
NXP USA Inc. - MC68L11E1CFNE2 Datasheet

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated
circuits designed to perform specific tasks within larger
systems. These microcontrollers are essentially compact
computers on a single chip, containing a processor core,
memory, and programmable input/output peripherals.
They are called "embedded" because they are embedded
within electronic devices to control various functions,
rather than serving as standalone computers.
Microcontrollers are crucial in modern electronics,
providing the intelligence and control needed for a wide
range of applications.

Applications of "Embedded -
Microcontrollers"

Embedded microcontrollers are used in virtually every
sector of electronics, providing the necessary control and
processing power for a multitude of applications. In
consumer electronics, they manage the operations of
smartphones, home appliances, and wearable devices. In
automotive systems, microcontrollers control engine
functions, safety features, and infotainment systems.
Industrial applications rely on microcontrollers for
automation, robotics, and process control. Additionally,
microcontrollers are integral in medical devices, handling
functions such as monitoring, diagnostics, and control of
therapeutic equipment. Their versatility and
programmability make them essential components in
creating efficient, responsive, and intelligent electronic
systems.

Common Subcategories of "Embedded -
Microcontrollers"

Embedded microcontrollers can be categorized based on
their architecture, performance, and application focus.
Common subcategories include 8-bit, 16-bit, and 32-bit
microcontrollers, differentiated by their processing power
and memory capacity. 8-bit microcontrollers are typically
used in simple applications like basic control systems and
small devices. 16-bit microcontrollers offer a balance
between performance and complexity, suitable for
medium-scale applications like industrial automation. 32-
bit microcontrollers provide high performance and are
used in complex applications requiring advanced
processing, such as automotive systems and sophisticated
consumer electronics. Each subcategory serves a specific
range of applications, providing tailored solutions for
different performance and complexity needs.

Types of "Embedded - Microcontrollers"

There are various types of embedded microcontrollers,
each designed to meet specific application requirements.
General-purpose microcontrollers are versatile and used in
a wide range of applications, offering a balance of
performance, memory, and peripheral options. Special-
purpose microcontrollers are tailored for specific tasks,
such as automotive controllers, which include features like
built-in motor control peripherals and automotive-grade

Details

Product Status Obsolete

Core Processor HC11

Core Size 8-Bit

Speed 2MHz

Connectivity SCI, SPI

Peripherals POR, WDT

Number of I/O 38

Program Memory Size -

Program Memory Type ROMless

EEPROM Size 512 x 8

RAM Size 512 x 8

Voltage - Supply (Vcc/Vdd) 3V ~ 5.5V

Data Converters A/D 8x8b

Oscillator Type Internal

Operating Temperature -40°C ~ 85°C (TA)

Mounting Type Surface Mount

Package / Case 52-LCC (J-Lead)

Supplier Device Package 52-PLCC (19.1x19.1)

Purchase URL https://www.e-xfl.com/product-detail/nxp-semiconductors/mc68l11e1cfne2

Email: info@E-XFL.COM Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

https://www.e-xfl.com/product/pdf/mc68l11e1cfne2-4448574
https://www.e-xfl.com
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers

General Description
1.4.15 Port D

Pins PD5–PD0 can be used for general-purpose I/O signals. These pins alternately serve as the serial
communication interface (SCI) and serial peripheral interface (SPI) signals when those subsystems are
enabled.

• PD0 is the receive data input (RxD) signal for the SCI.

• PD1 is the transmit data output (TxD) signal for the SCI.

• PD5–PD2 are dedicated to the SPI:
– PD2 is the master in/slave out (MISO) signal.
– PD3 is the master out/slave in (MOSI) signal.
– PD4 is the serial clock (SCK) signal.
– PD5 is the slave select (SS) input.

1.4.16 Port E

Use port E for general-purpose or analog-to-digital (A/D) inputs.

CAUTION
If high accuracy is required for A/D conversions, avoid reading port E during
sampling, as small disturbances can reduce the accuracy of that result.
M68HC11E Family Data Sheet, Rev. 5.1

28 Freescale Semiconductor

Memory Map
2.3.3.1 System Configuration Register

The system configuration register (CONFIG) consists of an EEPROM byte and static latches that control
the startup configuration of the MCU. The contents of the EEPROM byte are transferred into static
working latches during reset sequences. The operation of the MCU is controlled directly by these latches
and not by CONFIG itself. In normal modes, changes to CONFIG do not affect operation of the MCU until
after the next reset sequence. When programming, the CONFIG register itself is accessed. When the
CONFIG register is read, the static latches are accessed. See 2.5.1 EEPROM and CONFIG
Programming and Erasure for information on modifying CONFIG.

To take full advantage of the MCU’s functionality, customers can program the CONFIG register in
bootstrap mode. This can be accomplished by setting the mode pins to logic 0 and downloading a small
program to internal RAM. For more information, Freescale application note AN1060 entitled M68HC11
Bootstrap Mode has been included at the back of this document. The downloadable talker will consist of:

• Bulk erase

• Byte programming

• Communication server

All of this functionality is provided by PCbug11 which can be found on the Freescale Web site at
http://www.freescale.com. For more information on using PCbug11 to program an E-series device,
Freescale engineering bulletin EB296 entitled Programming MC68HC711E9 Devices with PCbug11 and
the M68HC11EVBU has been included at the back of this document.

NOTE
The CONFIG register on the 68HC11 is an EEPROM cell and must be
programmed accordingly.

Operation of the CONFIG register in the MC68HC811E2 differs from other devices in the M68HC11 E
series. See Figure 2-10 and Figure 2-11.

Address: $103F

Bit 7 6 5 4 3 2 1 Bit 0

Read:
NOSEC NOCOP ROMON EEON

Write:

Resets:

Single chip:
Bootstrap:
Expanded:

Test:

0
0
0
0

0
0
0
0

0
0
0
0

0
0
0
0

U
U
1
1

U
U(L)
U

U(L)

1
U
U
U

U
U
U
U

= Unimplemented

U indicates a previously programmed bit. U(L) indicates that the bit resets to the logic level held in the latch prior to reset,
but the function of COP is controlled by the DISR bit in TEST1 register.

Figure 2-10. System Configuration Register (CONFIG)
M68HC11E Family Data Sheet, Rev. 5.1

Freescale Semiconductor 43

http://www.freescale.com

EPROM/OTPROM
2.4.3 EPROM and EEPROM Programming Control Register

The EPROM and EEPROM programming control register (PPROG) enables the EPROM programming
voltage and controls the latching of data to be programmed.

• For MC68HC711E9, PPROG is also the EEPROM programming control register.

• For the MC68HC711E20, EPROM programming is controlled by the EPROG register and
EEPROM programming is controlled by the PPROG register.

ODD — Program Odd Rows in Half of EEPROM (Test) Bit
Refer to 2.5 EEPROM.

EVEN — Program Even Rows in Half of EEPROM (Test) Bit
Refer to 2.5 EEPROM.

ELAT — EPROM/OTPROM Latch Control Bit
When ELAT = 1, writes to EPROM cause address and data to be latched and the EPROM/OTPROM
cannot be read. ELAT can be read any time. ELAT can be written any time except when EPGM = 1;
then the write to ELAT is disabled.

0 = EPROM address and data bus configured for normal reads
1 = EPROM address and data bus configured for programming

For the MC68HC711E9:
a. EPGM enables the high voltage necessary for both EEPROM and EPROM/OTPROM

programming.

b. ELAT and EELAT are mutually exclusive and cannot both equal 1.

BYTE — Byte/Other EEPROM Erase Mode Bit
Refer to 2.5 EEPROM.

ROW — Row/All EEPROM Erase Mode Bit
Refer to 2.5 EEPROM.

ERASE — Erase Mode Select Bit
Refer to 2.5 EEPROM.

EELAT — EEPROM Latch Control Bit
Refer to 2.5 EEPROM.

EPGM —EPROM/OTPROM/EEPROM Programming Voltage Enable Bit
EPGM can be read any time and can be written only when ELAT = 1 (for EPROM/OTPROM
programming) or when EELAT = 1 (for EEPROM programming).

0 = Programming voltage to EPROM/OTPROM/EEPROM array disconnected
1 = Programming voltage to EPROM/OTPROM/EEPROM array connected

Address: $103B

Bit 7 6 5 4 3 2 1 Bit 0

Read:
ODD EVEN ELAT(1) BYTE ROW ERASE EELAT EPGM

Write:

Reset: 0 0 0 0 0 0 0 0

1. MC68HC711E9 only

Figure 2-14. EPROM and EEPROM Programming
Control Register (PPROG)
M68HC11E Family Data Sheet, Rev. 5.1

Freescale Semiconductor 49

Operating Modes and On-Chip Memory
MBE — Multiple-Byte Programming Enable Bit
When multiple-byte programming is enabled, address bit 5 is considered a don’t care so that bytes with
address bit 5 = 0 and address bit 5 = 1 both get programmed. MBE can be read in any mode and
always reads 0 in normal modes. MBE can be written only in special modes.

0 = EPROM array configured for normal programming
1 = Program two bytes with the same data

Bit 6 — Unimplemented
Always reads 0

ELAT — EPROM/OTPROM Latch Control Bit
When ELAT = 1, writes to EPROM cause address and data to be latched and the EPROM/OTPROM
cannot be read. ELAT can be read any time. ELAT can be written any time except when PGM = 1; then
the write to ELAT is disabled.

0 = EPROM/OTPROM address and data bus configured for normal reads
1 = EPROM/OTPROM address and data bus configured for programming

EXCOL — Select Extra Columns Bit
0 = User array selected
1 = User array is disabled and extra columns are accessed at bits [7:0]. Addresses use bits [13:5]

and bits [4:0] are don’t care. EXCOL can be read and written only in special modes and always
returns 0 in normal modes.

EXROW — Select Extra Rows Bit
0 = User array selected
1 = User array is disabled and two extra rows are available. Addresses use bits [7:0] and bits [13:8]

are don’t care. EXROW can be read and written only in special modes and always returns 0 in
normal modes.

T[1:0] — EPROM Test Mode Select Bits
These bits allow selection of either gate stress or drain stress test modes. They can be read and written
only in special modes and always read 0 in normal modes.

Address: $1036

Bit 7 6 5 4 3 2 1 Bit 0

Read:
MBE ELAT EXCOL EXROW T1 T0 PGM

Write:

Reset: 0 0 0 0 0 0 0 0

= Unimplemented

Figure 2-15. MC68HC711E20 EPROM Programming
Control Register (EPROG)

T1 T0 Function Selected

0 0 Normal mode

0 1 Reserved

1 0 Gate stress

1 1 Drain stress
M68HC11E Family Data Sheet, Rev. 5.1

50 Freescale Semiconductor

EEPROM
PGM — EPROM Programming Voltage Enable Bit
PGM can be read any time and can be written only when ELAT = 1.

0 = Programming voltage to EPROM array disconnected
1 = Programming voltage to EPROM array connected

2.5 EEPROM

Some E-series devices contain 512 bytes of on-chip EEPROM. The MC68HC811E2 contains 2048 bytes
of EEPROM with selectable base address. All E-series devices contain the EEPROM-based CONFIG
register.

2.5.1 EEPROM and CONFIG Programming and Erasure

The erased state of an EEPROM bit is 1. During a read operation, bit lines are precharged to 1. The
floating gate devices of programmed bits conduct and pull the bit lines to 0. Unprogrammed bits remain
at the precharged level and are read as ones. Programming a bit to 1 causes no change. Programming
a bit to 0 changes the bit so that subsequent reads return 0.

When appropriate bits in the BPROT register are cleared, the PPROG register controls programming and
erasing the EEPROM. The PPROG register can be read or written at any time, but logic enforces defined
programming and erasing sequences to prevent unintentional changes to EEPROM data. When the
EELAT bit in the PPROG register is cleared, the EEPROM can be read as if it were a ROM.

The on-chip charge pump that generates the EEPROM programming voltage from VDD uses MOS
capacitors, which are relatively small in value. The efficiency of this charge pump and its drive capability
are affected by the level of VDD and the frequency of the driving clock. The load depends on the number
of bits being programmed or erased and capacitances in the EEPROM array.

The clock source driving the charge pump is software selectable. When the clock select (CSEL) bit in the
OPTION register is 0, the E clock is used; when CSEL is 1, an on-chip resistor-capacitor (RC) oscillator
is used.

The EEPROM programming voltage power supply voltage to the EEPROM array is not enabled until there
has been a write to PPROG with EELAT set and PGM cleared. This must be followed by a write to a valid
EEPROM location or to the CONFIG address, and then a write to PPROG with both the EELAT and
EPGM bits set. Any attempt to set both EELAT and EPGM during the same write operation results in
neither bit being set.

2.5.1.1 Block Protect Register

This register prevents inadvertent writes to both the CONFIG register and EEPROM. The active bits in
this register are initialized to 1 out of reset and can be cleared only during the first 64 E-clock cycles after
reset in the normal modes. When these bits are cleared, the associated EEPROM section and the
CONFIG register can be programmed or erased. EEPROM is only visible if the EEON bit in the CONFIG
register is set. The bits in the BPROT register can be written to 1 at any time to protect EEPROM and the
CONFIG register. In test or bootstrap modes, write protection is inhibited and BPROT can be written
repeatedly. Address ranges for protected areas of EEPROM differ significantly for the MC68HC811E2.
Refer to Figure 2-16.
M68HC11E Family Data Sheet, Rev. 5.1

Freescale Semiconductor 51

Analog-to-Digital (A/D) Converter
Figure 3-1. A/D Converter Block Diagram

Figure 3-2. Electrical Model of an A/D Input Pin (Sample Mode)

8-BIT CAPACITIVE DAC
WITH SAMPLE AND HOLD

SUCCESSIVE APPROXIMATION
REGISTER AND CONTROL

RESULT

PE0
AN0

PE1
AN1

PE2
AN2

PE3
AN3

PE4
AN4

PE5
AN5

PE6
AN6

PE7
AN7

ANALOG
MUX

VRH

VRl

ADCTL A/D CONTROL

C
C

F

SC
AN

M
U

LT
C

D
C

C
C

B
C

A

INTERNAL
DATA BUS

ADR1 A/D RESULT 1 ADR2 A/D RESULT 2 ADR3 A/D RESULT 3 ADR4 A/D RESULT 4

RESULT REGISTER INTERFACE

DIFFUSION/POLY

< 2 pF

COUPLER

400 nA
JUNCTION
LEAKAGE

+ ~20 V
– ~0.7 V

*

* THIS ANALOG SWITCH IS CLOSED ONLY DURING THE 12-CYCLE SAMPLE TIME.

VRL

INPUT

+ ~12V
– ~0.7V

PROTECTION
DEVICE

ð 4 kΩ

DUMMY N-CHANNEL
OUTPUT DEVICE

ANALOG
INPUT
PIN

~ 20 pF
DAC

CAPACITANCE
M68HC11E Family Data Sheet, Rev. 5.1

58 Freescale Semiconductor

Port E
6.6 Port E

Port E is used for general-purpose static inputs or pins that share functions with the analog-to-digital (A/D)
converter system. When some port E pins are being used for general-purpose input and others are being
used as A/D inputs, PORTE should not be read during the sample portion of an A/D conversion.

6.7 Handshake Protocol

Simple and full handshake input and output functions are available on ports B and C pins in single-chip
mode. In simple strobed mode, port B is a strobed output port and port C is a latching input port. The two
activities are available simultaneously.

The STRB output is pulsed for two E-clock periods each time there is a write to the PORTB register. The
INVB bit in the PIOC register controls the polarity of STRB pulses. Port C levels are latched into the
alternate port C latch (PORTCL) register on each assertion of the STRA input. STRA edge select, flag,
and interrupt enable bits are located in the PIOC register. Any or all of the port C lines can still be used
as general-purpose I/O while in strobed input mode.

Full handshake modes use port C pins and the STRA and STRB lines. Input and output handshake
modes are supported, and output handshake mode has a 3-stated variation. STRA is an edge-detecting
input and STRB is a handshake output. Control and enable bits are located in the PIOC register.

In full input handshake mode, the MCU asserts STRB to signal an external system that it is ready to latch
data. Port C logic levels are latched into PORTCL when the STRA line is asserted by the external system.
The MCU then negates STRB. The MCU reasserts STRB after the PORTCL register is read. In this mode,
a mix of latched inputs, static inputs, and static outputs is allowed on port C, differentiated by the data
direction bits and use of the PORTC and PORTCL registers.

In full output handshake mode, the MCU writes data to PORTCL which, in turn, asserts the STRB output
to indicate that data is ready. The external system reads port C data and asserts the STRA input to
acknowledge that data has been received.

In the 3-state variation of output handshake mode, lines intended as 3-state handshake outputs are
configured as inputs by clearing the corresponding DDRC bits. The MCU writes data to PORTCL and
asserts STRB. The external system responds by activating the STRA input, which forces the MCU to drive
the data in PORTC out on all of the port C lines. After the trailing edge of the active signal on STRA, the
MCU negates the STRB signal. The 3-state mode variation does not allow part of port C to be used for
static inputs while other port C pins are being used for handshake outputs. Refer to the 6.8 Parallel I/O
Control Register for further information.

Address: $100A

Bit 7 6 5 4 3 2 1 Bit 0

Read:
PE7 PE6 PE5 PE4 PE3 PE2 PE1 PE0

Write:

Reset: Indeterminate after reset

Alternate Function: AN7 AN6 AN5 AN4 AN3 AN2 AN1 AN0

Figure 6-9. Port E Data Register (PORTE)
M68HC11E Family Data Sheet, Rev. 5.1

Freescale Semiconductor 101

Chapter 8
Serial Peripheral Interface (SPI)

8.1 Introduction

The serial peripheral interface (SPI), an independent serial communications subsystem, allows the MCU
to communicate synchronously with peripheral devices, such as:

• Frequency synthesizers

• Liquid crystal display (LCD) drivers

• Analog-to-digital (A/D) converter subsystems

• Other microprocessors

The SPI is also capable of inter-processor communication in a multiple master system. The SPI system
can be configured as either a master or a slave device. When configured as a master, data transfer rates
can be as high as one-half the E-clock rate (1.5 Mbits per second for a 3-MHz bus frequency). When
configured as a slave, data transfers can be as fast as the E-clock rate (3 Mbits per second for a 3-MHz
bus frequency).

8.2 Functional Description

The central element in the SPI system is the block containing the shift register and the read data buffer.
The system is single buffered in the transmit direction and double buffered in the receive direction. This
means that new data for transmission cannot be written to the shifter until the previous transfer is
complete; however, received data is transferred into a parallel read data buffer so the shifter is free to
accept a second serial character. As long as the first character is read out of the read data buffer before
the next serial character is ready to be transferred, no overrun condition occurs. A single MCU register
address is used for reading data from the read data buffer and for writing data to the shifter.

The SPI status block represents the SPI status functions (transfer complete, write collision, and mode
fault) performed by the serial peripheral status register (SPSR). The SPI control block represents those
functions that control the SPI system through the serial peripheral control register (SPCR).

Refer to Figure 8-1, which shows the SPI block diagram.

8.3 SPI Transfer Formats

During an SPI transfer, data is simultaneously transmitted and received. A serial clock line synchronizes
shifting and sampling of the information on the two serial data lines. A slave select line allows individual
selection of a slave SPI device; slave devices that are not selected do not interfere with SPI bus activities.
On a master SPI device, the select line can optionally be used to indicate a multiple master bus
contention. Refer to Figure 8-2.
M68HC11E Family Data Sheet, Rev. 5.1

Freescale Semiconductor 119

SPI Registers
A write collision is normally a slave error because a slave has no control over when a master initiates a
transfer. A master knows when a transfer is in progress, so there is no reason for a master to generate a
write-collision error, although the SPI logic can detect write collisions in both master and slave devices.

The SPI configuration determines the characteristics of a transfer in progress. For a master, a transfer
begins when data is written to SPDR and ends when SPIF is set. For a slave with CPHA equal to 0, a
transfer starts when SS goes low and ends when SS returns high. In this case, SPIF is set at the middle
of the eighth SCK cycle when data is transferred from the shifter to the parallel data register, but the
transfer is still in progress until SS goes high. For a slave with CPHA equal to 1, transfer begins when the
SCK line goes to its active level, which is the edge at the beginning of the first SCK cycle. The transfer
ends in a slave in which CPHA equals 1 when SPIF is set.

8.7 SPI Registers

The three SPI registers are:

• Serial peripheral control register (SPCR)

• Serial peripheral status register (SPSR)

• Serial peripheral data register (SPDR)

These registers provide control, status, and data storage functions.

8.7.1 Serial Peripheral Control Register

SPIE — Serial Peripheral Interrupt Enable Bit
Set the SPE bit to 1 to request a hardware interrupt sequence each time the SPIF or MODF status flag
is set. SPI interrupts are inhibited if this bit is clear or if the I bit in the condition code register is 1.

0 = SPI system interrupts disabled
1 = SPI system interrupts enabled

SPE — Serial Peripheral System Enable Bit
When the SPE bit is set, the port D bit 2, 3, 4, and 5 pins are dedicated to the SPI function. If the SPI
is in the master mode and DDRD bit 5 is set, then the port D bit 5 pin becomes a general-purpose
output instead of the SS input.

0 = SPI system disabled
1 = SPI system enabled

DWOM — Port D Wired-OR Mode Bit
DWOM affects all port D pins.

0 = Normal CMOS outputs
1 = Open-drain outputs

Address: $1028

Bit 7 6 5 4 3 2 1 Bit 0

Read:
SPIE SPE DWOM MSTR CPOL CPHA SPR1 SPR0

Write:

Reset: 0 0 0 0 0 1 U U

U = Unaffected

Figure 8-3. Serial Peripheral Control Register (SPCR)
M68HC11E Family Data Sheet, Rev. 5.1

Freescale Semiconductor 123

 Serial Peripheral Interface (SPI)
MSTR — Master Mode Select Bit
It is customary to have an external pullup resistor on lines that are driven by open-drain devices.

0 = Slave mode
1 = Master mode

CPOL — Clock Polarity Bit
When the clock polarity bit is cleared and data is not being transferred, the SCK pin of the master
device has a steady state low value. When CPOL is set, SCK idles high. Refer to Figure 8-2 and 8.4
Clock Phase and Polarity Controls.

CPHA — Clock Phase Bit
The clock phase bit, in conjunction with the CPOL bit, controls the clock-data relationship between
master and slave. The CPHA bit selects one of two different clocking protocols. Refer to Figure 8-2
and 8.4 Clock Phase and Polarity Controls.

SPR[1:0] — SPI Clock Rate Select Bits
These two bits select the SPI clock (SCK) rate when the device is configured as master. When the
device is configured as slave, these bits have no effect. Refer to Table 8-1.

8.7.2 Serial Peripheral Status Register

SPIF — SPI Interrupt Complete Flag
SPIF is set upon completion of data transfer between the processor and the external device. If SPIF
goes high, and if SPIE is set, a serial peripheral interrupt is generated. To clear the SPIF bit, read the
SPSR with SPIF set, then access the SPDR. Unless SPSR is read (with SPIF set) first, attempts to
write SPDR are inhibited.

WCOL — Write Collision Bit
Clearing the WCOL bit is accomplished by reading the SPSR (with WCOL set) followed by an access
of SPDR. Refer to 8.5.4 Slave Select and 8.6 SPI System Errors.

0 = No write collision
1 = Write collision

Table 8-1. SPI Clock Rates

SPR[1:0]
Divide

E Clock By

Frequency at
E = 1 MHz

(Baud)

Frequency at
E = 2 MHz

(Baud)

Frequency at
E = 3 MHz (

Baud)

Frequency at
E = 4 MHz

(Baud)

0 0 2 500 kHz 1.0 MHz 1.5 MHz 2 MHz

0 1 4 250 kHz 500 kHz 750 kHz 1 MHz

1 0 16 62.5 kHz 125 kHz 187.5 kHz 250 kHz

1 1 32 31.3 kHz 62.5 kHz 93.8 kHz 125 kHz

Address: $1029

Bit 7 6 5 4 3 2 1 Bit 0

Read:
SPIF WCOL MODF

Write:

Reset: 0 0 0 0 0 0 0 0

= Unimplemented

Figure 8-4. Serial Peripheral Status Register (SPSR)
M68HC11E Family Data Sheet, Rev. 5.1

124 Freescale Semiconductor

 Serial Peripheral Interface (SPI)
M68HC11E Family Data Sheet, Rev. 5.1

126 Freescale Semiconductor

Real-Time Interrupt (RTI)
independent of the software latencies associated with flag clearing and service. For this reason, an RTI
period starts from the previous timeout, not from when RTIF is cleared.

Every timeout causes the RTIF bit in TFLG2 to be set, and if RTII is set, an interrupt request is generated.
After reset, one entire RTI period elapses before the RTIF is set for the first time. Refer to the 9.4.9 Timer
Interrupt Mask 2 Register, 9.5.2 Timer Interrupt Flag Register 2, and 9.5.3 Pulse Accumulator Control
Register.

9.5.1 Timer Interrupt Mask Register 2

This register contains the real-time interrupt enable bits.

TOI — Timer Overflow Interrupt Enable Bit
0 = TOF interrupts disabled
1 = Interrupt requested when TOF is set to 1

RTII — Real-Time Interrupt Enable Bit
0 = RTIF interrupts disabled
1 = Interrupt requested when RTIF set to 1

PAOVI — Pulse Accumulator Overflow Interrupt Enable Bit
Refer to 9.7 Pulse Accumulator.

PAII — Pulse Accumulator Input Edge Bit
Refer to 9.7 Pulse Accumulator.

Bits [3:2] — Unimplemented
Always read 0

PR[1:0] — Timer Prescaler Select Bits
Refer to Table 9-4.

NOTE
Bits in TMSK2 correspond bit for bit with flag bits in TFLG2. Bits in TMSK2
enable the corresponding interrupt sources.

Address: $1024

Bit 7 6 5 4 3 2 1 Bit 0

Read:
TOI RTI PAOVI PAII PR1 PR0

Write:

Reset: 0 0 0 0 0 0 0 0

= Unimplemented

Figure 9-21. Timer Interrupt Mask 2 Register (TMSK2)
M68HC11E Family Data Sheet, Rev. 5.1

Freescale Semiconductor 141

Pulse Accumulator
PAII and PAIF — Pulse Accumulator Input Edge Interrupt Enable Bit and Flag
The PAIF status bit is automatically set each time a selected edge is detected at the PA7/PAI/OC1 pin.
To clear this status bit, write to the TFLG2 register with a 1 in the corresponding data bit position (bit
4). The PAII control bit allows configuring the pulse accumulator input edge detect for polled or
interrupt-driven operation but does not affect setting or clearing the PAIF bit. When PAII is 0, pulse
accumulator input interrupts are inhibited, and the system operates in a polled mode. In this mode, the
PAIF bit must be polled by user software to determine when an edge has occurred. When the PAII
control bit is set, a hardware interrupt request is generated each time PAIF is set. Before leaving the
interrupt service routine, software must clear PAIF by writing to the TFLG2 register.
M68HC11E Family Data Sheet, Rev. 5.1

Freescale Semiconductor 147

MC68L11E9/E20 Serial Peirpheral Interface Characteristics
A) SPI Master Timing (CPHA = 0)

B) SPI Master Timing (CPHA = 1)

Figure 10-15. SPI Timing Diagram (Sheet 1 of 2)

SCK

INPUT

SCK

OUTPUT

MISO
INPUT

MOSI
OUTPUT

SS
INPUT

1

11

6 7

MSB IN

BIT 6 . . . 1

LSB IN

MASTER MSB OUT MASTER LSB OUT

BIT 6 . . . 1

11 (REF)

5

4
CPOL = 0

CPOL = 1

SS IS HELD HIGH ON MASTER.

SEE NOTE

SEE NOTE

Note: This first clock edge is generated internally but is not seen at the SCK pin.

5

4

10

SCK

INPUT

SCK

OUTPUT

MISO
INPUT

MOSI
OUTPUT

SS
INPUT

1

11

MSB IN

BIT 6 . . . 1

LSB IN

MASTER MSB OUT MASTER LSB OUT

BIT 6 . . . 1

11 (REF)

5

4
CPOL = 0

CPOL = 1

SS IS HELD HIGH ON MASTER.

SEE NOTE

SEE NOTE

Note: This first clock edge is generated internally but is not seen at the SCK pin.

5

4

1010 (REF)

6 7
M68HC11E Family Data Sheet, Rev. 5.1

Freescale Semiconductor 173

Ordering Information and Mechanical Specifications
20 Kbytes custom ROM

0°C to +70°°C 3 MHz MC68HC11E20FN3

–40°C to +85°C
2 MHz MC68HC11E20CFN2

3 MHz MC68HC11E20CFN3

–40°C to +105°C 2 MHz MC68HC11E20VFN2

–40°C to +125°C 2 MHz MC68HC11E20MFN2

64-pin quad flat pack (QFP)

Custom ROM

0°C to +70°°C 3 MHz MC68HC11E9FU3

–40°C to +85°C
2 MHz MC68HC11E9CFU2

3 MHz MC68HC11E9CFU3

–40°C to +105°C 2 MHz MC68HC11E9VFU2

–40°C to +125°C 2 MHz MC68HC11E9MFU2

64-pin quad flat pack (continued)

20 Kbytes Custom ROM

0°C to +70°°C 3 MHz MC68HC11E20FU3

–40°C to +85°C
2 MHz MC68HC11E20CFU2

3 MHz MC68HC11E20CFU3

–40°C to +105°C 2 MHz MC68HC11E20VFU2

–40°C to +125°C 2 MHz MC68HC11E20MFU2

52-pin thin quad flat pack (10 mm x 10 mm)

Custom ROM

0°C to +70°°C 3 MHz MC68HC11E9PB3

–40°C to +85°C
2 MHz MC68HC11E9CPB2

3 MHz MC68HC11E9CPB3

–40°C to +105°C 2 MHz MC68HC11E9VPB2

–40°C to +125°C 2 MHz MC68HC11E9MPB2

56-pin dual in-line package with 0.70-inch lead spacing (SDIP)

Custom ROM

0°C to +70°°C 3 MHz MC68HC11E9B3

–40°C to +85°C
2 MHz MC68HC11E9CB2

3 MHz MC68HC11E9CB3

–40°C to +105°C 2 MHz MC68HC11E9VB2

–40°C to +125°C 2 MHz MC68HC11E9MB2

Description Temperature Frequency MC Order Number
M68HC11E Family Data Sheet, Rev. 5.1

180 Freescale Semiconductor

Extended Voltage Device Ordering Information (3.0 Vdc to 5.5 Vdc)
11.4 Extended Voltage Device Ordering Information (3.0 Vdc to 5.5 Vdc)

 Description Temperature Frequency MC Order Number

52-pin plastic leaded chip carrier (PLCC)

Custom ROM

–20°C to +70°C

2 MHz
MC68L11E9FN2

MC68L11E20FN2

No ROM 2 MHz MC68L11E1FN2

No ROM, no EEPROM 2 MHz MC68L11E0FN2

64-pin quad flat pack (QFP)

Custom ROM

–20°C to +70°C

2 MHz
MC68L11E9FU2

MC68L11E20FU2

No ROM 2 MHz MC68L11E1FU2

No ROM, no EEPROM 2 MHz MC68L11E0FU2

52-pin thin quad flat pack (10 mm x 10 mm)

Custom ROM

–20°C to +70°C

2 MHz MC68L11E9PB2

No ROM 2 MHz MC68L11E1PB2

No ROM, no EEPROM 2 MHz MC68L11E0PB2

56-pin dual in-line package with 0.70-inch lead spacing (SDIP)

Custom ROM

–20°C to +70°C

2 MHz MC68L11E9B2

No ROM 2 MHz MC68L11E1B2

No ROM, no EEPROM 2 MHz MC68L11E0B2
M68HC11E Family Data Sheet, Rev. 5.1

Freescale Semiconductor 181

Basic Bootstrap Mode
Basic Bootstrap Mode

This section describes only basic functions of the bootstrap mode. Other functions of the bootstrap mode
are described in detail in the remainder of this application note.

When an M68HC11 is reset in bootstrap mode, the reset vector is fetched from a small internal read-only
memory (ROM) called the bootstrap ROM or boot ROM. The firmware program in this boot ROM then
controls the bootloading process, in this manner:

• First, the on-chip SCI (serial communications interface) is initialized. The first character received
($FF) determines which of two possible baud rates should be used for the remaining characters in
the download operation.

• Next, a binary program is received by the SCI system and is stored in RAM.

• Finally, a jump instruction is executed to pass control from the bootloader firmware to the user’s
loaded program.

Bootstrap mode is useful both at the component level and after the MCU has been embedded into a
finished user system.

At the component level, Freescale uses bootstrap mode to control a monitored burn-in program for the
on-chip electrically erasable programmable read-only memory (EEPROM). Units to be tested are loaded
into special circuit boards that each hold many MCUS. These boards are then placed in burn-in ovens.
Driver boards outside the ovens download an EEPROM exercise and diagnostic program to all MCUs in
parallel. The MCUs under test independently exercise their internal EEPROM and monitor programming
and erase operations. This technique could be utilized by an end user to load program information into
the EPROM or EEPROM of an M68HC11 before it is installed into an end product. As in the burn-in setup,
many M68HC11s can be gang programmed in parallel. This technique can also be used to program the
EPROM of finished products after final assembly.

Freescale also uses bootstrap mode for programming target devices on the M68HC11 evaluation
modules (EVM). Because bootstrap mode is a privileged mode like special test, the EEPROM-based
configuration register (CONFIG) can be programmed using bootstrap mode on the EVM.

The greatest benefits from bootstrap mode are realized by designing the finished system so that bootstrap
mode can be used after final assembly. The finished system need not be a single-chip mode application
for the bootstrap mode to be useful because the expansion bus can be enabled after resetting the MCU
in bootstrap mode. Allowing this capability requires almost no hardware or design cost and the addition
of this capability is invisible in the end product until it is needed.

The ability to control the embedded processor through downloaded programs is achieved without the
disassembly and chip-swapping usually associated with such control. This mode provides an easy way
to load non-volatile memories such as EEPROM with calibration tables or to program the application
firmware into a one-time programmable (OTP) MCU after final assembly.

Another powerful use of bootstrap mode in a finished assembly is for final test. Short programs can be
downloaded to check parts of the system, including components and circuitry external to the embedded
MCU. If any problems appear during product development, diagnostic programs can be downloaded to
find the problems, and corrected routines can be downloaded and checked before incorporating them into
the main application program.
M68HC11 Bootstrap Mode, Rev. 1.1

194 Freescale Semiconductor

Driving Boot Mode from a Personal Computer
A problem arose with the BASIC programming technique used. The draft versions of this program tried
saving the object code bytes directly as binary in a string array. This caused "Out of Memory" or "Out of
String Space" errors on both a 2-Mbyte Macintosh and a 640-Kbyte PC. The solution was to make the
array an integer array and perform the integer-to-binary conversion on each byte as it is sent to the target
part.

The one compromise made to accommodate both Macintosh and PC versions of BASIC is in lines 1500
and 1505. Use line 1500 and comment out line 1505 if the program is to be run on a Macintosh, and,
conversely, use line 1505 and comment out line 1500 if a PC is used.

After the COM port is opened, the code to be bootloaded is modified by adding the $FF to the start of the
string. $FF synchronizes the bootloader in the MC68HC711E9 to 1200 baud. The entire string is simply
sent to the COM port by PRINTing the string. This is possible since the string is actually queued in
BASIC’s COM buffer, and the operating system takes care of sending the bytes out one at a time. The
M68HC11 echoes the data received for verification. No automatic verification is provided, though the data
is printed to the screen for manual verification.

Once the MCU has received this bootloaded code, the bootloader automatically jumps to it. The small
bootloaded program in turn includes a jump to the EPROM programming routine in the boot ROM.

Refer to the previous explanation of the EPROM Programming Utility for the following discussion. The
host system sends the first byte to be programmed through the COM port to the SCI of the MCU. The SCI
port on the MCU buffers one byte while receiving another byte, increasing the throughput of the EPROM
programming operation by sending the second byte while the first is being programmed.

When the first byte has been programmed, the MCU reads the EPROM location and sends the result back
to the host system. The host then compares what was actually programmed to what was originally sent.
A message indicating which byte is being verified is displayed in the lower half of the screen. If there is
an error, it is displayed at the top of the screen.

As soon as the first byte is verified, the third byte is sent. In the meantime, the MCU has already started
programming the second byte. This process of verifying and queueing a byte continues until the host
finishes sending data. If the programming is completely successful, no error messages will have been
displayed at the top of the screen. Subroutines follow the end of the program to handle some of the
repetitive tasks. These routines are short, and the commenting in the source code should be sufficient
explanation.

Modifications

This example programmed version 3.4 of the BUFFALO monitor into the EPROM of an MC68HC711E9;
the changes to the BASIC program to download some other program are minor.

The necessary changes are:
1. In line 30, the length of the program to be downloaded must be assigned to the variable

CODESIZE%.
2. Also in line 30, the starting address of the program is assigned to the variable ADRSTART.
3. In line 9570, the start address of the program is stored in the third and fourth items in that DATA

statement in hexadecimal.
4. If any changes are made to the number of bytes in the boot code in the DATA statements in lines

9500–9580, then the new count must be set in the variable "BOOTCOUNT" in line 25.
M68HC11 Bootstrap Mode, Rev. 1.1

Freescale Semiconductor 213

Listing 2. BASIC Program for Personal Computer
Listing 2. BASIC Program for Personal Computer

1 ' ***
2 ' *
3 ' * E9BUF.BAS - A PROGRAM TO DEMONSTRATE THE USE OF THE BOOT MODE
4 ' * ON THE HC11 BY PROGRAMMING AN HC711E9 WITH
5 ' * BUFFALO 3.4
6 ' *
7 ' * REQUIRES THAT THE S-RECORDS FOR BUFFALO (BUF34.S19)
8 ' * BE AVAILABLE IN THE SAME DIRECTORY OR FOLDER
9 ' *
10 '* THIS PROGRAM HAS BEEN RUN BOTH ON A MS-DOS COMPUTER
11 '* USING QUICKBASIC 4.5 AND ON A MACINTOSH USING
12 '* QUICKBASIC 1.0.
14 '*
15 '**
25 H$ = "0123456789ABCDEF" 'STRING TO USE FOR HEX CONVERSIONS
30 DEFINT B, I: CODESIZE% = 8192: ADRSTART= 57344!
35 BOOTCOUNT = 25 'NUMBER OF BYTES IN BOOT CODE
40 DIM CODE%(CODESIZE%) 'BUFFALO 3.4 IS 8K BYTES LONG
45 BOOTCODE$ = "" 'INITIALIZE BOOTCODE$ TO NULL
49 REM ***** READ IN AND SAVE THE CODE TO BE BOOT LOADED *****
50 FOR I = 1 TO BOOTCOUNT '# OF BYTES IN BOOT CODE
55 READ Q$
60 A$ = MID$(Q$, 1, 1)
65 GOSUB 7000 'CONVERTS HEX DIGIT TO DECIMAL
70 TEMP = 16 * X 'HANG ON TO UPPER DIGIT
75 A$ = MID$(Q$, 2, 1)
80 GOSUB 7000
85 TEMP = TEMP + X
90 BOOTCODE$ = BOOTCODE$ + CHR$(TEMP) 'BUILD BOOT CODE
95 NEXT I
96 REM ***** S-RECORD CONVERSION STARTS HERE *****
97 FILNAM$="BUF34.S19" 'DEFAULT FILE NAME FOR S-RECORDS
100 CLS
105 PRINT "Filename.ext of S-record file to be downloaded (";FILNAM$;") ";
107 INPUT Q$
110 IF Q$<>"" THEN FILNAM$=Q$
120 OPEN FILNAM$ FOR INPUT AS #1
130 PRINT : PRINT "Converting "; FILNAM$; " to binary..."
999 REM ***** SCANS FOR 'S1' RECORDS *****
1000 GOSUB 6000 'GET 1 CHARACTER FROM INPUT FILE
1010 IF FLAG THEN 1250 'FLAG IS EOF FLAG FROM SUBROUTINE
1020 IF A$ <> "S" THEN 1000
1022 GOSUB 6000
1024 IF A$ <> "1" THEN 1000
1029 REM ***** S1 RECORD FOUND, NEXT 2 HEX DIGITS ARE THE BYTE COUNT *****
1030 GOSUB 6000
1040 GOSUB 7000 'RETURNS DECIMAL IN X
1050 BYTECOUNT = 16 * X 'ADJUST FOR HIGH NIBBLE
1060 GOSUB 6000
1070 GOSUB 7000
1080 BYTECOUNT = BYTECOUNT + X 'ADD LOW NIBBLE
M68HC11 Bootstrap Mode, Rev. 1.1

Freescale Semiconductor 215

Common Bootstrap Mode Problems
Connecting RxD to VSS Does Not Cause the SCI to Receive a Break

To force an immediate jump to the start of EEPROM, the bootstrap firmware looks for the first received
character to be $00 (or break). The data reception logic in the SCI looks for a 1-to-0 transition on the RxD
pin to synchronize to the beginning of a receive character. If the RxD pin is tied to ground, no 1-to-0
transition occurs. The SCI transmitter sends a break character when the bootloader firmware starts, and
this break character can be fed back to the RxD pin to cause the jump to EEPROM. Since TxD is
configured as an open-drain output, a pullup resistor is required.

$FF Character Is Required before Loading into RAM

The initial character (usually $FF) that sets the download baud rate is often forgotten.

Original M68HC11 Versions Required Exactly 256 Bytes to be Downloaded to RAM

Even users that know about the 256 bytes of download data sometimes forget the initial $FF that makes
the total number of bytes required for the entire download operation equal to 256 + 1 or 257 bytes.

Variable-Length Download

When on-chip RAM surpassed 256 bytes, the time required to serially load this many characters became
more significant. The variable-length download feature allows shorter programs to be loaded without
sacrificing compatibility with earlier fixed-length download versions of the bootloader. The end of a
download is indicated by an idle RxD line for at least four character times. If a personal computer is being
used to send the download data to the MCU, there can be problems keeping characters close enough
together to avoid tripping the end-of-download detect mechanism. Using 1200 as the baud rate rather
than the faster default rate may help this problem.

Assemblers often produce S-record encoded programs which must be converted to binary before
bootloading them to the MCU. The process of reading S-record data from a file and translating it to binary
can be slow, depending on the personal computer and the programming language used for the
translation. One strategy that can be used to overcome this problem is to translate the file into binary and
store it into a RAM array before starting the download process. Data can then be read and downloaded
without the translation or file-read delays.

The end-of-download mechanism goes into effect when the initial $FF is received to set the baud rate.
Any amount of time may pass between reset and when the $FF is sent to start the download process.

EPROM/OTP Versions of M68HC11 Have an EPROM Emulation Mode

The conditions that configure the MCU for EPROM emulation mode are essentially the same as those for
resetting the MCU in bootstrap mode. While RESET is low and mode select pins are configured for
bootstrap mode (low), the MCU is configured for EPROM emulation mode.

The port pins that are used for EPROM data I/O lines may be inputs or outputs, depending on the pin that
is emulating the EPROM output enable pin (OE). To make these data pins appear as high-impedance
inputs as they would on a non-EPROM part in reset, connect the PB7/(OE) pin to a pullup resistor.
M68HC11 Bootstrap Mode, Rev. 1.1

220 Freescale Semiconductor

