MC68HC(7)11E20 contains an extra bit in the BAUD register that provides a greater selection of baud prescaler rates. Refer to 7.7.5 Baud Rate Register, Figure 7-8, and Figure 7-9.

M68HC11E Family Data Sheet, Rev. 5.1

![](_page_10_Picture_1.jpeg)

#### SCR[2:0] — SCI Baud Rate Select Bits

Selects receiver and transmitter bit rate based on output from baud rate prescaler stage. Refer to Figure 7-8 and Figure 7-9.

The prescaler bits, SCP[2:0], determine the highest baud rate, and the SCR[2:0] bits select an additional binary submultiple ( $\div$ 1,  $\div$ 2,  $\div$ 4, through  $\div$ 128) of this highest baud rate. The result of these two dividers in series is the 16X receiver baud rate clock. The SCR[2:0] bits are not affected by reset and can be changed at any time, although they should not be changed when any SCI transfer is in progress.

Figure 7-8 and Figure 7-9 illustrate the SCI baud rate timing chain. The prescaler select bits determine the highest baud rate. The rate select bits determine additional divide by two stages to arrive at the receiver timing (RT) clock rate. The baud rate clock is the result of dividing the RT clock by 16.

![](_page_10_Figure_6.jpeg)

Figure 7-8. SCI Baud Rate Generator Block Diagram

![](_page_11_Picture_0.jpeg)

#### Serial Communications Interface (SCI)

![](_page_11_Figure_2.jpeg)

Figure 7-10. Interrupt Source Resolution Within SCI

![](_page_12_Picture_1.jpeg)

|                                |                      | XTAL Fre            | quencies              |                                |
|--------------------------------|----------------------|---------------------|-----------------------|--------------------------------|
|                                | 4.0 MHz              | 8.0 MHz             | 12.0 MHz              | Other Rates                    |
| Control Bits                   | 1.0 MHz              | 2.0 MHz             | 3.0 MHz               | (E)                            |
| PR1, PR0                       | 1000 ns              | 500 ns              | 333 ns                | (1/E)                          |
|                                |                      | Main Timer          | Count Rates           |                                |
| 0 0<br>1 count —<br>overflow — | 1000 ns<br>65.536 ms | 500 ns<br>32.768 ms | 333 ns<br>21.845 ms   | (E/1)<br>(E/2 <sup>16</sup> )  |
| 0 1<br>1 count —<br>overflow — | 4.0 μs<br>262.14 ms  | 2.0 μs<br>131.07 ms | 1.333 μs<br>87.381 ms | (E/4)<br>(E/2 <sup>18</sup> )  |
| 1 0<br>1 count —<br>overflow — | 8.0 μs<br>524.29 ms  | 4.0 μs<br>262.14 ms | 2.667 μs<br>174.76 ms | (E/8)<br>(E/2 <sup>19</sup> )  |
| 1 1<br>1 count —<br>overflow — | 16.0 μs<br>1.049 s   | 8.0 μs<br>524.29 ms | 5.333 μs<br>349.52 ms | (E/16)<br>(E/2 <sup>20</sup> ) |

#### Table 9-1. Timer Summary

## 9.2 Timer Structure

Figure 9-2 shows the capture/compare system block diagram. The port A pin control block includes logic for timer functions and for general-purpose I/O. For pins PA3, PA2, PA1, and PA0, this block contains both the edge-detection logic and the control logic that enables the selection of which edge triggers an input capture. The digital level on PA[3:0] can be read at any time (read PORTA register), even if the pin is being used for the input capture function. Pins PA[6:3] are used for either general-purpose I/O, or as output compare pins. When one of these pins is being used for an output compare function, it cannot be written directly as if it were a general-purpose output. Each of the output compare functions (OC[5:2]) is related to one of the port A output pins. Output compare one (OC1) has extra control logic, allowing it optional control of any combination of the PA[7:3] pins. The PA7 pin can be used as a general-purpose I/O pin, as an input to the pulse accumulator, or as an OC1 output pin.

## 9.3 Input Capture

The input capture function records the time an external event occurs by latching the value of the free-running counter when a selected edge is detected at the associated timer input pin. Software can store latched values and use them to compute the periodicity and duration of events. For example, by storing the times of successive edges of an incoming signal, software can determine the period and pulse width of a signal. To measure period, two successive edges of the same polarity are captured. To measure pulse width, two alternate polarity edges are captured.

In most cases, input capture edges are asynchronous to the internal timer counter, which is clocked relative to an internal clock (PH2). These asynchronous capture requests are synchronized to PH2 so that the latching occurs on the opposite half cycle of PH2 from when the timer counter is being incremented. This synchronization process introduces a delay from when the edge occurs to when the counter value is detected. Because these delays offset each other when the time between two edges is being measured, the delay can be ignored. When an input capture is being used with an output compare, there is a similar delay between the actual compare point and when the output pin changes state.

![](_page_13_Picture_0.jpeg)

#### **Timing Systems**

![](_page_13_Figure_2.jpeg)

Figure 9-24. Pulse Accumulator

![](_page_14_Picture_0.jpeg)

#### PAII and PAIF — Pulse Accumulator Input Edge Interrupt Enable Bit and Flag

The PAIF status bit is automatically set each time a selected edge is detected at the PA7/PAI/OC1 pin. To clear this status bit, write to the TFLG2 register with a 1 in the corresponding data bit position (bit 4). The PAII control bit allows configuring the pulse accumulator input edge detect for polled or interrupt-driven operation but does not affect setting or clearing the PAIF bit. When PAII is 0, pulse accumulator input interrupts are inhibited, and the system operates in a polled mode. In this mode, the PAIF bit must be polled by user software to determine when an edge has occurred. When the PAII control bit is set, a hardware interrupt request is generated each time PAIF is set. Before leaving the interrupt service routine, software must clear PAIF by writing to the TFLG2 register.

![](_page_15_Picture_0.jpeg)

## 10.12 MC68L11E9/E20 Peripheral Port Timing

|                                                                                                                                                  | Symbol            | 1.0  | MHz        | 2.0 | Unit       |      |
|--------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|------|------------|-----|------------|------|
| Characteristic                                                                                                                                   | Symbol            | Min  | Max        | Min | Max        | Unit |
| Frequency of operation<br>E-clock frequency                                                                                                      | f <sub>o</sub>    | dc   | 1.0        | dc  | 2.0        | MHz  |
| E-clock period                                                                                                                                   | t <sub>CYC</sub>  | 1000 | —          | 500 | —          | ns   |
| Peripheral data setup time<br>MCU read of ports A, C, D, and E                                                                                   | t <sub>PDSU</sub> | 100  | _          | 100 | _          | ns   |
| Peripheral data hold time<br>MCU read of ports A, C, D, and E                                                                                    | t <sub>PDH</sub>  | 50   | —          | 50  | —          | ns   |
| Delay time, peripheral data write<br>t <sub>PWD</sub> = 1/4 t <sub>CYC</sub> + 150 ns<br>MCU writes to port A<br>MCU writes to ports B, C, and D | t <sub>PWD</sub>  |      | 250<br>400 |     | 250<br>275 | ns   |
| Port C input data setup time                                                                                                                     | t <sub>IS</sub>   | 60   | —          | 60  | —          | ns   |
| Port C input data hold time                                                                                                                      | t <sub>IH</sub>   | 100  | —          | 100 | —          | ns   |
| Delay time, E fall to STRB<br>t <sub>DEB</sub> = 1/4 t <sub>CYC</sub> + 150 ns                                                                   | t <sub>DEB</sub>  | _    | 400        | _   | 275        | ns   |
| Setup time, STRA asserted to E fall <sup>(3)</sup>                                                                                               | t <sub>AES</sub>  | 0    | —          | 0   | —          | ns   |
| Delay time, STRA asserted to port C data output valid                                                                                            | t <sub>PCD</sub>  | _    | 100        | _   | 100        | ns   |
| Hold time, STRA negated to port C data                                                                                                           | t <sub>PCH</sub>  | 10   | —          | 10  | —          | ns   |
| 3-state hold time                                                                                                                                | t <sub>PCZ</sub>  | _    | 150        | —   | 150        | ns   |

1. V<sub>DD</sub> = 3.0 Vdc to 5.5 Vdc, V<sub>SS</sub> = 0 Vdc, T<sub>A</sub> = T<sub>L</sub> to T<sub>H</sub>, all timing is shown with respect to 20% V<sub>DD</sub> and 70% V<sub>DD</sub>, unless otherwise noted

2. Ports C and D timing is valid for active drive. (CWOM and DWOM bits are not set in PIOC and SPCR registers, respectively.)

3. If this setup time is met, STRB acknowledges in the next cycle. If it is not met, the response may be delayed one more cycle.

Figure 10-7. Port Read Timing Diagram

![](_page_16_Picture_0.jpeg)

#### **Ordering Information and Mechanical Specifications**

| Description                                           | CONFIG | Temperature      | Frequency | MC Order Number  |  |  |  |  |  |  |
|-------------------------------------------------------|--------|------------------|-----------|------------------|--|--|--|--|--|--|
| 52-pin plastic leaded chip carrier (PLCC) (Continued) |        |                  |           |                  |  |  |  |  |  |  |
| 0702014                                               |        | 40°C to 195°C    | 2 MHz     | MC68HC711E9CFN2  |  |  |  |  |  |  |
|                                                       | ¢or    | -40°C 10 +85°C   | 3 MHz     | MC68HC711E9CFN3  |  |  |  |  |  |  |
|                                                       | \$0F   | –40°C to +105°C  | 2 MHz     | MC68HC711E9VFN2  |  |  |  |  |  |  |
|                                                       |        | –40°C to +125°C  | 2 MHz     | MC68HC711E9MFN2  |  |  |  |  |  |  |
| OTPROM, enhanced security feature                     | \$0F   | –40°C to +85°C   | 2 MHz     | MC68S711E9CFN2   |  |  |  |  |  |  |
|                                                       |        | 0°C to +70°C     | 3 MHz     | MC68HC711E20FN3  |  |  |  |  |  |  |
|                                                       | \$0F   | -40°C to +85°C - | 2 MHz     | MC68HC711E20CFN2 |  |  |  |  |  |  |
| 20 Kbytes OTPROM                                      |        |                  | 3 MHz     | MC68HC711E20CFN3 |  |  |  |  |  |  |
|                                                       |        | –40°C to +105°C  | 2 MHz     | MC68HC711E20VFN2 |  |  |  |  |  |  |
|                                                       |        | -40°C to +125°C  | 2 MHz     | MC68HC711E20MFN2 |  |  |  |  |  |  |
|                                                       |        | 0°C to +70°C     | 2 MHz     | MC68HC811E2FN2   |  |  |  |  |  |  |
| No POM 2 Kbytos EEPPOM                                | ¢EE    | –40°C to +85°C   | 2 MHz     | MC68HC811E2CFN2  |  |  |  |  |  |  |
|                                                       | фгг    | –40°C to +105°C  | 2 MHz     | MC68HC811E2VFN2  |  |  |  |  |  |  |
|                                                       |        | –40°C to +125°C  | 2 MHz     | MC68HC811E2MFN2  |  |  |  |  |  |  |
| 64-pin quad flat pack (QFP)                           |        | ·                |           |                  |  |  |  |  |  |  |
|                                                       | ¢OE    | 10°C to 185°C    | 2 MHz     | MC68HC11E9BCFU2  |  |  |  |  |  |  |
| BUFFALO ROM                                           | φUF    | -40°C 10 +85°C   | 3 MHz     | MC68HC11E9BCFU3  |  |  |  |  |  |  |
|                                                       |        |                  |           |                  |  |  |  |  |  |  |

|                   | φυΓ  | -40 C 10 +85 C  | 3 MHz | MC68HC11E9BCFU3  |
|-------------------|------|-----------------|-------|------------------|
|                   |      | -40°C to 185°C  | 2 MHz | MC68HC11E1CFU2   |
| No ROM            | \$0D | -40 0 10 403 0  | 3 MHz | MC68HC11E1CFU3   |
|                   |      | –40°C to +105°C | 2 MHz | MC68HC11E1VFU2   |
| No ROM, no EEPROM | \$00 | –40°C to +85°C  | 2 MHz | MC68HC11E0CFU2   |
|                   | ψυΟ  | –40°C to +105°C | 2 MHz | MC68HC11E0VFU2   |
|                   |      | 0°C to +70°°C   | 3 MHz | MC68HC711E20FU3  |
|                   |      | 40°C to . 05°C  | 2 MHz | MC68HC711E20CFU2 |
| 20 Kbytes OTPROM  | \$0F | -40 0 10 405 0  | 3 MHz | MC68HC711E20CFU3 |
|                   |      | –40°C to +105°C | 2 MHz | MC68HC711E20VFU2 |
|                   |      | -40°C to +125°C | 2 MHz | MC68HC711E20MFU2 |

### 52-pin thin quad flat pack (TQFP)

|             | ¢OE |                | 2 MHz | MC68HC11E9BCPB2 |
|-------------|-----|----------------|-------|-----------------|
| BOITALO NOM | φΟι | -40 0 10 405 0 | 3 MHz | MC68HC11E9BCPB3 |

![](_page_17_Picture_0.jpeg)

## 11.8 52-Pin Thin Quad Flat Pack (Case 848D)

![](_page_17_Figure_3.jpeg)

![](_page_17_Figure_4.jpeg)

![](_page_17_Figure_5.jpeg)

![](_page_17_Figure_6.jpeg)

![](_page_17_Figure_7.jpeg)

![](_page_17_Figure_8.jpeg)

SECTION AB-AB ROTATED 90° CLOCKWISE

- NOTES: 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. 2. CONTROLLING DIMENSION: MILLIMETER. 3. DATUM PLANE –H-IS LOCATED AT BOTTOM OF LEAD AND IS COINCIDENT WITH THE LEAD WHERE THE LEAD EXITS THE PLASTIC BODY AT THE BOTTOM OF THE PARTING LINE. 4. DATUMS –L-, –M- AND –N- TO BE DETERMINED AT DATUM PLANE –H-. 5. DIMENSIONS S AND V TO BE DETERMINED AT SEATING PLANE –T-. 6. DIMENSIONS S AND B DO NOT INCLUDE MOLD PROTRUSION. ALLOWABLE PROTRUSION IS 0.256 (0010) PER SIDE. DIMENSIONS A AND B DO INCLUDE MOLD MISMATCH AND ARE DETERMINED AT DATUM PLANE +H. 7. DIMENSION D ADDS NOT INCLUDE DAMBAR PROTRUSION. DAMBAR PROTRUSION SHALL NOT CAUSE THE LEAD WIDTH TO EXCEED 0.46 (0.018). MINIMUM SPACE BETWEEN PROTRUSION. 0.07 (0.003).

|     | MILLIN | IETERS   | INC   | HES   |
|-----|--------|----------|-------|-------|
| DIM | MIN    | MAX      | MIN   | MAX   |
| Α   | 10.00  | BSC      | 0.394 | BSC   |
| A1  | 5.00   | BSC      | 0.197 | BSC   |
| В   | 10.00  | BSC      | 0.394 | BSC   |
| B1  | 5.00   | BSC      | 0.197 | BSC   |
| С   |        | 1.70     |       | 0.067 |
| C1  | 0.05   | 0.20     | 0.002 | 0.008 |
| C2  | 1.30   | 1.50     | 0.051 | 0.059 |
| D   | 0.20   | 0.40     | 0.008 | 0.016 |
| E   | 0.45   | 0.75     | 0.018 | 0.030 |
| F   | 0.22   | 0.35     | 0.009 | 0.014 |
| G   | 0.65   | BSC      | 0.026 | BSC   |
| J   | 0.07   | 0.20     | 0.003 | 0.008 |
| K   | 0.50   | 0.50 REF |       | ) REF |
| R1  | 0.08   | 0.20     | 0.003 | 0.008 |
| S   | 12.00  | BSC      | 0.472 | BSC   |
| S1  | 6.00   | BSC      | 0.236 | BSC   |
| U   | 0.09   | 0.16     | 0.004 | 0.006 |
| V   | 12.00  | ) BSC    | 0.472 | 2 BSC |
| V1  | 6.00   | BSC      | 0.236 | 6 BSC |
| W   | 0.20   | REF      | 0.008 | B REF |
| Z   | 1.00   | REF      | 0.039 | REF   |
| θ   | 0°     | 7°       | 0°    | 7°    |
| 01  | 0°     |          | 0°    |       |
| θ2  | 12 °   | REF      | 12 9  | REF   |
| 63  | 50     | 130      | 50    | 130   |

![](_page_18_Picture_0.jpeg)

# Appendix A Development Support

## A.1 Introduction

This section provides information on the development support offered for the E-series devices.

| <b>A.2</b> | M68HC11 | <b>E-Series</b> | Development To | ools |
|------------|---------|-----------------|----------------|------|
|------------|---------|-----------------|----------------|------|

| Device       | Package | Emulation<br>Module <sup>(1) (2)</sup> | Flex<br>Cable <sup>(1) (2)</sup> | MMDS11<br>Target Head <sup>(1) (2)</sup> | SPGMR<br>Programming<br>Adapter <sup>(3)</sup> |
|--------------|---------|----------------------------------------|----------------------------------|------------------------------------------|------------------------------------------------|
|              | 52 FN   | M68EM11E20                             | M68CBL11C                        | M68TC11E20FN52                           | M68PA11E20FN52                                 |
| MC68HC11E9   | 52 PB   | M68EM11E20                             | M68CBL11C                        | M68TC11E20PB52                           | M68PA11E20PB52                                 |
| MC68HC711E9  | 56 B    | M68EM11E20                             | M68CBL11B                        | M68TC11E20B56                            | M68PA11E20B56                                  |
|              | 64 FU   | M68EM11E20                             | M68CBL11C                        | M68TC11E20FU64                           | M68PA11E20FU64                                 |
| MC68HC11E20  | 52 FN   | M68EM11E20                             | M68CBL11C                        | M68TC11E20FN52                           | M68PA11E20FN52                                 |
| MC68HC711E20 | 64 FU   | M68EM11E20                             | M68CBL11C                        | M68TC11E20FU64                           | M68PA11E20FU64                                 |
|              | 48 P    | M68EM11E20                             | M68CBL11B                        | M68TB11E20P48                            | M68PA11A8P48                                   |
|              | 52 FN   | M68EM11E20                             | M68CBL11C                        | M68TC11E20FN52                           | M68PA11E20FN52                                 |

1. Each MMDS11 system consists of a system console (M68MMDS11), an emulation module, a flex cable, and a target head.

2. A complete EVS consists of a platform board (M68HC11PFB), an emulation module, a flex cable, and a target head.

3. Each SPGMR system consists of a universal serial programmer (M68SPGMR11) and a programming adapter. It can be used alone or in conjunction with the MMDS11.

## A.3 EVS — Evaluation System

The EVS is an economical tool for designing, debugging, and evaluating target systems based on the M68HC11. EVS features include:

- Monitor/debugger firmware
- One-line assembler/disassembler
- Host computer download capability
- Dual memory maps:
  - 64-Kbyte monitor map that includes 16 Kbytes of monitor EPROM
  - M68HC11 E-series user map that includes 64 Kbytes of emulation RAM
- MCU extension input/output (I/O) port for single-chip, expanded, and special-test operation modes
- RS-232C terminal and host I/O ports
- Logic analyzer connector

M68HC11E Family Data Sheet, Rev. 5.1

![](_page_19_Picture_0.jpeg)

Listing 1. MCU-to-MCU Duplicator Program

| 27         |      |          | ********    | ******          | * * * * * * * * * * * * * * * * * * * | * * * * * * * * * * * * * *     |
|------------|------|----------|-------------|-----------------|---------------------------------------|---------------------------------|
| 28         |      |          | *           |                 |                                       |                                 |
| 29         | B600 | 7F103D   | BEGIN       | CLR             | INIT                                  | Moves Registers to \$0000-3F    |
| 30         | B603 | 8604     |             | LDAA            | #\$04                                 | Pattern for DWOM off, no SPI    |
| 31         | B605 | 9728     |             | STAA            | SPCR                                  | Turns off DWOM in EVBU MCU      |
| 32         | B607 | 8680     |             |                 | #RESET                                |                                 |
| 22         | BENG | 9704     |             | CTU V           |                                       | Pelease reset to target MCII    |
| 2.7<br>2.4 |      | 12252050 | พฃ๚๛๛๚      |                 | CCCD DDE WTADK                        | Loop till dar required          |
| 24         |      | 15ZEZUFC | WI4DKK      |                 | HORF WI4BER                           | Loop till that received         |
| 35         | BOUF | 8677     |             |                 |                                       | Leading char for bootload       |
| 36         | Reit | 9725     |             | STAA            | SCDR                                  | to target MCU                   |
| 37         | B613 | CEB675   |             | LDX             | #BLPROG                               | Point at program for target     |
| 38         | B616 | 8D53     | BLLOOP      | BSR             | SEND1                                 | Bootload to target              |
| 39         | B618 | 8CB67D   |             | CPX             | #ENDBPR                               | Past end ?                      |
| 40         | B61B | 26F9     |             | BNE             | BLLOOP                                | Continue till all sent          |
| 41         |      |          | ****        |                 |                                       |                                 |
| 42         |      |          | * Delay for | about           | 4 char times to a                     | allow boot related              |
| 43         |      |          | * SCI commu | unicatio        | ons to finish befo                    | ore clearing                    |
| 44         |      |          | * Rx relate | ed flags        | 5                                     | 5                               |
| 45         | B61D | CE06A7   |             | עקיד            | #1703                                 | # of 6 cvc loops                |
| 46         | B620 | 0.9      | DI VI P     | DEX             | 11 2 7 0 0                            | [3]                             |
| 10         | B621 | 26 FD    |             | BNE             |                                       | [3] Total loop time - 6 cyc     |
| 10         | DC21 | 2010     |             |                 |                                       | [5] IOUAL LOOP LIME = 0 Cyc     |
| 40         |      | 962E     |             |                 | SCSR                                  | Read Status (RDRF WIII be set)  |
| 49         | B625 | 962F     |             | LDAA            | SCDR                                  | Read SCI data reg to clear RDRF |
| 50         |      |          | ****        | - · ·           |                                       |                                 |
| 51         |      |          | * Now wait  | for cha         | aracter from targe                    | et to indicate it's ready for   |
| 52         |      |          | * data to k | be prog         | rammed into EPROM                     |                                 |
| 53         | B627 | 132E20FC | WT4FF       | BRCLR           | SCSR RDRF WT4FF                       | Wait for RDRF                   |
| 54         | B62B | 962F     |             | LDAA            | SCDR                                  | Clear RDRF, don't need data     |
| 55         | B62D | CED000   |             | LDX             | #EPSTRT                               | Point at start of EPROM         |
| 56         |      |          | * Handle tu | irn-on d        | of Vpp                                |                                 |
| 57         | B630 | 18CE523D | WT4VPP      | LDY             | #21053                                | Delay counter (about 200ms)     |
| 58         | B634 | 150402   |             | BCLR            | PORTB RED                             | Turn off RED LED                |
| 59         | B637 | 960A     | DI YI P2    |                 | PORTE                                 | [3] Wait for Vpp to be ON       |
| 60         | B639 | 2 A F 5  | 001010      | RDI.            | WT4VDD                                | [3] Von sense is on port F MSB  |
| 61         |      | 140402   |             |                 |                                       | [6] Turn on PED IED             |
| C 2        |      | 140402   |             | DDU             | FORIB RED                             |                                 |
| 62         | BOJE | 1809     |             | DEI             |                                       |                                 |
| 63         | B640 | 2645     |             | BNE .           |                                       | [3]  fotal loop time = 19  cyc  |
| 64         |      |          | * Vpp has b | been sta        | able for 200ms                        |                                 |
| 65         |      |          |             |                 |                                       |                                 |
| 66         | B642 | 18CED000 |             | LDY             | #EPSTRT                               | X=Tx pointer, Y=verify pointer  |
| 67         | B646 | 8D23     |             | BSR             | SEND1                                 | Send first data to target       |
| 68         | B648 | 8C0000   | DATALP      | CPX             | #O                                    | X points at \$0000 after last   |
| 69         | B64B | 2702     |             | BEQ             | VERF                                  | Skip send if no more            |
| 70         | B64D | 8D1C     |             | BSR             | SEND1                                 | Send another data char          |
| 71         | B64F | 132E20FC | VERF        | BRCLR           | SCSR RDRF VERF                        | Wait for Rx readv               |
| 72         | B653 | 962F     |             |                 | SCDR                                  | Get char and clr RDRF           |
| 73         | B655 | 182100   |             | CMPA            | 0 Y                                   | Does char verify ?              |
| 7/         | B658 | 2705     |             | BEO             | VEDEOK                                | Skip error if OK                |
| 75<br>75   |      | 150402   |             | ם נוטם<br>ענוטם |                                       | ) Turn off IFDa                 |
| 10         | ACOD | 100403   |             | DCUK            | FURID (RED+GREEN                      |                                 |
| /6         | R02D | ∠00/     |             | BKA             | DONFKG                                | Done (programming failed)       |
| 77         | B65F |          |             |                 |                                       |                                 |
| 78         | B65F | 1808     | VERFOK      | INY             |                                       | Advance verity pointer          |
| 79         | B661 | 26E5     |             | BNE             | DATALP                                | Continue till all done          |
| 80         | B663 |          |             |                 |                                       |                                 |
| 81         | B663 | 140401   |             | BSET            | PORTB GREEN                           | Grn LED ON                      |
|            |      |          |             |                 |                                       |                                 |

M68HC11 Bootstrap Mode, Rev. 1.1

![](_page_20_Picture_0.jpeg)

```
Listing 3. MC68HC711E9 Bootloader ROM
```

52 D000 EPRMSTR EQU \$D000 Start of EPROM 53 FFFF EPRMEND EQU \$FFFF End of EPROM 54 \* 55 0000 RAMSTR EQU \$0000 56 01FF EQU \$01FF RAMEND 57 58 \* DELAY CONSTANTS 59 \* 60 0DB0 DELAYS EQU 3504 Delay at slow baud 61 021B DELAYF EOU 539 Delay at fast baud 62 2 ms programming delay 63 1068 PROGDEL EQU 4200 64 At 2.1 MHz 65 66 67 BF00 ORG \$BF00 68 69 \* Next two instructions provide a predictable place 70 \* to call PROGRAM and UPLOAD even if the routines 71 72 \* change size in future versions. 73 74 BF00 7EBF13 EPROM programming utility PROGRAM JMP PRGROUT 75 BF03 UPLOAD EQU Upload utility \* 76 77 \* UPLOAD - Utility subroutine to send data from 78 79 \* inside the MCU to the host via the SCI interface. \* Prior to calling UPLOAD set baud rate, turn on SCI 80 81 \* and set Y=first address to upload. 82 \* Bootloader leaves baud set, SCI enabled, and 83 \* Y pointing at EPROM start (\$D000) so these default 84 \* values do not have to be changed typically. 85 \* Consecutive locations are sent via SCI in an \* infinite loop. Reset stops the upload process. 86 87 Point to internal registers 88 BF03 CE1000 #\$1000 LDX 89 BF06 18A600 UPLOOP LDAA Ο,Υ Read byte Wait for TDRE 90 BF09 1F2E80FC BRCLR SCSR,X \$80 \* 91 BF0D A72F Send it STAA SCDAT,X 92 BF0F 1808 INY 93 BF11 20F3 BRA UPLOOP Next... 94 95 96 \* PROGRAM - Utility subroutine to program EPROM. \* Prior to calling PROGRAM set baud rate, turn on SCI 97 98 \* set X=2ms prog delay constant, and set Y=first 99 \* address to program. SP must point to RAM. \* Bootloader leaves baud set, SCI enabled, X=4200 100 \* and Y pointing at EPROM start (\$D000) so these 101 \* default values don't have to be changed typically. 102 103 \* Delay constant in X should be equivalent to 2 ms at 2.1 MHz X=4200; at 1 MHz X=2000. 104 \* \* An external voltage source is required for EPROM 105 106 \* programming.

M68HC11 Bootstrap Mode, Rev. 1.1