
Freescale Semiconductor - MC68HCP11E0FNE Datasheet

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated
circuits designed to perform specific tasks within larger
systems. These microcontrollers are essentially compact
computers on a single chip, containing a processor core,
memory, and programmable input/output peripherals.
They are called "embedded" because they are embedded
within electronic devices to control various functions,
rather than serving as standalone computers.
Microcontrollers are crucial in modern electronics,
providing the intelligence and control needed for a wide
range of applications.

Applications of "Embedded -
Microcontrollers"

Embedded microcontrollers are used in virtually every
sector of electronics, providing the necessary control and
processing power for a multitude of applications. In
consumer electronics, they manage the operations of
smartphones, home appliances, and wearable devices. In
automotive systems, microcontrollers control engine
functions, safety features, and infotainment systems.
Industrial applications rely on microcontrollers for
automation, robotics, and process control. Additionally,
microcontrollers are integral in medical devices, handling
functions such as monitoring, diagnostics, and control of
therapeutic equipment. Their versatility and
programmability make them essential components in
creating efficient, responsive, and intelligent electronic
systems.

Common Subcategories of "Embedded -
Microcontrollers"

Embedded microcontrollers can be categorized based on
their architecture, performance, and application focus.
Common subcategories include 8-bit, 16-bit, and 32-bit
microcontrollers, differentiated by their processing power
and memory capacity. 8-bit microcontrollers are typically
used in simple applications like basic control systems and
small devices. 16-bit microcontrollers offer a balance
between performance and complexity, suitable for
medium-scale applications like industrial automation. 32-
bit microcontrollers provide high performance and are
used in complex applications requiring advanced
processing, such as automotive systems and sophisticated
consumer electronics. Each subcategory serves a specific
range of applications, providing tailored solutions for
different performance and complexity needs.

Types of "Embedded - Microcontrollers"

There are various types of embedded microcontrollers,
each designed to meet specific application requirements.
General-purpose microcontrollers are versatile and used in
a wide range of applications, offering a balance of
performance, memory, and peripheral options. Special-
purpose microcontrollers are tailored for specific tasks,
such as automotive controllers, which include features like
built-in motor control peripherals and automotive-grade

Details

Product Status Active

Core Processor HC11

Core Size 8-Bit

Speed 3MHz

Connectivity SCI, SPI

Peripherals POR, WDT

Number of I/O 38

Program Memory Size -

Program Memory Type ROMless

EEPROM Size -

RAM Size 512 x 8

Voltage - Supply (Vcc/Vdd) 4.5V ~ 5.5V

Data Converters A/D 8x8b

Oscillator Type Internal

Operating Temperature 0°C ~ 70°C (TA)

Mounting Type Surface Mount

Package / Case 52-LCC (J-Lead)

Supplier Device Package 52-PLCC (19.1x19.1)

Purchase URL https://www.e-xfl.com/pro/item?MUrl=&PartUrl=mc68hcp11e0fne

Email: info@E-XFL.COM Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

https://www.e-xfl.com/product/pdf/mc68hcp11e0fne-4381460
https://www.e-xfl.com
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers


Operating Modes and On-Chip Memory
The address, R/W, and AS signals are active and valid for all bus cycles, including accesses to internal 
memory locations. The E clock is used to enable external devices to drive data onto the internal data bus 
during the second half of a read bus cycle (E clock high). R/W controls the direction of data transfers. R/W 
drives low when data is being written to the internal data bus. R/W will remain low during consecutive data 
bus write cycles, such as when a double-byte store occurs. 

Refer to Figure 2-1. 

NOTE
The write enable signal for an external memory is the NAND of the E clock 
and the inverted R/W signal. 

Figure 2-1. Address/Data Demultiplexing

2.2.3  Test Mode 

Test mode, a variation of the expanded mode, is primarily used during Freescale’s internal production 
testing; however, it is accessible for programming the configuration (CONFIG) register, programming 
calibration data into electrically erasable, programmable read-only memory (EEPROM), and supporting 
emulation and debugging during development. 

2.2.4  Bootstrap Mode 

When the MCU is reset in special bootstrap mode, a small on-chip read-only memory (ROM) is enabled 
at address $BF00–$BFFF. The ROM contains a bootloader program and a special set of interrupt and 
reset vectors. The MCU fetches the reset vector, then executes the bootloader. 

Bootstrap mode is a special variation of the single-chip mode. Bootstrap mode allows special-purpose 
programs to be entered into internal random-access memory (RAM). When bootstrap mode is selected 
at reset, a small bootstrap ROM becomes present in the memory map. Reset and interrupt vectors are 

HC373

MCU

ADDR14
ADDR13
ADDR12
ADDR11
ADDR10
ADDR9
ADDR8

ADDR15

ADDR6
ADDR5
ADDR4
ADDR3
ADDR2
ADDR1
ADDR0

ADDR7

DATA6
DATA5
DATA4
DATA3
DATA2
DATA1
DATA0

DATA7

D2
D3
D4
D5
D6
D7
D8

D1
Q2
Q3
Q4
Q5
Q6
Q7
Q8

Q1

OELE

PC6
PC5
PC4
PC3
PC2
PC1
PC0

PC7

AS

PB6
PB5
PB4
PB3
PB2
PB1
PB0

PB7

R/W
E WE

OE
M68HC11E Family Data Sheet, Rev. 5.1

30 Freescale Semiconductor



Memory Map
located in this ROM at $BFC0–$BFFF. The bootstrap ROM contains a small program which initializes the 
serial communications interface (SCI) and allows the user to download a program into on-chip RAM. The 
size of the downloaded program can be as large as the size of the on-chip RAM. After a 4-character delay, 
or after receiving the character for the highest address in RAM, control passes to the loaded program at 
$0000. Refer to Figure 2-2, Figure 2-3, Figure 2-4, Figure 2-5, and Figure 2-6. 

Use of an external pullup resistor is required when using the SCI transmitter pin because port D pins are 
configured for wired-OR operation by the bootloader. In bootstrap mode, the interrupt vectors are directed 
to RAM. This allows the use of interrupts through a jump table. Refer to the application note AN1060 
entitled M68HC11 Bootstrap Mode, that is included in this data book. 

2.3  Memory Map 

The operating mode determines memory mapping and whether external addresses can be accessed. 
Refer to Figure 2-2, Figure 2-3, Figure 2-4, Figure 2-5, and Figure 2-6, which illustrate the memory maps 
for each of the three families comprising the M68HC11 E series of MCUs. 

Memory locations for on-chip resources are the same for both expanded and single-chip modes. Control 
bits in the configuration (CONFIG) register allow EPROM and EEPROM (if present) to be disabled from 
the memory map. The RAM is mapped to $0000 after reset. It can be placed at any 4-Kbyte boundary 
($x000) by writing an appropriate value to the RAM and I/O map register (INIT). The 64-byte register block 
is mapped to $1000 after reset and also can be placed at any 4-Kbyte boundary ($x000) by writing an 
appropriate value to the INIT register. If RAM and registers are mapped to the same boundary, the first 
64 bytes of RAM will be inaccessible. 

Refer to Figure 2-7, which details the MCU register and control bit assignments. Reset states shown are 
for single-chip mode only.

Figure 2-2. Memory Map for MC68HC11E0

FFC0

FFFF

NORMAL 
MODES
INTERRUPT
VECTORS

64-BYTE REGISTER BLOCK

 512 BYTES RAM

BOOTSTRAP SPECIAL
TEST

EXT

0000

1000

103F

BF00

EXPANDED

BFFF

BFC0

BFFF

SPECIAL MODES
INTERRUPT
VECTORS

BOOT
ROM

EXT EXT

01FFEXT

$0000

$1000

$B600

$D000

$FFFF
M68HC11E Family Data Sheet, Rev. 5.1

Freescale Semiconductor 31



Operating Modes and On-Chip Memory
$1031
Analog-to-Digital Results

Register 1 (ADR1)
See page 64.

Read: Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

Write:

Reset: Indeterminate after reset

$1032
Analog-to-Digital Results

Register 2 (ADR2)
See page 64.

Read: Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

Write:

Reset: Indeterminate after reset

$1033
Analog-to-Digital Results

Register 3 (ADR3)
See page 64.

Read: Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

Write:

Reset: Indeterminate after reset

$1034
Analog-to-Digital Results

Register 4 (ADR4)
See page 64.

Read: Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

Write:

Reset: Indeterminate after reset

$1035
Block Protect Register

(BPROT)
See page 52.

Read:
PTCON BPRT3 BPRT2 BPRT1 BPRT0

Write:

Reset: 0 0 0 1 1 1 1 1

$1036
EPROM Programming Control

Register (EPROG)(1)

See page 53.

Read:
MBE ELAT EXCOL EXROW T1 T0 PGM

Write:

Reset: 0 0 0 0 0 0 0 0

$1037 Reserved R R R R R R R R

1. MC68HC711E20 only

$1038 Reserved R R R R R R R R

$1039
System Configuration Options

Register (OPTION)
See page 46.

Read:
ADPU CSEL IRQE(1) DLY(1) CME CR1(1) CR0(1)

Write:

Reset: 0 0 0 1 0 0 0 0

$103A
Arm/Reset COP Timer Circuitry

Register (COPRST)
See page 81.

Read:
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

Write:

Reset: 0 0 0 0 0 0 0 0

$103B
EPROM and EEPROM Program-
ming Control Register (PPROG)

See page 49.

Read:
ODD EVEN ELAT(2) BYTE ROW ERASE EELAT EPGM

Write:

Reset: 0 0 0 0 0 0 0 0

$103C
Highest Priority I Bit Interrupt and
Miscellaneous Register (HPRIO)

See page 41.

Read:
RBOOT SMOD MDA IRV(NE) PSEL3 PSEL2 PSEL1 PSEL0

Write:

Reset: 0 0 0 0 0 1 1 0

$103D
RAM and I/O Mapping Register

(INIT)
See page 45.

Read:
RAM3 RAM2 RAM1 RAM0 REG3 REG2 REG1 REG0

Write:

Reset: 0 0 0 0 0 0 0 1

Addr. Register Name Bit 7 6 5 4 3 2 1 Bit 0

= Unimplemented R = Reserved U = Unaffected

I = Indeterminate after reset

Figure 2-7. Register and Control Bit Assignments (Sheet 5 of 6)
M68HC11E Family Data Sheet, Rev. 5.1

38 Freescale Semiconductor



 Central Processor Unit (CPU)
4.4  Opcodes and Operands 

The M68HC11 Family of microcontrollers uses 8-bit opcodes. Each opcode identifies a particular 
instruction and associated addressing mode to the CPU. Several opcodes are required to provide each 
instruction with a range of addressing capabilities. Only 256 opcodes would be available if the range of 
values were restricted to the number able to be expressed in 8-bit binary numbers. 

A 4-page opcode map has been implemented to expand the number of instructions. An additional byte, 
called a prebyte, directs the processor from page 0 of the opcode map to one of the other three pages. 
As its name implies, the additional byte precedes the opcode. 

A complete instruction consists of a prebyte, if any, an opcode, and zero, one, two, or three operands. 
The operands contain information the CPU needs for executing the instruction. Complete instructions can 
be from one to five bytes long. 

4.5  Addressing Modes 

Six addressing modes can be used to access memory: 

• Immediate

• Direct

• Extended

• Indexed

• Inherent

• Relative

These modes are detailed in the following paragraphs. All modes except inherent mode use an effective 
address. The effective address is the memory address from which the argument is fetched or stored or 
the address from which execution is to proceed. The effective address can be specified within an 
instruction, or it can be calculated. 

4.5.1  Immediate 

In the immediate addressing mode, an argument is contained in the byte(s) immediately following the 
opcode. The number of bytes following the opcode matches the size of the register or memory location 
being operated on. There are 2-, 3-, and 4- (if prebyte is required) byte immediate instructions. The 
effective address is the address of the byte following the instruction. 

4.5.2  Direct 

In the direct addressing mode, the low-order byte of the operand address is contained in a single byte 
following the opcode, and the high-order byte of the address is assumed to be $00. Addresses $00–$FF 
are thus accessed directly, using 2-byte instructions. Execution time is reduced by eliminating the 
additional memory access required for the high-order address byte. In most applications, this 
256-byte area is reserved for frequently referenced data. In M68HC11 MCUs, the memory map can be 
configured for combinations of internal registers, RAM, or external memory to occupy these addresses. 
M68HC11E Family Data Sheet, Rev. 5.1

70 Freescale Semiconductor



Resets and Interrupts
5.3.2  Memory Map 

After reset, the INIT register is initialized to $01, mapping the RAM at $00 and the control registers at 
$1000. 

For the MC68HC811E2, the CONFIG register resets to $FF. EEPROM mapping bits (EE[3:0]) place the 
EEPROM at $F800. Refer to the memory map diagram for MC68HC811E2 in Chapter 2 Operating Modes 
and On-Chip Memory. 

5.3.3  Timer 

During reset, the timer system is initialized to a count of $0000. The prescaler bits are cleared, and all 
output compare registers are initialized to $FFFF. All input capture registers are indeterminate after reset. 
The output compare 1 mask (OC1M) register is cleared so that successful OC1 compares do not affect 
any I/O pins. The other four output compares are configured so that they do not affect any I/O pins on 
successful compares. All input capture edge-detector circuits are configured for capture disabled 
operation. The timer overflow interrupt flag and all eight timer function interrupt flags are cleared. All nine 
timer interrupts are disabled because their mask bits have been cleared. 

The I4/O5 bit in the PACTL register is cleared to configure the I4/O5 function as OC5; however, the 
OM5:OL5 control bits in the TCTL1 register are clear so OC5 does not control the PA3 pin. 

5.3.4  Real-Time Interrupt (RTI) 

The real-time interrupt flag (RTIF) is cleared and automatic hardware interrupts are masked. The rate 
control bits are cleared after reset and can be initialized by software before the real-time interrupt (RTI) 
system is used. 

5.3.5  Pulse Accumulator 

The pulse accumulator system is disabled at reset so that the pulse accumulator input (PAI) pin defaults 
to being a general-purpose input pin. 

5.3.6  Computer Operating Properly (COP) 

The COP watchdog system is enabled if the NOCOP control bit in the CONFIG register is cleared and 
disabled if NOCOP is set. The COP rate is set for the shortest duration timeout. 

5.3.7  Serial Communications Interface (SCI) 

The reset condition of the SCI system is independent of the operating mode. At reset, the SCI baud rate 
control register (BAUD) is initialized to $04. All transmit and receive interrupts are masked and both the 
transmitter and receiver are disabled so the port pins default to being general-purpose I/O lines. The SCI 
frame format is initialized to an 8-bit character size. The send break and receiver wakeup functions are 
disabled. The TDRE and TC status bits in the SCI status register (SCSR) are both 1s, indicating that there 
is no transmit data in either the transmit data register or the transmit serial shift register. The RDRF, IDLE, 
OR, NF, FE, PF, and RAF receive-related status bits in the SCI control register 2 (SCCR2) are cleared. 

5.3.8  Serial Peripheral Interface (SPI) 

The SPI system is disabled by reset. The port pins associated with this function default to being 
general-purpose I/O lines. 
M68HC11E Family Data Sheet, Rev. 5.1

84 Freescale Semiconductor



Reset and Interrupt Priority
5.3.9  Analog-to-Digital (A/D) Converter 

The analog-to-digital (A/D) converter configuration is indeterminate after reset. The ADPU bit is cleared 
by reset, which disables the A/D system. The conversion complete flag is indeterminate. 

5.3.10  System 

The EEPROM programming controls are disabled, so the memory system is configured for normal read 
operation. PSEL[3:0] are initialized with the value %0110, causing the external IRQ pin to have the 
highest I-bit interrupt priority. The IRQ pin is configured for level-sensitive operation (for wired-OR 
systems). The RBOOT, SMOD, and MDA bits in the HPRIO register reflect the status of the MODB and 
MODA inputs at the rising edge of reset. MODA and MODB inputs select one of the four operating modes. 
After reset, writing SMOD and MDA in special modes causes the MCU to change operating modes. Refer 
to the description of HPRIO register in Chapter 2 Operating Modes and On-Chip Memory for a detailed 
description of SMOD and MDA. The DLY control bit is set to specify that an oscillator startup delay is 
imposed upon recovery from stop mode. The clock monitor system is disabled because CME is cleared. 

5.4  Reset and Interrupt Priority 

Resets and interrupts have a hardware priority that determines which reset or interrupt is serviced first 
when simultaneous requests occur. Any maskable interrupt can be given priority over other maskable 
interrupts. 

The first six interrupt sources are not maskable. The priority arrangement for these sources is: 
1. POR or RESET pin 
2. Clock monitor reset 
3. COP watchdog reset 
4. XIRQ interrupt 
5. Illegal opcode interrupt 
6. Software interrupt (SWI) 

The maskable interrupt sources have this priority arrangement: 
1. IRQ 
2. Real-time interrupt 
3. Timer input capture 1 
4. Timer input capture 2 
5. Timer input capture 3 
6. Timer output compare 1 
7. Timer output compare 2 
8. Timer output compare 3 
9. Timer output compare 4 

10. Timer input capture 4/output compare 5 
11. Timer overflow 
12. Pulse accumulator overflow 
13. Pulse accumulator input edge 
14. SPI transfer complete 
15. SCI system (refer to Figure 5-7) 
M68HC11E Family Data Sheet, Rev. 5.1

Freescale Semiconductor 85



Interrupts
end of the interrupt service routine, the return-from-interrupt instruction is executed and the saved 
registers are pulled from the stack in reverse order so that normal program execution can resume. Refer 
to Chapter 4  Central Processor Unit (CPU). 

5.5.2  Non-Maskable Interrupt Request (XIRQ) 

Non-maskable interrupts are useful because they can always interrupt CPU operations. The most 
common use for such an interrupt is for serious system problems, such as program runaway or power 
failure. The XIRQ input is an updated version of the NMI (non-maskable interrupt) input of earlier MCUs. 

Upon reset, both the X bit and I bit of the CCR are set to inhibit all maskable interrupts and XIRQ. After 
minimum system initialization, software can clear the X bit by a TAP instruction, enabling XIRQ interrupts. 
Thereafter, software cannot set the X bit. Thus, an XIRQ interrupt is a non-maskable interrupt. Because 
the operation of the I-bit-related interrupt structure has no effect on the X bit, the internal XIRQ pin remains 
unmasked. In the interrupt priority logic, the XIRQ interrupt has a higher priority than any source that is 
maskable by the I bit. All I-bit-related interrupts operate normally with their own priority relationship. 

When an I-bit-related interrupt occurs, the I bit is automatically set by hardware after stacking the CCR 
byte. The X bit is not affected. When an X-bit-related interrupt occurs, both the X and I bits are 
automatically set by hardware after stacking the CCR. A return-from-interrupt instruction restores the X 
and I bits to their pre-interrupt request state. 

5.5.3  Illegal Opcode Trap 

Because not all possible opcodes or opcode sequences are defined, the MCU includes an illegal opcode 
detection circuit, which generates an interrupt request. When an illegal opcode is detected and the 
interrupt is recognized, the current value of the program counter is stacked. After interrupt service is 
complete, reinitialize the stack pointer so repeated execution of illegal opcodes does not cause stack 
underflow. Left uninitialized, the illegal opcode vector can point to a memory location that contains an 
illegal opcode. This condition causes an infinite loop that causes stack underflow. The stack grows until 
the system crashes. 

The illegal opcode trap mechanism works for all unimplemented opcodes on all four opcode map pages. 
The address stacked as the return address for the illegal opcode interrupt is the address of the first byte 
of the illegal opcode. Otherwise, it would be almost impossible to determine whether the illegal opcode 
had been one or two bytes. The stacked return address can be used as a pointer to the illegal opcode so 
the illegal opcode service routine can evaluate the offending opcode. 

Table 5-5. Stacking Order on Entry to Interrupts  

Memory Location CPU Registers

SP PCL 

SP–1 PCH 

SP–2 IYL 

SP–3 IYH 

SP–4 IXL 

SP–5 IXH 

SP–6 ACCA 

SP–7 ACCB 

SP–8 CCR 
M68HC11E Family Data Sheet, Rev. 5.1

Freescale Semiconductor 89



Resets and Interrupts
Figure 5-5. Processing Flow Out of Reset (Sheet 2 of 2) 

BIT I IN
CCR = 1?

2A

Y

N

ANY I-BIT
INTERRUPT

Y

N

PENDING?

FETCH OPCODE

ILLEGAL
OPCODE?

Y

N

WAI Y

N

INSTRUCTION?

SWI
INSTRUCTION?

Y

N

RTI
INSTRUCTION?

Y

N

EXECUTE THIS
INSTRUCTION

STACK CPU
REGISTERS

ANYN

Y

INTERRUPT
PENDING?

SET BIT I IN CCR

RESOLVE INTERRUPT
PRIORITY AND FETCH
VECTOR FOR HIGHEST
PENDING SOURCE

STACK CPU
REGISTERS

SET BIT I IN CCR

FETCH VECTOR
$FFF8, $FFF9

STACK CPU
REGISTERS

SET BIT I IN CCR

FETCH VECTOR
$FFF6, $FFF7

RESTORE CPU
REGISTERS

FROM STACK

1A

STACK CPU
REGISTERS

SEE FIGURE 5–2
M68HC11E Family Data Sheet, Rev. 5.1

92 Freescale Semiconductor



Resets and Interrupts
Figure 5-6. Interrupt Priority Resolution (Sheet 2 of 2) 

TOI = 1?
Y

N

Y

N

PAOVI = 1?

PAII = 1?
Y

N

SPIE = 1?
Y

N

Y

N

FLAG Y

N

Y

N

FLAG

FLAG Y

N

FLAGS Y

N

PAIF = 1?

SPIF = 1? OR

TOF = 1?

PAOVF = 1

FETCH VECTOR
$FFDE, $FFDF

FETCH VECTOR
$FFDC, $FFDD

FETCH VECTOR
$FFDA, $FFDB

FETCH VECTOR
$FFD6, $FFD7

FETCH VECTOR
$FFD8, $FFD9

OC2I = 1?
Y

N

Y

N

OC3I = 1?

OC4I = 1?
Y

N

I4/O5I = 1?
Y

N

FLAG Y

N

Y

N

FLAG

FLAG Y

N

FLAG Y

N

OC4F = 1?

I4/O5IF = 1?

OC2F = 1?

OC3F = 1

FETCH VECTOR
$FFE6, $FFE7

FETCH VECTOR
$FFE4, $FFE5

FETCH VECTOR
$FFE2, $FFE3

FETCH VECTOR
$FFE0, $FFE1

MODF = 1?

INTERRUPT?
SEE FIGURE

5–3

2A 2B

END

FETCH VECTOR
$FFF2, $FFF3

SCI
M68HC11E Family Data Sheet, Rev. 5.1

94 Freescale Semiconductor



Low-Power Operation
Figure 5-7. Interrupt Source Resolution Within SCI 

5.6.2  Stop Mode

Executing the STOP instruction while the S bit in the CCR is equal to 0 places the MCU in stop mode. If 
the S bit is not 0, the stop opcode is treated as a no-op (NOP). Stop mode offers minimum power 
consumption because all clocks, including the crystal oscillator, are stopped while in this mode. To exit 
stop and resume normal processing, a logic low level must be applied to one of the external interrupts 
(IRQ or XIRQ) or to the RESET pin. A pending edge-triggered IRQ can also bring the CPU out of stop. 

Because all clocks are stopped in this mode, all internal peripheral functions also stop. The data in the 
internal RAM is retained as long as VDD power is maintained. The CPU state and I/O pin levels are static 
and are unchanged by stop. Therefore, when an interrupt comes to restart the system, the MCU resumes 
processing as if there were no interruption. If reset is used to restart the system, a normal reset sequence 
results in which all I/O pins and functions are also restored to their initial states. 

To use the IRQ pin as a means of recovering from stop, the I bit in the CCR must be clear (IRQ not 
masked). The XIRQ pin can be used to wake up the MCU from stop regardless of the state of the X bit in 
the CCR, although the recovery sequence depends on the state of the X bit. If X is set to 0 (XIRQ not 

FLAG Y

N

OR = 1?
Y

N

Y

N

TDRE = 1?

TC = 1?
Y

N

IDLE = 1?
Y

N

Y

N

Y

N

Y

N

ILIE = 1?

RIE = 1?

TIE = 1?

BEGIN

RE = 1?
Y

N

Y

N

TE = 1?

TCIE = 1?
Y

N

RE = 1?
Y

N

RDRF = 1?

VALID SCI REQUESTNO
VALID SCI REQUEST
M68HC11E Family Data Sheet, Rev. 5.1

Freescale Semiconductor 95



Receiver Flags
TDRE and TC flags are normally set when the transmitter is first enabled (TE set to 1). The TDRE flag 
indicates there is room in the transmit queue to store another data character in the TDR. The TIE bit is 
the local interrupt mask for TDRE. When TIE is 0, TDRE must be polled. When TIE and TDRE are 1, an 
interrupt is requested. 

The TC flag indicates the transmitter has completed the queue. The TCIE bit is the local interrupt mask 
for TC. When TCIE is 0, TC must be polled. When TCIE is 1 and TC is 1, an interrupt is requested. 

Writing a 0 to TE requests that the transmitter stop when it can. The transmitter completes any 
transmission in progress before actually shutting down. Only an MCU reset can cause the transmitter to 
stop and shut down immediately. If TE is written to 0 when the transmitter is already idle, the pin reverts 
to its general-purpose I/O function (synchronized to the bit-rate clock). If anything is being transmitted 
when TE is written to 0, that character is completed before the pin reverts to general-purpose I/O, but any 
other characters waiting in the transmit queue are lost. The TC and TDRE flags are set at the completion 
of this last character, even though TE has been disabled. 

7.9  Receiver Flags 

The SCI receiver has five status flags, three of which can generate interrupt requests. The status flags 
are set by the SCI logic in response to specific conditions in the receiver. These flags can be read (polled) 
at any time by software. Refer to Figure 7-10, which shows SCI interrupt arbitration. 

When an overrun takes place, the new character is lost, and the character that was in its way in the 
parallel RDR is undisturbed. RDRF is set when a character has been received and transferred into the 
parallel RDR. The OR flag is set instead of RDRF if overrun occurs. A new character is ready to be 
transferred into RDR before a previous character is read from RDR. 

The NF and FE flags provide additional information about the character in the RDR, but do not generate 
interrupt requests. 

The last receiver status flag and interrupt source come from the IDLE flag. The RxD line is idle if it has 
constantly been at logic 1 for a full character time. The IDLE flag is set only after the RxD line has been 
busy and becomes idle, which prevents repeated interrupts for the whole time RxD remains idle. 
M68HC11E Family Data Sheet, Rev. 5.1

Freescale Semiconductor 117



 Serial Peripheral Interface (SPI)
MSTR — Master Mode Select Bit
It is customary to have an external pullup resistor on lines that are driven by open-drain devices.

0 = Slave mode 
1 = Master mode 

CPOL — Clock Polarity Bit
When the clock polarity bit is cleared and data is not being transferred, the SCK pin of the master 
device has a steady state low value. When CPOL is set, SCK idles high. Refer to Figure 8-2 and 8.4 
Clock Phase and Polarity Controls. 

CPHA — Clock Phase Bit
The clock phase bit, in conjunction with the CPOL bit, controls the clock-data relationship between 
master and slave. The CPHA bit selects one of two different clocking protocols. Refer to Figure 8-2 
and 8.4 Clock Phase and Polarity Controls. 

SPR[1:0] — SPI Clock Rate Select Bits
These two bits select the SPI clock (SCK) rate when the device is configured as master. When the 
device is configured as slave, these bits have no effect. Refer to Table 8-1. 

8.7.2  Serial Peripheral Status Register

SPIF — SPI Interrupt Complete Flag 
SPIF is set upon completion of data transfer between the processor and the external device. If SPIF 
goes high, and if SPIE is set, a serial peripheral interrupt is generated. To clear the SPIF bit, read the 
SPSR with SPIF set, then access the SPDR. Unless SPSR is read (with SPIF set) first, attempts to 
write SPDR are inhibited. 

WCOL — Write Collision Bit
Clearing the WCOL bit is accomplished by reading the SPSR (with WCOL set) followed by an access 
of SPDR. Refer to 8.5.4 Slave Select and 8.6 SPI System Errors.

0 = No write collision 
1 = Write collision 

Table 8-1. SPI Clock Rates 

SPR[1:0]
Divide 

E Clock By

Frequency at
E = 1 MHz 

(Baud)

Frequency at
E = 2 MHz 

(Baud)

Frequency at
E = 3 MHz (

Baud) 

Frequency at
E = 4 MHz 

(Baud) 

0 0 2 500 kHz 1.0 MHz 1.5 MHz 2 MHz 

0 1 4 250 kHz 500 kHz 750 kHz 1 MHz 

1 0 16 62.5 kHz 125 kHz 187.5 kHz 250 kHz 

1 1 32 31.3 kHz 62.5 kHz 93.8 kHz 125 kHz 

Address: $1029

Bit 7 6 5 4 3 2 1 Bit 0

Read:
SPIF WCOL MODF

Write:

Reset: 0 0 0 0 0 0 0 0

= Unimplemented

Figure 8-4. Serial Peripheral Status Register (SPSR)
M68HC11E Family Data Sheet, Rev. 5.1

124 Freescale Semiconductor



1  E
lectrical C

h
aracteristics

ECTOR
ADDR

VECTOR
ADDR + 1

NEW
PC
M
68H

C
11E

 Fam
ily D

ata S
h

eet, R
ev. 5.1

60
F

reescale S
em

iconductor

Figure 10-5. WAIT Recovery from Interrupt Timing Diagram

tPCSU

PCL            PCH, YL, YH, XL, XH, A, B, CCR

STACK REGISTERS

E

R/W

ADDRESS WAIT
ADDR

WAIT
ADDR + 1

IRQ, XIRQ,
OR INTERNAL
INTERRUPTS

Note:  RESET also causes recovery from WAIT.

SP SP – 1 SP – 2…SP – 8 SP – 8 SP – 8…SP – 8 SP – 8 SP – 8 SP – 8 V

tWRS



 Electrical Characteristics
10.15  Expansion Bus Timing Characteristics

Num Characteristic(1)

1. VDD = 5.0 Vdc ±10%, VSS = 0 Vdc, TA = TL to TH, all timing is shown with respect to 20% VDD and 70% VDD, unless oth-
erwise noted

Symbol
1.0 MHz 2.0 MHz 3.0 MHz

Unit
Min Max Min Max Min Max

Frequency of operation (E-clock frequency) fo dc 1.0 dc 2.0 dc 3.0 MHz

1 Cycle time tCYC 1000 — 500 — 333 — ns

2 Pulse width, E low(2), PWEL = 1/2 tCYC–23 ns

2. Formula only for dc to 2 MHz

PWEL 477 — 227 — 146 — ns

3 Pulse width, E high(2), PWEH = 1/2 tCYC–28 ns PWEH 472 — 222 — 141 — ns

4a E and AS rise time tr — 20 — 20 — 20 ns

4b E and AS fall time tf — 20 — 20 — 15 ns

9 Address hold time(2) (3)a, tAH = 1/8 tCYC–29.5 ns

3. Input clocks with duty cycles other than 50% affect bus performance. Timing parameters affected by input clock duty cycle
are identified by (a) and (b). To recalculate the approximate bus timing values, substitute the following expressions in place
of 1/8 tCYCin the above formulas, where applicable:
(a) (1–dc) × 1/4 tCYC
(b) dc × 1/4 tCYC

Where:
dc is the decimal value of duty cycle percentage (high time)

tAH 95.5 — 33 — 26 — ns

12
Non-multiplexed address valid time to E rise

tAV = PWEL –(tASD + 80 ns)(2) (3)a tAV 281.5 — 94 — 54 — ns

17 Read data setup time tDSR 30 — 30 — 30 — ns

18 Read data hold time, max = tMAD tDHR 0 145.5 0 83 0 51 ns

19 Write data delay time, tDDW = 1/8 tCYC+ 65.5 ns(2) (3)a tDDW — 190.5 — 128 71 ns

21 Write data hold time, tDHW = 1/8 tCYC–29.5 ns(2) (3)a tDHW 95.5 — 33 — 26 — ns

22
Multiplexed address valid time to E rise

tAVM = PWEL –(tASD + 90 ns)(2) (3)a tAVM 271.5 — 84 — 54 — ns

24
Multiplexed address valid time to AS fall

tASL = PWASH –70 ns(2) tASL 151 — 26 — 13 — ns

25
Multiplexed address hold time

tAHL = 1/8 tCYC–29.5 ns(2) (3)b tAHL 95.5 — 33 — 31 — ns

26 Delay time, E to AS rise, tASD = 1/8 tCYC–9.5 ns(2) (3)a tASD 115.5 — 53 — 31 — ns

27 Pulse width, AS high, PWASH = 1/4 tCYC–29 ns(2) PWASH 221 — 96 — 63 — ns

28 Delay time, AS to E rise, tASED = 1/8 tCYC–9.5 ns(2) (3)b tASED 115.5 — 53 — 31 — ns

29 MPU address access time(3)a

tACCA = tCYC–(PWEL–tAVM) –tDSR–tf
tACCA 744.5 — 307 — 196 — ns

35 MPU access time, tACCE = PWEH –tDSR tACCE — 442 — 192 111 ns

36
Multiplexed address delay (Previous cycle MPU read)

tMAD = tASD + 30 ns(2) (3)a tMAD 145.5 — 83 — 51 — ns
M68HC11E Family Data Sheet, Rev. 5.1

168 Freescale Semiconductor



Ordering Information and Mechanical Specifications
11.5  52-Pin Plastic-Leaded Chip Carrier (Case 778)

–L–

Y BRK

W

D

D

V
52 1

NOTES:
1. DATUMS –L–, –M–, AND –N– DETERMINED WHERE

TOP OF LEAD SHOULDER EXITS PLASTIC BODY AT
MOLD PARTING LINE.

2. DIMENSION G1, TRUE POSITION TO BE MEASURED
AT DATUM –T–, SEATING PLANE.

3. DIMENSIONS R AND U DO NOT INCLUDE MOLD
FLASH.  ALLOWABLE MOLD FLASH  IS 0.010 (0.250)
PER SIDE.

4. DIMENSIONING AND TOLERANCING PER ANSI
Y14.5M, 1982.

5. CONTROLLING DIMENSION: INCH.
6. THE PACKAGE TOP MAY BE SMALLER THAN THE

PACKAGE BOTTOM BY UP TO 0.012 (0.300).
DIMENSIONS R AND U ARE DETERMINED AT THE
OUTERMOST EXTREMES OF THE PLASTIC BODY
EXCLUSIVE OF MOLD FLASH, TIE BAR BURRS, GATE
BURRS AND INTERLEAD FLASH, BUT INCLUDING
ANY MISMATCH BETWEEN THE TOP AND BOTTOM
OF THE PLASTIC BODY.

7. DIMENSION H DOES NOT INCLUDE DAMBAR
PROTRUSION OR INTRUSION.  THE DAMBAR
PROTRUSION(S) SHALL NOT CAUSE THE H
DIMENSION TO BE GREATER THAN 0.037 (0.940).
THE DAMBAR INTRUSION(S) SHALL NOT CAUSE THE
H DIMENSION TO BE SMALLER THAN 0.025 (0.635).

B

U

Z

G1
X

VIEW D–D

H

K1

K F

VIEW S

M0.007 (0.18) L–M ST SN

M0.007 (0.18) L–M ST SN

0.004 (0.100)
–T– SEATING

PLANE

M0.007 (0.18) L–M ST SN

M0.007 (0.18) L–M ST SNA

R

G

G1

C

Z

J

E

VIEW S

–M–

–N–

DIM MIN MAX MIN MAX
MILLIMETERSINCHES

A 0.785 0.795 19.94 20.19
B 0.785 0.795 19.94 20.19
C 0.165 0.180 4.20 4.57
E 0.090 0.110 2.29 2.79
F 0.013 0.019 0.33 0.48
G 0.050 BSC 1.27 BSC
H 0.026 0.032 0.66 0.81
J 0.020 ––– 0.51 –––
K 0.025 ––– 0.64 –––
R 0.750 0.756 19.05 19.20
U 0.750 0.756 19.05 19.20
V 0.042 0.048 1.07 1.21
W 0.042 0.048 1.07 1.21
X 0.042 0.056 1.07 1.42
Y ––– 0.020 ––– 0.50
Z 2  10  2  10  

G1 0.710 0.730 18.04 18.54
K1 0.040 ––– 1.02 –––

� � � �

M0.007 (0.18) L–M ST SN

M0.007 (0.18) L–M ST SN

S0.010 (0.25) L–M ST SN

S0.010 (0.25) L–M ST SN
M68HC11E Family Data Sheet, Rev. 5.1

182 Freescale Semiconductor



SPGMR11 — Serial Programmer for M68HC11 MCUs
• Extensive on-line MCU information via the CHIPINFO command. View memory map, vectors, 
register, and pinout information pertaining to the device being emulated

• Host software supports:
– An editor
– An assembler and user interface
– Source-level debug 
– Bus state analysis 
– IBM® mouse

A.5  SPGMR11 — Serial Programmer for M68HC11 MCUs

The SPGMR11 is a modular EPROM/EEPROM programming tool for all M68HC11 devices. The 
programmer features interchangeable adapters that allow programming of various M68HC11 package 
types.

Programmer features include:

• Programs M68HC11 Family devices that contain an EPROM or EEPROM array.

• Can be operated as a stand-alone programmer connected to a host computer or connected 
between a host computer and the M68HC11 modular development system (MMDS11) station 
module

• Uses plug-in programming adapters to accommodate a variety of MCU devices and packages

• On-board programming voltage circuit eliminates the need for an external 12-volt supply.

• Includes programming software and a user’s manual

• Includes a +5-volt power cable and a DB9 to DB25 connector adapter

® IBM is a registered trademark145 of International Business Machines Corporation.
M68HC11E Family Data Sheet, Rev. 5.1

Freescale Semiconductor 189



Freescale Semiconductor
Application Note

AN1060
Rev. 1.1, 07/2005
M68HC11 Bootstrap Mode 
By Jim Sibigtroth

Mike Rhoades
John Langan
Austin, Texas 

Introduction 

The M68HC11 Family of MCUs (microcontroller units) has a bootstrap mode that allows a user-defined 
program to be loaded into the internal random-access memory (RAM) by way of the serial 
communications interface (SCI); the M68HC11 then executes this loaded program. The loaded program 
can do anything a normal user program can do as well as anything a factory test program can do because 
protected control bits are accessible in bootstrap mode. Although the bootstrap mode is a single-chip 
mode of operation, expanded mode resources are accessible because the mode control bits can be 
changed while operating in the bootstrap mode. 

This application note explains the operation and application of the M68HC11 bootstrap mode. Although 
basic concepts associated with this mode are quite simple, the more subtle implications of these functions 
require careful consideration. Useful applications of this mode are overlooked due to an incomplete 
understanding of bootstrap mode. Also, common problems associated with bootstrap mode could be 
avoided by a more complete understanding of its operation and implications.

Topics discussed in this application note include:

• Basic operation of the M68HC11 bootstrap mode 

• General discussion of bootstrap mode uses 

• Detailed explanation of on-chip bootstrap logic 

• Detailed explanation of bootstrap firmware 

• Bootstrap firmware vs. EEPROM security 

• Incorporating the bootstrap mode into a system 

• Driving bootstrap mode from another M68HC11 

• Driving bootstrap mode from a personal computer 

• Common bootstrap mode problems 

• Variations for specific versions of M68HC11 

• Commented listings for selected M68HC11 bootstrap ROMs 
© Freescale Semiconductor, Inc., 2005. All rights reserved.



Basic Bootstrap Mode
Basic Bootstrap Mode

This section describes only basic functions of the bootstrap mode. Other functions of the bootstrap mode 
are described in detail in the remainder of this application note. 

When an M68HC11 is reset in bootstrap mode, the reset vector is fetched from a small internal read-only 
memory (ROM) called the bootstrap ROM or boot ROM. The firmware program in this boot ROM then 
controls the bootloading process, in this manner:

• First, the on-chip SCI (serial communications interface) is initialized. The first character received 
($FF) determines which of two possible baud rates should be used for the remaining characters in 
the download operation. 

• Next, a binary program is received by the SCI system and is stored in RAM. 

• Finally, a jump instruction is executed to pass control from the bootloader firmware to the user’s 
loaded program.

Bootstrap mode is useful both at the component level and after the MCU has been embedded into a 
finished user system. 

At the component level, Freescale uses bootstrap mode to control a monitored burn-in program for the 
on-chip electrically erasable programmable read-only memory (EEPROM). Units to be tested are loaded 
into special circuit boards that each hold many MCUS. These boards are then placed in burn-in ovens. 
Driver boards outside the ovens download an EEPROM exercise and diagnostic program to all MCUs in 
parallel. The MCUs under test independently exercise their internal EEPROM and monitor programming 
and erase operations. This technique could be utilized by an end user to load program information into 
the EPROM or EEPROM of an M68HC11 before it is installed into an end product. As in the burn-in setup, 
many M68HC11s can be gang programmed in parallel. This technique can also be used to program the 
EPROM of finished products after final assembly. 

Freescale also uses bootstrap mode for programming target devices on the M68HC11 evaluation 
modules (EVM). Because bootstrap mode is a privileged mode like special test, the EEPROM-based 
configuration register (CONFIG) can be programmed using bootstrap mode on the EVM. 

The greatest benefits from bootstrap mode are realized by designing the finished system so that bootstrap 
mode can be used after final assembly. The finished system need not be a single-chip mode application 
for the bootstrap mode to be useful because the expansion bus can be enabled after resetting the MCU 
in bootstrap mode. Allowing this capability requires almost no hardware or design cost and the addition 
of this capability is invisible in the end product until it is needed. 

The ability to control the embedded processor through downloaded programs is achieved without the 
disassembly and chip-swapping usually associated with such control. This mode provides an easy way 
to load non-volatile memories such as EEPROM with calibration tables or to program the application 
firmware into a one-time programmable (OTP) MCU after final assembly. 

Another powerful use of bootstrap mode in a finished assembly is for final test. Short programs can be 
downloaded to check parts of the system, including components and circuitry external to the embedded 
MCU. If any problems appear during product development, diagnostic programs can be downloaded to 
find the problems, and corrected routines can be downloaded and checked before incorporating them into 
the main application program. 
M68HC11 Bootstrap Mode, Rev. 1.1

194 Freescale Semiconductor



Listing 1. MCU-to-MCU Duplicator Program
Figure 7. Isolating EVBU XIRQ Pin 

Listing 1. MCU-to-MCU Duplicator Program

  1               **************************************************
  2               * 68HC711E9 Duplicator Program for AN1060
  3               **************************************************
  4
  5               *****
  6               * Equates - All reg addrs except INIT are 2-digit
  7               *           for direct addressing
  8               *****
  9 103D          INIT       EQU    $103D            RAM, Reg mapping
 10 0028          SPCR       EQU    $28              DWOM in bit-5
 11 0004          PORTB      EQU    $04              Red LED = bit-1, Grn = bit-0
 12               * Reset of prog socket = bit-7
 13 0080          RESET      EQU    %10000000
 14 0002          RED        EQU    %00000010
 15 0001          GREEN      EQU    %00000001
 16 000A          PORTE      EQU    $0A              Vpp Sense in bit-7, 1=ON
 17 002E          SCSR       EQU    $2E              SCI status register
 18               * TDRE, TC, RDRF, IDLE; OR, NF, FE, -
 19 0080          TDRE       EQU    %10000000
 20 0020          RDRF       EQU    %00100000
 21 002F          SCDR       EQU    $2F              SCI data register
 22 BF00          PROGRAM    EQU    $BF00            EPROM prog utility in boot ROM
 23 D000          EPSTRT     EQU    $D000            Starting address of EPROM
 24
 25 B600                     ORG    $B600            Start of EEPROM
 26

25
13

1

1
1
3 +

9
8
10

20
21

19

15

71

245

48 47

46
44

41
38

34
35 33 27

28

42
50

CUT TRACE
AS SHOWN

RN1D
47K

V
DD

J14

J7

TO
MC68HC68T1

REMOVE J7
JUMPER

BE SURE NO
JUMPER IS

ON J14

FROM OC5 PIN
OF MCU

TO MCU
XIRQ/V    

PIN PPE

P4-18

P5-18

TO MCU
XIRQ/VPPE

PIN
M68HC11 Bootstrap Mode, Rev. 1.1

208 Freescale Semiconductor



Boot ROM Variations
Bootloading a Program to Performa ROM Checksum

The bootloader ROM must be turned off before performing the checksum program. To remove the boot 
ROM from the memory map, clear the RBOOT bit in the HPRIO register. This is normally a write-protected 
bit that is 0, but in bootstrap mode it is reset to 1 and can be written. If the boot ROM is not disabled, the 
checksum routine will read the contents of the boot ROM rather than the user’s mask ROM or EPROM at 
the same addresses. 

Inherent Delays Caused by Double Buffering of SCI Data

This problem is troublesome in cases where one MCU is bootloading to another MCU. 

Because of transmitter double buffering, there may be one character in the serial shifter as a new 
character is written into the transmit data register. In cases such as downloading in which this 2-character 
pipeline is kept full, a 2-character time delay occurs between when a character is written to the transmit 
data register and when that character finishes transmitting. A little more than one more character time 
delay occurs between the target MCU receiving the character and echoing it back. If the master MCU 
waits for the echo of each downloaded character before sending the next one, the download process 
takes about twice as long as it would if transmission is treated as a separate process or if verify data is 
ignored. 

Boot ROM Variations 

Different versions of the M68HC11 have different versions of the bootstrap ROM program. Table 3 
summarizes the features of the boot ROMs in 16 members of the M68HC11 Family. 

The boot ROMs for the MC68HC11F1, the MC68HC711K4, and the MC68HC11K4 allow additional 
choices of baud rates for bootloader communications. For the three new baud rates, the first character 
used to determine the baud rate is not $FF as it was in earlier M68HC11s. The intercharacter delay that 
terminates the variable-length download is also different for these new baud rates. Table 3 shows the 
synchronization characters, delay times, and baud rates as they relate to E-clock frequency. 

Commented Boot ROM Listing

Listing 3. MC68HC711E9 Bootloader ROM contains a complete commented listing of the boot ROM 
program in the MC68HC711E9 version of the M68HC11. Other versions can be found in Appendix B of 
the M68HC11 Reference Manual. 

Table 3. Bootloader Baud Rates 

Sync 
Character

Timeout
Delay

Baud Rates at E Clock =  

2 MHz 2.1 MHz 3 MHz 3.15 MHz 4 MHz 4.2 MHz 

$FF 4 characters 7812 8192 11,718 12,288 15,624 16,838 

$FF 4 characters 1200 1260 1800 1890 2400 2520 

$F0 4.9 characters 9600 10,080 14,400 15,120 19,200 20,160 

$FD 17.3 characters 5208 5461 7812 8192 10,416 10,922 

$FD 13 characters 3906 4096 5859 6144 7812 8192 
M68HC11 Bootstrap Mode, Rev. 1.1

Freescale Semiconductor 221


