

Welcome to **E-XFL.COM**

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded - Microcontrollers</u>"

Details	
Product Status	Discontinued at Digi-Key
Core Processor	ARM® Cortex®-M0+
Core Size	32-Bit Single-Core
Speed	48MHz
Connectivity	I ² C, LINbus, SCI, SPI, UART/USART, USB
Peripherals	DMA, POR, PWM, WDT
Number of I/O	51
Program Memory Size	256KB (256K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	32K x 8
Voltage - Supply (Vcc/Vdd)	1.62V ~ 3.63V
Data Converters	A/D 20x12b; D/A 2x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	64-VFQFN Exposed Pad
Supplier Device Package	64-QFN (9x9)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/atsaml21j18a-mut

- 0.4-32MHz crystal oscillator (XOSC)
- 32.768kHz internal oscillator (OSC32K)
- 32.768kHz ultra-low-power internal oscillator (OSCULP32K)
- 16/12/8/4MHz high-accuracy internal oscillator (OSC16M)
- 48MHz Digital Frequency Locked Loop (DFLL48M)
- 96MHz Fractional Digital Phased Locked Loop (FDPLL96M)
- I/O
 - Up to 51 programmable I/O pins
- Easy migration from SAM D family
- Packages
 - 64-pin TQFP, QFN, WLCSP
 - 48-pin TQFP, QFN
 - 32-pin TQFP, QFN
- Operating Voltage
 - 1.62V 3.63V

1. Description

Atmel® | SMART SAM L21 is a series of Ultra low-power microcontrollers using the 32-bit ARM® Cortex®-M0+ processor, and ranging from 32- to 64-pins with up to 256KB Flash and 40KB of SRAM. The SAM L21 devices operate at a maximum frequency of 48MHz and reach 2.46 CoreMark®/MHz. They are designed for simple and intuitive migration with identical peripheral modules, hex compatible code, identical linear address map and pin compatible migration paths between all devices in the product series. All devices include intelligent and flexible peripherals, Atmel Event System for inter-peripheral signaling, and support for capacitive touch button, slider and wheel user interfaces.

The Atmel SAM L21 devices provide the following features: In-system programmable Flash, 16-channel direct memory access (DMA) controller, 12-channel Event System, programmable interrupt controller, up to 51 programmable I/O pins, 32-bit real-time clock and calendar, up to five 16-bit Timer/Counters (TC) and three Timer/Counters for Control (TCC) where each TC/TCC can be configured to perform frequency and waveform generation, accurate program execution timing or input capture with time and frequency measurement of digital signals. The TCs can operate in 8- or 16-bit mode, selected TCs can be cascaded to form a 32-bit TC, and three timer/counters have extended functions optimized for motor, lighting and other control applications. Two TCC can operate in 24-bit mode, the third TCC can operate in 16-bit mode. The series provide one full-speed USB 2.0 embedded host and device interface; up to six Serial Communication Modules (SERCOM) that each can be configured to act as an USART, UART, SPI, I²C up to 3.4MHz, SMBus, PMBus, and LIN slave; up to twenty channel 1MSPS 12-bit ADC with programmable gain and optional oversampling and decimation supporting up to 16-bit resolution, two 12-bit 1MSPS DACs, two analog comparators with window mode, three independent cascadable OPAMPs supporting internal connection with others analog features. Peripheral Touch Controller supporting up to 192 buttons. sliders, wheels and proximity sensing; programmable Watchdog Timer, brown-out detector and power-on reset and two-pin Serial Wire Debug (SWD) program and debug interface.

All devices have accurate and low-power external and internal oscillators. All oscillators can be used as a source for the system clock. Different clock domains can be independently configured to run at different frequencies, enabling power saving by running each peripheral at its optimal clock frequency, and thus maintaining a high CPU frequency while reducing power consumption.

The SAM L21 devices have four software-selectable sleep modes, idle, standby, backup and off. In idle mode the CPU is stopped while all other functions can be kept running. In standby all clocks and functions are stopped except those selected to continue running. In this mode all RAMs and logic contents are retained. The device supports SleepWalking. This feature allows the peripheral to wake up from sleep based on predefined conditions, and thus allows some internal operation like DMA transfer and/or the CPU to wake up only when needed, e.g. when a threshold is crossed or a result is ready. The Event System supports synchronous and asynchronous events, allowing peripherals to receive, react to and send events even in standby mode.

The SAM L21 devices have two software-selectable performance levels (PL0 and PL2) allowing the user to scale the lowest core voltage level that will support the operating frequency. To further minimize consumption, specifically leakage dissipation, the SAM L21 devices utilizes power domain gating technique with retention to turn off some logic area while keeping its logic state. This technique is fully handled by hardware.

The Flash program memory can be reprogrammed in-system through the SWD interface. The same interface can be used for nonintrusive on-chip debugging of application code. A boot loader running in the device can use any communication interface to download and upgrade the application program in the Flash memory.

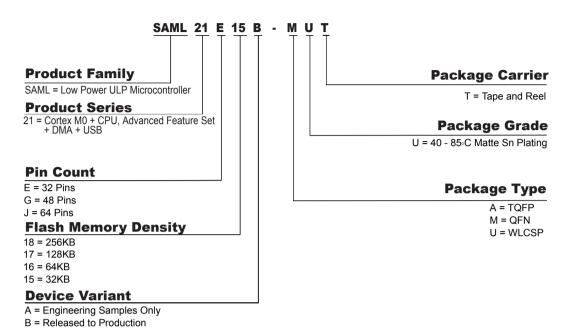
The Atmel SAM L21 devices are supported with a full suite of programs and system development tools, including C compilers, macro assemblers, program debugger/simulators, programmers and evaluation kits.

2. Configuration Summary

	,		
	SAM L21J	SAM L21G	SAM L21E
Pins	64	48	32
General Purpose I/O- pins (GPIOs)	51	37	25
Flash	256/128/64KB	256/128/64KB	256/128/64/32KB
Flash RWW section	8/4/2KB	8/4/2KB	8/4/2/1KB
System SRAM	32/16/8KB	32/16/8KB	32/16/8/4KB
Low Power SRAM	8/8/4KB	8/8/4KB	8/8/4/2KB
Timer Counter (TC) instances ⁽¹⁾	5	3	3
Waveform output channels per TC instance	2	2	2
Timer Counter for Control (TCC) instances	3	3	3
Waveform output channels per TCC	8/4/2	8/4/2	6/4/2
DMA channels	16	16	16
USB interface	1	1	1
AES engine	1	1	1
Configurable Custom Logic (CCL) (LUTs)	4	4	4
True Random Generator (TRNG)	1	1	1
Serial Communication Interface (SERCOM) instances	6	6	6
Analog-to-Digital Converter (ADC) channels	20	14	10
Analog Comparators (AC)	2	2	2
Digital-to-Analog Converter (DAC) channels	2	2	2
Operational Amplifier (OPAMP)	3	3	3

	SAM L21J	SAM L21G	SAM L21E	
Real-Time Counter (RTC)	Yes	Yes	Yes	
RTC alarms	1	1	1	
RTC compare values	One 32-bit value or	One 32-bit value or	One 32-bit value or	
	two 16-bit values	two 16-bit values	two 16-bit values	
External Interrupt lines	16	16	16	
Peripheral Touch Controller (PTC) channels (X- x Y-Lines) for mutual capacitance	169 (13x13)	81 (9x9)	42 (7x6)	
Peripheral Touch Controller (PTC) channels for self capacitance (Y-Lines only) (3)	16	10	7	
Maximum CPU frequency	48MHz			
Packages	QFN	QFN	QFN	
	TQFP	TQFP	TQFP	
	WLCSP ⁽⁴⁾			
Oscillators	32.768kHz crystal oscillat	or (XOSC32K)		
	0.4-32MHz crystal oscillat	tor (XOSC)		
	32.768kHz internal oscilla	itor (OSC32K)		
	32KHz ultra-low-power internal oscillator (OSCULP32K)			
	16/12/8/4MHz high-accuracy internal oscillator (OSC16M)			
	48MHz Digital Frequency Locked Loop (DFLL48M)			
	96MHz Fractional Digital Phased Locked Loop (FDPLL96M)			
Event System channels	12	12	12	
SW Debug Interface	Yes	Yes	Yes	
Watchdog Timer (WDT)	Yes	Yes	Yes	

Note:


- 1. For SAM L21E and SAM L21G, only TC0, TC1 and TC4 are available.
- 2. The number of X- and Y-lines depends on the configuration of the device, as some I/O lines can be configured as either X-lines or Y-lines. Refer to *Multiplexed Signals* for details. The number in the Configuration Summary is the maximum number of channels that can be obtained.

- 3. The number of Y-lines depends on the configuration of the device, as some I/O lines can be configured as either X-lines or Y-lines. The number given here is the maximum number of Y-lines that can be obtained.
- 4. WLCSP parts are programmed with a specific SPI bootloader. Refer to Application Note AT09002 for details.

3. Ordering Information

Note: The device variant (last letter of the ordering number) is independent of the die revision (DSU.DID.REVISION): The device variant denotes functional differences, whereas the die revision marks evolution of the die.

3.1. SAM L21J

Table 3-1. SAM L21J Ordering Codes

Ordering Code	FLASH (bytes)	SRAM (bytes)	Package	Carrier Type
ATSAML21J16B-AUT	64K	8K	TQFP64	Tape & Reel
ATSAML21J16B-MUT			QFN64	
ATSAML21J17B-AUT	128K	16K	TQFP64	Tape & Reel
ATSAML21J17B-MUT			QFN64	
ATSAML21J17B-UUT			WLCSP64	
ATSAML21J18B-AUT	256K	32K	TQFP64	Tape & Reel
ATSAML21J18B-MUT			QFN64	
ATSAML21J18B-UUT			WLCSP64	

3.2. SAM L21G

Table 3-2. SAM L21G Ordering Codes

Ordering Code	FLASH (bytes)	SRAM (bytes)	Package	Carrier Type
ATSAML21G16B-AUT	64K	8K	TQFP48	Tape & Reel
ATSAML21G16B-MUT			QFN48	
ATSAML21G17B-AUT	128K	16K	TQFP48	Tape & Reel
ATSAML21G17B-MUT			QFN48	
ATSAML21G18B-AUT	256K	32K	TQFP48	Tape & Reel
ATSAML21G18B-MUT			QFN48	

3.3. SAM L21E

Table 3-3. SAM L21E

Ordering Code	FLASH (bytes)	SRAM (bytes)	Package	Carrier Type
ATSAML21E15B-AUT	32K	4K	TQFP32	Tape & Reel
ATSAML21E15B-MUT			QFN32	
ATSAML21E16B-AUT	64K	8K	TQFP32	Tape & Reel
ATSAML21E16B-MUT			QFN32	
ATSAML21E17B-AUT	128K	16K	TQFP32	Tape & Reel
ATSAML21E17B-MUT			QFN32	
ATSAML21E18B-AUT	256K	32K	TQFP32	Tape & Reel
ATSAML21E18B-MUT			QFN32	

3.4. Device Identification

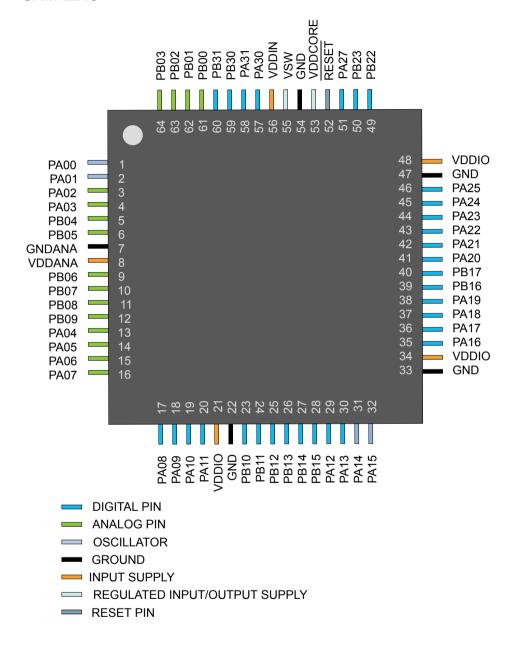
The DSU - Device Service Unit peripheral provides the Device Selection bits in the Device Identification register (DID.DEVSEL) in order to identify the device by software. The SAM L21 variants have a reset value of DID=0x1081drxx, with the LSB identifying the die number ('d'), the die revision ('r') and the device selection ('xx').

Table 3-4. SAM L21 Device Identification Values

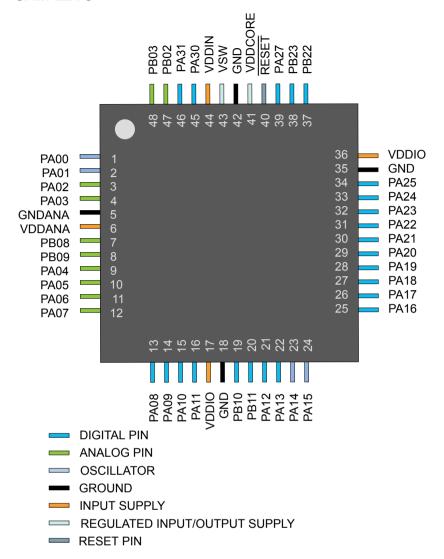
DEVSEL (DID[7:0])	Device
0x00	SAML21J18A
0x01	SAML21J17A
0x02	SAML21J16A
0x03-0x04	Reserved
0x05	SAML21G18A

DEVSEL (DID[7:0])	Device
0x06	SAML21G17A
0x07	SAML21G16A
0x08-0x09	Reserved
0x0A	SAML21E18A
0x0B	SAML21E17A
0x0C	SAML21E16A
0x0D	SAML21E15A
0x0E	Reserved
0x0F	SAML21J18B
0x10	SAML21J17B
0x11	SAML21J16B
0x12-0x13	Reserved
0x14	SAML21G18B
0x15	SAML21G17B
0x16	SAML21G16B
0x17-0x18	Reserved
0x19	SAML21E18B
0x1A	SAML21E17B
0x1B	SAML21E16B
0x1C	SAML21E15B
0x1D-0xFF	Reserved

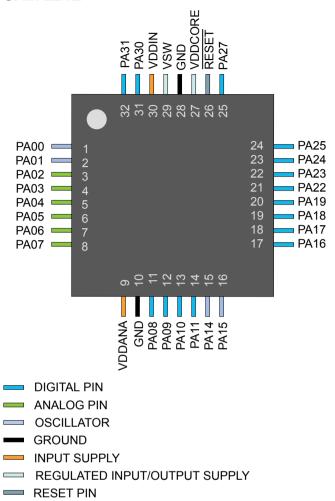
Note: The device variant (last letter of the ordering number) is independent of the die revision (DSU.DID.REVISION): The device variant denotes functional differences, whereas the die revision marks evolution of the die.



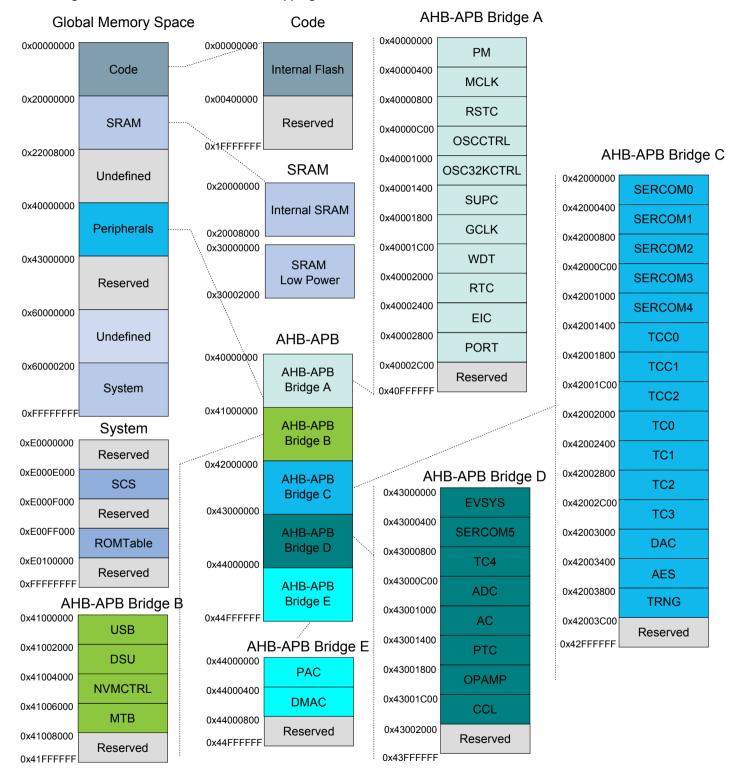
2.	The three TCC instances have different configurations, including the number of Waveform Output (WO) lines.


5. Pinout

5.1. SAM L21J



5.3. SAM L21G


5.4. SAM L21E

6. Product Mapping

Figure 6-1. Atmel SAM L21 Product Mapping

7. Processor and Architecture

7.1. Cortex M0+ Processor

The Atmel SAM L21 implements the ARM®Cortex[™]-M0+ processor, based on the ARMv6 Architecture and Thumb®-2 ISA. The Cortex M0+ is 100% instruction set compatible with its predecessor, the Cortex-M0 core, and upward compatible to Cortex-M3 and M4 cores. The implemented ARM Cortex-M0+ is revision r0p1. For more information refer to http://www.arm.com

7.1.1. Cortex M0+ Configuration

Table 7-1. Cortex M0+ Configuration in Atmel SAM L21

Features	Cortex M0+ options	Atmel SAM L21 configuration
Interrupts	External interrupts 0-32	29
Data endianness	Little-endian or big-endian	Little-endian
SysTick timer	Present or absent	Present
Number of watchpoint comparators	0, 1, 2	2
Number of breakpoint comparators	0, 1, 2, 3, 4	4
Halting debug support	Present or absent	Present
Multiplier	Fast or small	Fast (single cycle)
Single-cycle I/O port	Present or absent	Present
Wake-up interrupt controller	Supported or not supported	Not supported
Vector Table Offset Register	Present or absent	Present
Unprivileged/Privileged support	Present or absent	Absent - All software run in privileged mode only
Memory Protection Unit	Not present or 8-region	Not present
Reset all registers	Present or absent	Absent
Instruction fetch width	16-bit only or mostly 32-bit	32-bit

The ARM Cortex-M0+ core has two bus interfaces:

- Single 32-bit AMBA-3 AHB-Lite system interface that provides connections to peripherals and all system memory including Flash memory and RAM
- Single 32-bit I/O port bus interfacing to the PORT with 1-cycle loads and stores

7.1.1.1. Cortex M0+ Peripherals

- System Control Space (SCS)
 - The processor provides debug through registers in the SCS. Refer to the Cortex-M0+ Technical Reference Manual for details (http://www.arm.com)
- Nested Vectored Interrupt Controller (NVIC)

LP SRAM Port Connection	Port ID	Connection Type	QoS	default QoS
H2LBRIDGEM - HS to LP bus matrix AHB to AHB bridge	2	Bus Matrix	0x44000924 ⁽¹⁾ , bits[1:0]	0x2
DMAC - Direct Memory Access Controller - Data Access	1	Bus Matrix	IP-QOSCTRL.DQOS	0x2

Note:

1. Using 32-bit access only.

8.2. Package Drawings

8.2.1. 64-Ball WLCSP

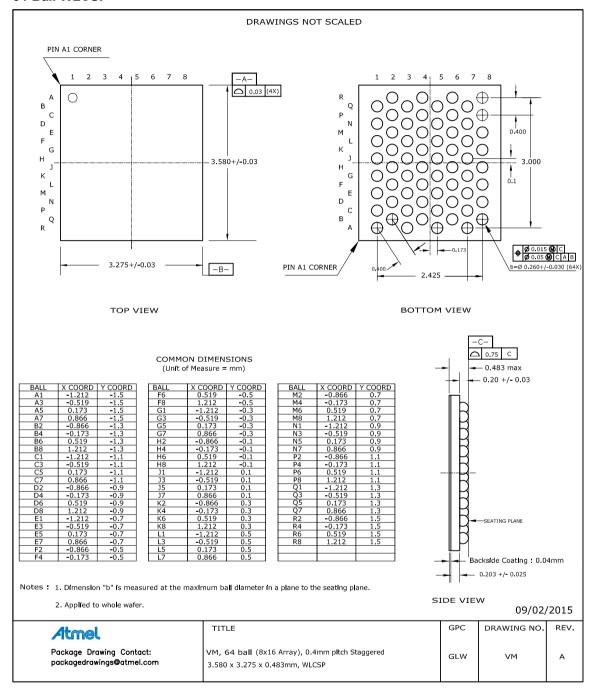


Table 8-2. Device and Package Maximum Weight

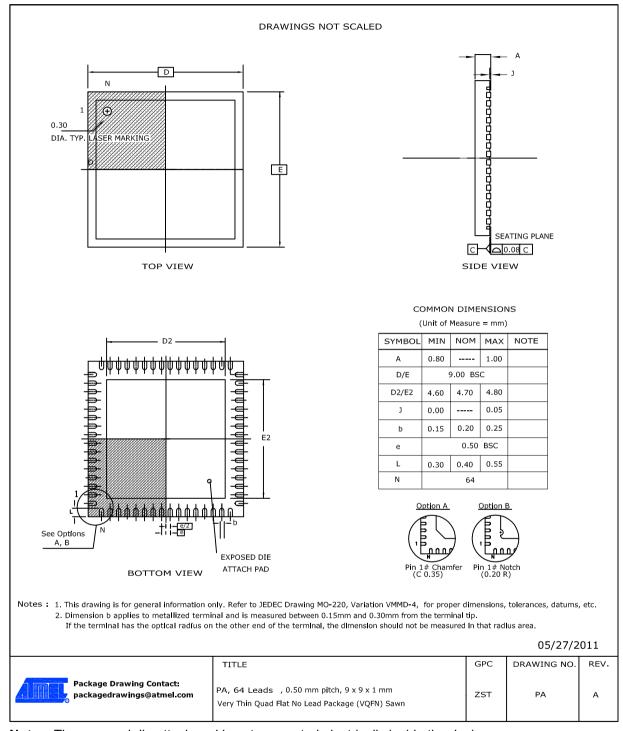

10	mg
. •	····9

Table 8-3. Package Characteristics

Moisture Sensitivity Level	MSL1

8.2.3. 64 pin QFN

Note: The exposed die attach pad is not connected electrically inside the device.

Table 8-8. Device and Package Maximum Weight

200 mg

Table 8-9. Package Charateristics

Moisture Sensitivity Level	MSL3

8.2.6. 32 pin TQFP

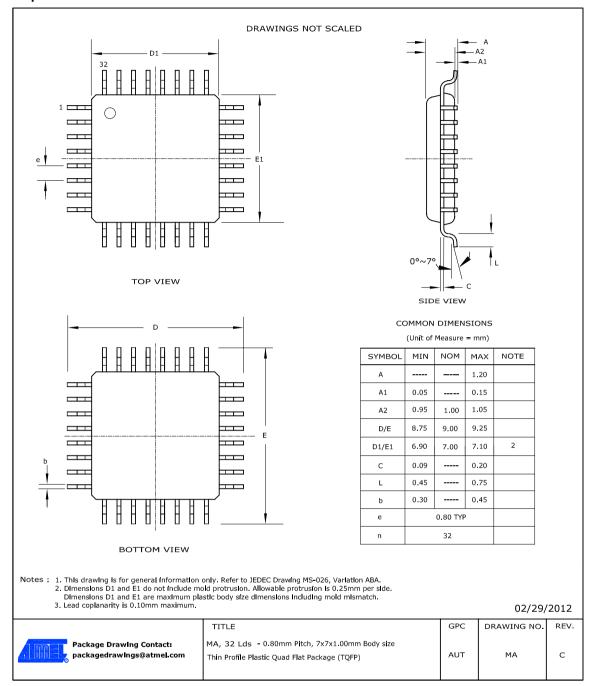


Table 8-17. Device and Package Maximum Weight

100	mg

Table 8-18. Package Charateristics

Moisture Sensitivity Level	MSL3
----------------------------	------

Atmel Corporation

1600 Technology Drive, San Jose, CA 95110 USA

T: (+1)(408) 441.0311

F: (+1)(408) 436.4200

www.atmel.com

© 2016 Atmel Corporation. / Rev.: Atmel-42385J-SAM L21 Datasheet Summary-06/2016

Atmel®, Atmel logo and combinations thereof, Enabling Unlimited Possibilities®, and others are registered trademarks or trademarks of Atmel Corporation in U.S. and other countries. ARM®, ARM Connected® logo, and others are the registered trademarks or trademarks of ARM Ltd. Other terms and product names may be trademarks of others.

DISCLAIMER: The information in this document is provided in connection with Atmel products. No license, express or implied, by estoppel or otherwise, to any intellectual property right is granted by this document or in connection with the sale of Atmel products. EXCEPT AS SET FORTH IN THE ATMEL TERMS AND CONDITIONS OF SALES LOCATED ON THE ATMEL WEBSITE, ATMEL ASSUMES NO LIABILITY WHATSOEVER AND DISCLAIMS ANY EXPRESS, IMPLIED OR STATUTORY WARRANTY RELATING TO ITS PRODUCTS INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT. IN NO EVENT SHALL ATMEL BE LIABLE FOR ANY DIRECT, INDIRECT, CONSEQUENTIAL, PUNITIVE, SPECIAL OR INCIDENTAL DAMAGES (INCLUDING, WITHOUT LIMITATION, DAMAGES FOR LOSS AND PROFITS, BUSINESS INTERRUPTION, OR LOSS OF INFORMATION) ARISING OUT OF THE USE OR INABILITY TO USE THIS DOCUMENT, EVEN IF ATMEL HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. Atmel makes no representations or warranties with respect to the accuracy or completeness of the contents of this document and reserves the right to make changes to specifications and products descriptions at any time without notice. Atmel does not make any commitment to update the information contained herein. Unless specifically provided otherwise, Atmel products are not suitable for, and shall not be used in, automotive applications. Atmel products are not intended, authorized, or warranted for use as components in applications intended to support or sustain life.

SAFETY-CRITICAL, MILITARY, AND AUTOMOTIVE APPLICATIONS DISCLAIMER: Atmel products are not designed for and will not be used in connection with any applications where the failure of such products would reasonably be expected to result in significant personal injury or death ("Safety-Critical Applications") without an Atmel officer's specific written consent. Safety-Critical Applications include, without limitation, life support devices and systems, equipment or systems for the operation of nuclear facilities and weapons systems. Atmel products are not designed nor intended for use in military or aerospace applications or environments unless specifically designated by Atmel as military-grade. Atmel products are not designed nor intended for use in automotive applications unless specifically designated by Atmel as automotive-grade.