

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	25MHz
Connectivity	CANbus, I ² C, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, HLVD, POR, PWM, WDT
Number of I/O	25
Program Memory Size	16KB (8K x 16)
Program Memory Type	FLASH
EEPROM Size	256 x 8
RAM Size	768 x 8
Voltage - Supply (Vcc/Vdd)	4.2V ~ 5.5V
Data Converters	A/D 8x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	28-VQFN Exposed Pad
Supplier Device Package	28-QFN (6x6)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic18f2480-e-ml

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

	Pin Number		Pin	Buffer			
Pin Name	SPDIP, SOIC	QFN	Ріп Туре	винег Туре	Description		
					PORTC is a bidirectional I/O port.		
RC0/T10S0/T13CKI	11	8					
RC0			I/O	ST	Digital I/O.		
T1OSO			0	_	Timer1 oscillator output.		
T13CKI			I	ST	Timer1/Timer3 external clock input.		
RC1/T10SI	12	9					
RC1			I/O	ST	Digital I/O.		
T1OSI			I	CMOS	Timer1 oscillator input.		
RC2/CCP1	13	10					
RC2			I/O	ST	Digital I/O.		
CCP1			I/O	ST	Capture 1 input/Compare 1 output/PWM1 output.		
RC3/SCK/SCL	14	11					
RC3			I/O	ST	Digital I/O.		
SCK			I/O	ST	Synchronous serial clock input/output for SPI mode.		
SCL			I/O	l ² C	Synchronous serial clock input/output for I ² C [™] mode.		
RC4/SDI/SDA	15	12					
RC4			I/O	ST	Digital I/O.		
SDI			Ι	ST	SPI data in.		
SDA			I/O	I ² C	I ² C data I/O.		
RC5/SDO	16	13					
RC5			I/O	ST	Digital I/O.		
SDO			0	—	SPI data out.		
RC6/TX/CK	17	14					
RC6			I/O	ST	Digital I/O.		
ТХ			0	—	EUSART asynchronous transmit.		
CK			I/O	ST	EUSART synchronous clock (see related RX/DT).		
RC7/RX/DT	18	15					
RC7			I/O	ST	Digital I/O.		
RX			Ι	ST	EUSART asynchronous receive.		
DT			I/O	ST	EUSART synchronous data (see related TX/CK).		
RE3		_			See MCLR/VPP/RE3 pin.		
Vss	8, 19	5, 16	Р	_	Ground reference for logic and I/O pins.		
Vdd	20	17	Р	—	Positive supply for logic and I/O pins.		
Legend: TTL = TTL					CMOS = CMOS compatible input or output		
ST = Sch		ger inpu	it with (CMOS lev	vels I = Input		

TABLE 1-2: PIC18F2480/2580 PINOUT I/O DESCRIPTIONS (CONTINUED)

Ρ = Power

O = Output I^2C = I^2C^{TM} /SMBus input buffer

Pin Name	Pin Number			Pin	Buffer	Description
Pin Name	PDIP	QFN	TQFP	Туре	Туре	Description
						PORTD is a bidirectional I/O port or a Parallel Slave Port (PSP) for interfacing to a microprocessor port. These pins have TTL input buffers when the PSP module is enabled.
RD0/PSP0/C1IN+ RD0 PSP0 C1IN+	19	38	38	I/O I/O I	ST TTL Analog	Digital I/O. Parallel Slave Port data. Comparator 1 input (+).
RD1/PSP1/C1IN- RD1 PSP1 C1IN-	20	39	39	I/O I/O I	ST TTL Analog	Digital I/O. Parallel Slave Port data. Comparator 1 input (-)
RD2/PSP2/C2IN+ RD2 PSP2 C2IN+	21	40	40	I/O I/O I	ST TTL Analog	Digital I/O. Parallel Slave Port data. Comparator 2 input (+).
RD3/PSP3/C2IN- RD3 PSP3 C2IN-	22	41	41	I/O I/O I	ST TTL Analog	Digital I/O. Parallel Slave Port data. Comparator 2 input (-).
RD4/PSP4/ECCP1/ P1A RD4 PSP4 ECCP1 P1A	27	2	2	I/O I/O I/O O	ST TTL ST TTL	Digital I/O. Parallel Slave Port data. Capture 2 input/Compare 2 output/PWM2 output. ECCP1 PWM Output A.
RD5/PSP5/P1B RD5 PSP5 P1B	28	3	3	I/O I/O O	ST TTL TTL	Digital I/O. Parallel Slave Port data. ECCP1 PWM Output B.
RD6/PSP6/P1C RD6 PSP6 P1C	29	4	4	I/O I/O O	ST TTL TTL	Digital I/O. Parallel Slave Port data. ECCP1 PWM Output C.
RD7/PSP7/P1D RD7 PSP7	30	5	5	I/O I/O O	ST TTL TTL	Digital I/O. Parallel Slave Port data. ECCP1 PWM Output D.

TABLE 1-3: PIC18F4480/4580 PINOUT I/O DESCRIPTIONS (CONTINUED)

O = Output $I^2C = I^2C^{TM}/SMBus input buffer$

2.2 Power Supply Pins

2.2.1 DECOUPLING CAPACITORS

The use of decoupling capacitors on every pair of power supply pins, such as VDD, VSS, AVDD and AVSS, is required.

Consider the following criteria when using decoupling capacitors:

- Value and type of capacitor: A 0.1 μ F (100 nF), 10-20V capacitor is recommended. The capacitor should be a low-ESR device, with a resonance frequency in the range of 200 MHz and higher. Ceramic capacitors are recommended.
- Placement on the printed circuit board: The decoupling capacitors should be placed as close to the pins as possible. It is recommended to place the capacitors on the same side of the board as the device. If space is constricted, the capacitor can be placed on another layer on the PCB using a via; however, ensure that the trace length from the pin to the capacitor is no greater than 0.25 inch (6 mm).
- Handling high-frequency noise: If the board is experiencing high-frequency noise (upward of tens of MHz), add a second ceramic type capacitor in parallel to the above described decoupling capacitor. The value of the second capacitor can be in the range of 0.01 μ F to 0.001 μ F. Place this second capacitor next to each primary decoupling capacitor. In high-speed circuit designs, consider implementing a decade pair of capacitances as close to the power and ground pins as possible (e.g., 0.1 μ F in parallel with 0.001 μ F).
- Maximizing performance: On the board layout from the power supply circuit, run the power and return traces to the decoupling capacitors first, and then to the device pins. This ensures that the decoupling capacitors are first in the power chain. Equally important is to keep the trace length between the capacitor and the power pins to a minimum, thereby reducing PCB trace inductance.

2.2.2 TANK CAPACITORS

On boards with power traces running longer than six inches in length, it is suggested to use a tank capacitor for integrated circuits, including microcontrollers, to supply a local power source. The value of the tank capacitor should be determined based on the trace resistance that connects the power supply source to the device, and the maximum current drawn by the device in the application. In other words, select the tank capacitor so that it meets the acceptable voltage sag at the device. Typical values range from 4.7 μ F to 47 μ F.

2.2.3 CONSIDERATIONS WHEN USING BOR

When the Brown-out Reset (BOR) feature is enabled, a sudden change in VDD may result in a spontaneous BOR event. This can happen when the microcontroller is operating under normal operating conditions, regardless of what the BOR set point has been programmed to, and even if VDD does not approach the set point. The precipitating factor in these BOR events is a rise or fall in VDD with a slew rate faster than $0.15V/\mu s$.

An application that incorporates adequate decoupling between the power supplies will not experience such rapid voltage changes. Additionally, the use of an electrolytic tank capacitor across VDD and Vss, as described above, will be helpful in preventing high slew rate transitions.

If the application has components that turn on or off, and share the same VDD circuit as the microcontroller, the BOR can be disabled in software by using the SBOREN bit before switching the component. Afterwards, allow a small delay before re-enabling the BOR. By doing this, it is ensured that the BOR is disabled during the interval that might cause high slew rate changes of VDD.

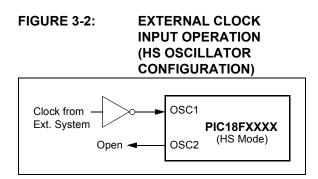
Note: Not all devices incorporate software BOR control. See Section 5.0 "Reset" for device-specific information.

TABLE 3-2:CAPACITOR SELECTION FOR
CRYSTAL OSCILLATOR

Crystal	Typical Capacitor Values Tested:			
гіеч	C1	C2		
32 kHz	33 pF	33 pF		
200 kHz	15 pF	15 pF		
1 MHz	33 pF	33 pF		
4 MHz	27 pF	27 pF		
4 MHz	27 pF	27 pF		
8 MHz	22 pF	22 pF		
20 MHz	15 pF	15 pF		
	Freq 32 kHz 200 kHz 1 MHz 4 MHz 4 MHz 8 MHz	Crystal Freq Tes 32 kHz 33 pF 200 kHz 15 pF 1 MHz 33 pF 4 MHz 27 pF 4 MHz 27 pF 8 MHz 22 pF		

Capacitor values are for design guidance only.

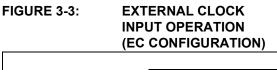
These capacitors were tested with the crystals listed below for basic start-up and operation. **These values are not optimized.**

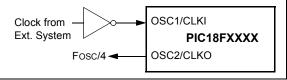

Different capacitor values may be required to produce acceptable oscillator operation. The user should test the performance of the oscillator over the expected VDD and temperature range for the application.

See the notes following this table for additional information.

Crystals Used:						
32 kHz	4 MHz					
200 kHz	8 MHz					
1 MHz	20 MHz					

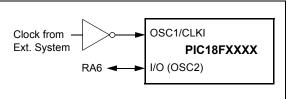
- Note 1: Higher capacitance increases the stability of the oscillator but also increases the start-up time.
 - When operating below 3V VDD, or when using certain ceramic resonators at any voltage, it may be necessary to use the HS mode or switch to a crystal oscillator.
 - 3: Since each resonator/crystal has its own characteristics, the user should consult the resonator/crystal manufacturer for appropriate values of external components.
 - 4: Rs may be required to avoid overdriving crystals with low drive level specification.
 - Always verify oscillator performance over the VDD and temperature range that is expected for the application.


An external clock source may also be connected to the OSC1 pin in the HS mode, as shown in Figure 3-2.



3.3 External Clock Input

The EC and ECIO Oscillator modes require an external clock source to be connected to the OSC1 pin. There is no oscillator start-up time required after a Power-on Reset or after an exit from Sleep mode.


In the EC Oscillator mode, the oscillator frequency divided by 4 is available on the OSC2 pin. This signal may be used for test purposes or to synchronize other logic. Figure 3-3 shows the pin connections for the EC Oscillator mode.

The ECIO Oscillator mode functions like the EC mode, except that the OSC2 pin becomes an additional general purpose I/O pin. The I/O pin becomes bit 6 of PORTA (RA6). Figure 3-4 shows the pin connections for the ECIO Oscillator mode.

3.7.1 OSCILLATOR CONTROL REGISTER

The OSCCON register (Register 3-2) controls several aspects of the device clock's operation, both in full-power operation and in power-managed modes.

The System Clock Select bits, SCS<1:0>, select the clock source. The available clock sources are the primary clock (defined by the FOSC<3:0> Configuration bits), the secondary clock (Timer1 oscillator) and the internal oscillator block. The clock source changes immediately after one or more of the bits is written to, following a brief clock transition interval. The SCS bits are cleared on all forms of Reset.

The Internal Oscillator Frequency Select bits, IRCF<2:0>, select the frequency output of the internal oscillator block to drive the device clock. The choices are the INTRC source, the INTOSC source (8 MHz) or one of the frequencies derived from the INTOSC post-scaler (31 kHz to 4 MHz). If the internal oscillator block is supplying the device clock, changing the states of these bits will have an immediate change on the internal oscillator's output. On device Resets, the default output frequency of the internal oscillator block is set at 1 MHz.

When an output frequency of 31 kHz is selected (IRCF<2:0> = 000), users may choose which internal oscillator acts as the source. This is done with the INTSRC bit in the OSCTUNE register (OSCTUNE<7>). Setting this bit selects INTOSC as a 31.25 kHz clock source by enabling the divide-by-256 output of the INTOSC postscaler. Clearing INTSRC selects INTRC (nominally 31 kHz) as the clock source.

This option allows users to select the tunable and more precise INTOSC as a clock source, while maintaining power savings with a very low clock speed. Regardless of the setting of INTSRC, INTRC always remains the clock source for features such as the Watchdog Timer and the Fail-Safe Clock Monitor.

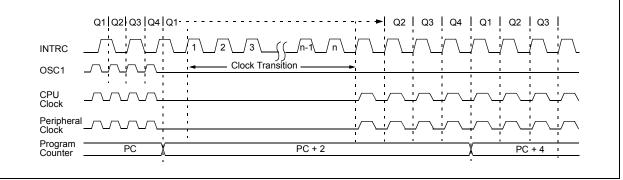
The OSTS, IOFS and T1RUN bits indicate which clock source is currently providing the device clock. The OSTS bit indicates that the Oscillator Start-up Timer (OST) has timed out and the primary clock is providing the device clock in primary clock modes. The IOFS bit indicates when the internal oscillator block has stabilized and is providing the device clock in RC Clock modes. The T1RUN bit (T1CON<6>) indicates when the Timer1 oscillator is providing the device clock in secondary clock modes. In power-managed modes, only one of these three bits will be set at any time. If none of these bits are set, the INTRC is providing the clock or the internal oscillator block has just started and is not yet stable. The IDLEN bit determines if the device goes into Sleep mode or one of the Idle modes when the SLEEP instruction is executed.

The use of the flag and control bits in the OSCCON register is discussed in more detail in **Section 4.0** "Power-Managed Modes".

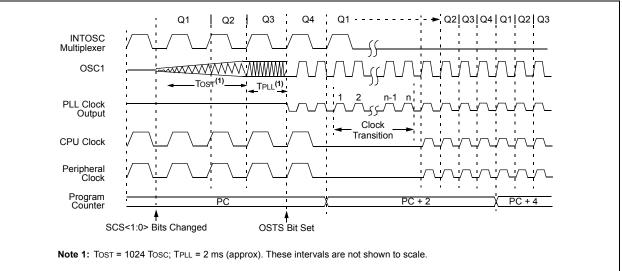
- Note 1: The Timer1 oscillator must be enabled to select the secondary clock source. The Timer1 oscillator is enabled by setting the T1OSCEN bit in the Timer1 Control register (T1CON<3>). If the Timer1 oscillator is not enabled, then any attempt to select a secondary clock source when executing a SLEEP instruction will be ignored.
 - 2: It is recommended that the Timer1 oscillator be operating and stable before executing the SLEEP instruction, or a very long delay may occur while the Timer1 oscillator starts.

3.7.2 OSCILLATOR TRANSITIONS

PIC18F2480/2580/4480/4580 devices contain circuitry to prevent clock "glitches" when switching between clock sources. A short pause in the device clock occurs during the clock switch. The length of this pause is the sum of two cycles of the old clock source and three to four cycles of the new clock source. This formula assumes that the new clock source is stable.


Clock transitions are discussed in greater detail in **Section 4.1.2 "Entering Power-Managed Modes"**.

If the IRCF bits and the INTSRC bit are all clear, the INTOSC output is not enabled and the IOFS bit will remain clear; there will be no indication of the current clock source. The INTRC source is providing the device clocks.


If the IRCF bits are changed from all clear (thus, enabling the INTOSC output) or if INTSRC is set, the IOFS bit becomes set after the INTOSC output becomes stable. Clocks to the device continue while the INTOSC source stabilizes after an interval of TIOBST.

If the IRCF bits were previously at a non-zero value or if INTSRC was set before setting SCS1 and the INTOSC source was already stable, the IOFS bit will remain set. On transitions from RC_RUN mode to PRI_RUN mode, the device continues to be clocked from the INTOSC multiplexer while the primary clock is started. When the primary clock becomes ready, a clock switch to the primary clock occurs (see Figure 4-4). When the clock switch is complete, the IOFS bit is cleared, the OSTS bit is set and the primary clock is providing the device clock. The IDLEN and SCS bits are not affected by the switch. The INTRC source will continue to run if either the WDT or the Fail-Safe Clock Monitor is enabled.

File Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Details on Page:
TXB1D1	TXB1D17	TXB1D16	TXB1D15	TXB1D14	TXB1D13	TXB1D12	TXB1D11	TXB1D10	XXXX XXXX	60, 290
TXB1D0	TXB1D07	TXB1D06	TXB1D05	TXB1D04	TXB1D03	TXB1D02	TXB1D01	TXB1D00	XXXX XXXX	60, 290
TXB1DLC	_	TXRTR	_	_	DLC3	DLC2	DLC1	DLC0	-x xxxx	60, 291
TXB1EIDL	EID7	EID6	EID5	EID4	EID3	EID2	EID1	EID0	XXXX XXXX	60, 290
TXB1EIDH	EID15	EID14	EID13	EID12	EID11	EID10	EID9	EID8	XXXX XXXX	60, 289
TXB1SIDL	SID2	SID1	SID0	_	EXIDE		EID17	EID16	xxx- x-xx	60, 289
TXB1SIDH	SID10	SID9	SID8	SID7	SID6	SID5	SID4	SID3	XXXX XXXX	60, 289
TXB1CON	TXBIF	TXABT	TXLARB	TXERR	TXREQ		TXPRI1	TXPRI0	0000 0-00	60, 288
TXB2D7	TXB2D77	TXB2D76	TXB2D75	TXB2D74	TXB2D73	TXB2D72	TXB2D71	TXB2D70	XXXX XXXX	60, 290
TXB2D6	TXB2D67	TXB2D66	TXB2D65	TXB2D64	TXB2D63	TXB2D62	TXB2D61	TXB2D60	XXXX XXXX	61, 290
TXB2D5	TXB2D57	TXB2D56	TXB2D55	TXB2D54	TXB2D53	TXB2D52	TXB2D51	TXB2D50	XXXX XXXX	61, 290
TXB2D4	TXB2D47	TXB2D46	TXB2D45	TXB2D44	TXB2D43	TXB2D42	TXB2D41	TXB2D40	XXXX XXXX	61, 290
TXB2D3	TXB2D37	TXB2D36	TXB2D35	TXB2D34	TXB2D33	TXB2D32	TXB2D31	TXB2D30	XXXX XXXX	61, 290
TXB2D2	TXB2D27	TXB2D26	TXB2D25	TXB2D24	TXB2D23	TXB2D22	TXB2D21	TXB2D20	XXXX XXXX	61, 290
TXB2D1	TXB2D17	TXB2D16	TXB2D15	TXB2D14	TXB2D13	TXB2D12	TXB2D11	TXB2D10	XXXX XXXX	61, 290
TXB2D0	TXB2D07	TXB2D06	TXB2D05	TXB2D04	TXB2D03	TXB2D02	TXB2D01	TXB2D00	XXXX XXXX	61, 290
TXB2DLC	_	TXRTR	—	_	DLC3	DLC2	DLC1	DLC0	-x xxxx	61, 291
TXB2EIDL	EID7	EID6	EID5	EID4	EID3	EID2	EID1	EID0	XXXX XXXX	61, 290
TXB2EIDH	EID15	EID14	EID13	EID12	EID11	EID10	EID9	EID8	XXXX XXXX	61, 289
TXB2SIDL	SID2	SID1	SID0	_	EXIDE		EID17	EID16	хххх х-хх	61, 289
TXB2SIDH	SID10	SID9	SID8	SID7	SID6	SID5	SID4	SID3	xxx- x-xx	61, 289
TXB2CON	TXBIF	TXABT	TXLARB	TXERR	TXREQ		TXPRI1	TXPRI0	0000 0-00	61, 288
RXM1EIDL	EID7	EID6	EID5	EID4	EID3	EID2	EID1	EID0	XXXX XXXX	61, 310
RXM1EIDH	EID15	EID14	EID13	EID12	EID11	EID10	EID9	EID8	XXXX XXXX	61, 310
RXM1SIDL	SID2	SID1	SID0	_	EXIDEN		EID17	EID16	xxx- x-xx	61, 310
RXM1SIDH	SID10	SID9	SID8	SID7	SID6	SID5	SID4	SID3	XXXX XXXX	61, 310
RXM0EIDL	EID7	EID6	EID5	EID4	EID3	EID2	EID1	EID0	XXXX XXXX	61, 310
RXM0EIDH	EID15	EID14	EID13	EID12	EID11	EID10	EID9	EID8	XXXX XXXX	61, 310
RXM0SIDL	SID2	SID1	SID0	_	EXIDEN	_	EID17	EID16	xxx- x-xx	61, 310
RXM0SIDH	SID10	SID9	SID8	SID7	SID6	SID5	SID4	SID3	XXXX XXXX	61, 309
RXF5EIDL	EID7	EID6	EID5	EID4	EID3	EID2	EID1	EID0	XXXX XXXX	61, 309
RXF5EIDH	EID15	EID14	EID13	EID12	EID11	EID10	EID9	EID8	XXXX XXXX	61, 309
RXF5SIDL	SID2	SID1	SID0	_	EXIDEN		EID17	EID16	xxx- x-xx	61, 308
RXF5SIDH	SID10	SID9	SID8	SID7	SID6	SID5	SID4	SID3	XXXX XXXX	61, 308
RXF4EIDL	EID7	EID6	EID5	EID4	EID3	EID2	EID1	EID0	XXXX XXXX	61, 309
RXF4EIDH	EID15	EID14	EID13	EID12	EID11	EID10	EID9	EID8	XXXX XXXX	61, 309
RXF4SIDL	SID2	SID1	SID0	—	EXIDEN	_	EID17	EID16	xxx- x-xx	61, 308
RXF4SIDH	SID10	SID9	SID8	SID7	SID6	SID5	SID4	SID3	XXXX XXXX	61, 308
RXF3EIDL	EID7	EID6	EID5	EID4	EID3	EID2	EID1	EID0	XXXX XXXX	61, 309
RXF3EIDH	EID15	EID14	EID13	EID12	EID11	EID10	EID9	EID8	XXXX XXXX	61, 309
RXF3SIDL	SID2	SID1	SID0	_	EXIDEN	_	EID17	EID16	xxx- x-xx	62, 308

TABLE 6-2:REGISTER FILE SUMMARY (PIC18F2480/2580/4480/4580) (CONTINUED)

 $\label{eq:logend: x = unknown, u = unchanged, - = unimplemented, q = value depends on condition$

Note 1: Bit 21 of the PC is only available in Test mode and Serial Programming modes.

The SBOREN bit is only available when CONFIG2L<1:0> = 01; otherwise, it is disabled and reads as '0'. See Section 5.4 "Brown-out Reset (BOR)".
 These registers and/or bits are not implemented on PIC18F2X80 devices and are read as '0'. Reset values are shown for PIC18F4X80 devices;

These registers and/or bits are not implemented on PiC for 2X60 devices and are read as "0". Reset values are shown for PiC for 4X60 devices, individual unimplemented bits should be interpreted as '—'.
 The PLLEN bit is only available in specific oscillator configuration; otherwise, it is disabled and reads as '0'. See Section 3.6.4 "PLL in INTOSC

4: The PLLEN bit is only available in specific oscillator configuration; otherwise, it is disabled and reads as '0'. See Section 3.6.4 "PLL in INTOS' Modes".

5: The RE3 bit is only available when Master Clear Reset is disabled (CONFIG3H<7> = 0); otherwise, RE3 reads as '0'. This bit is read-only.

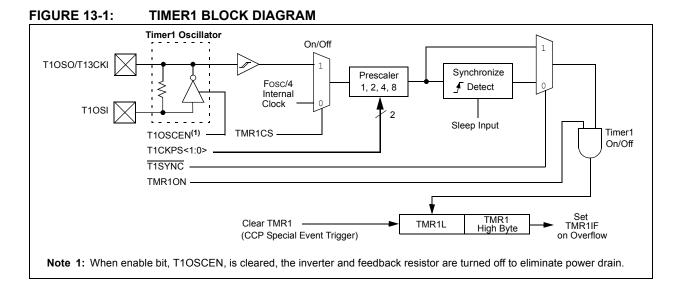
6: RA6/RA7 and their associated latch and direction bits are individually configured as port pins based on various primary oscillator modes. When disabled, these bits read as '0'.

7: CAN bits have multiple functions depending on the selected mode of the CAN module.

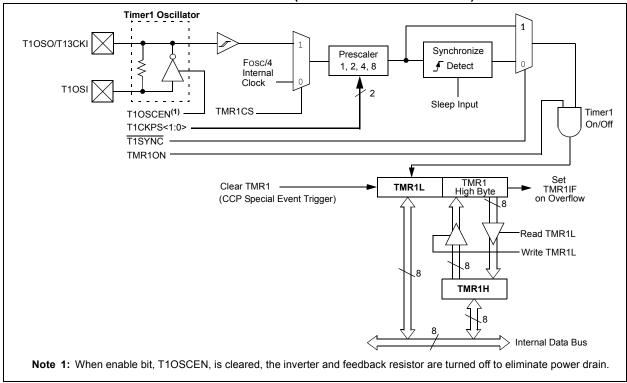
8: This register reads all '0's until the ECAN™ technology is set up in Mode 1 or Mode 2.

9: These registers are available on PIC18F4X80 devices only.

13.1 Timer1 Operation


Timer1 can operate in one of these modes:

- Timer
- Synchronous Counter
- Asynchronous Counter


The operating mode is determined by the clock select bit, TMR1CS (T1CON<1>). When TMR1CS is cleared (= 0), Timer1 increments on every internal instruction

cycle (Fosc/4). When the bit is set, Timer1 increments on every rising edge of the Timer1 external clock input or the Timer1 oscillator, if enabled.

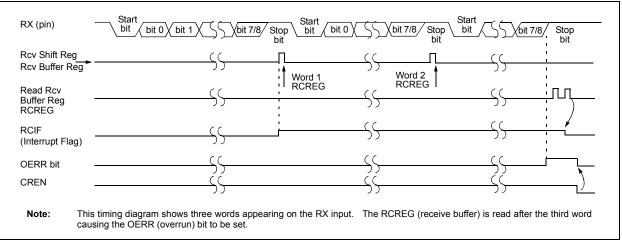

When Timer1 is enabled, the RC1/T1OSI and RC0/T10SO/T13CKI pins become inputs. This means the values of TRISC<1:0> are ignored and the pins are read as '0'.

FIGURE 19-7: ASYNCHRONOUS RECEPTION

TABLE 19-6: REGISTERS ASSOCIATED WITH ASYNCHRONOUS RECEPTION

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Reset Values on Page:
INTCON	GIE/GIEH	PEIE/GIEL	TMR0IE	INT0IE	RBIE	TMR0IF	INT0IF	RBIF	55
PIR1	PSPIF ⁽¹⁾	ADIF	RCIF	TXIF	SSPIF	CCP1IF	TMR2IF	TMR1IF	58
PIE1	PSPIE ⁽¹⁾	ADIE	RCIE	TXIE	SSPIE	CCP1IE	TMR2IE	TMR1IE	58
IPR1	PSPIP ⁽¹⁾	ADIP	RCIP	TXIP	SSPIP	CCP1IP	TMR2IP	TMR1IP	58
RCSTA	SPEN	RX9	SREN	CREN	ADDEN	FERR	OERR	RX9D	57
RCREG	EUSART F	Receive Reg	ister						57
TXSTA	CSRC	TX9	TXEN	SYNC	SENDB	BRGH	TRMT	TX9D	57
BAUDCON	ABDOVF	RCIDL	_	SCKP	BRG16	_	WUE	ABDEN	57
SPBRGH	EUSART Baud Rate Generator Register, High Byte								57
SPBRG	EUSART E	Baud Rate G	enerator Re	gister, Low	Byte				57

Legend: — = unimplemented locations read as '0'. Shaded cells are not used for asynchronous reception.

Note 1: Reserved in PIC18F2X80 devices; always maintain these bits clear.

NOTES:

22.0 COMPARATOR VOLTAGE REFERENCE MODULE

The comparator voltage reference is a 16-tap resistor ladder network that provides a selectable reference voltage. Although its primary purpose is to provide a reference for the analog comparators, it may also be used independently of them.

A block diagram is of the module shown in Figure 22-1.The resistor ladder is segmented to provide two ranges of CVREF values and has a power-down function to conserve power when the reference is not being used. The module's supply reference can be provided from either device VDD/Vss or an external voltage reference.

22.1 Configuring the Comparator Voltage Reference

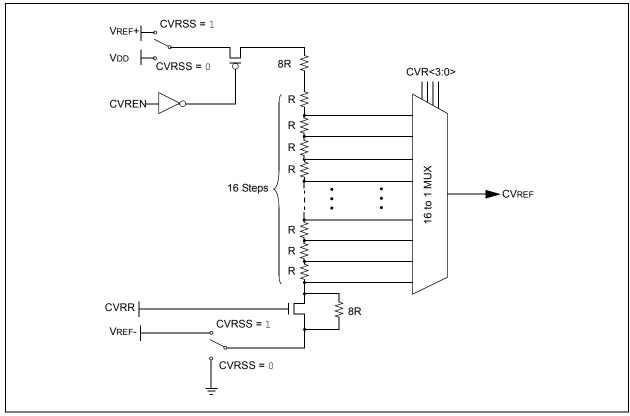
The voltage reference module is controlled through the CVRCON register (Register 22-1). The comparator voltage reference provides two ranges of output voltage,

each with 16 distinct levels. The range to be used is selected by the CVRR bit (CVRCON<5>). The primary difference between the ranges is the size of the steps selected by the CVREF Selection bits (CVR<3:0>), with one range offering finer resolution. The equations used to calculate the output of the comparator voltage reference are as follows:

```
<u>If CVRR = 1:</u>
CVREF = ((CVR<3:0>)/24) x CVRSRC
<u>If CVRR = 0:</u>
CVREF = (CVDD x 1/4) + (((CVR<3:0>)/32) x
CVRSRC)
```

The comparator reference supply voltage can come from either VDD and VSS, or the external VREF+ and VREF- that are multiplexed with RA2 and RA3. The voltage source is selected by the CVRSS bit (CVRCON<4>).

The settling time of the comparator voltage reference must be considered when changing the CVREF output (see Table 28-3 in Section 28.0 "Electrical Characteristics").


REGISTER 22-1: CVRCON: COMPARATOR VOLTAGE REFERENCE CONTROL REGISTER

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
CVREN	CVROE ⁽¹⁾	CVRR	CVRSS	CVR3	CVR2	CVR1	CVR0
bit 7 bit 0							

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	d as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 7	CVREN: Comparator Voltage Reference Enable bit
	 1 = CVREF circuit powered on 0 = CVREF circuit powered down
bit 6	CVROE: Comparator VREF Output Enable bit ⁽¹⁾
	 1 = CVREF voltage level is also output on the RA0/AN0/CVREF pin 0 = CVREF voltage is disconnected from the RA0/AN0/CVREF pin
bit 5	CVRR: Comparator VREF Range Selection bit
	 1 = 0.00 CVRsRc to 0.75 CVRsRc, with CVRsRc/24 step size 0 = 0.25 CVRsRc to 0.75 CVRsRc, with CVRsRc/32 step size
bit 4	CVRSS: Comparator VREF Source Selection bit
	 1 = Comparator reference source, CVRSRC = (VREF+) – (VREF-) 0 = Comparator reference source, CVRSRC = VDD – VSS
bit 3-0	CVR<3:0>: Comparator VREF Value Selection bits ($0 \le (CVR<3:0>) \le 15$)
	When CVRR = 1:
	$CVREF = ((CVR < 3:0 >)/24) \bullet (CVRSRC)$
	When CVRR = 0:
	$CVREF = (CVRSRC/4) + ((CVR<3:0>)/32) \bullet (CVRSRC)$

Note 1: CVROE overrides the TRISA<0> bit setting. If enabled for output, RA2 must also be configured as an input by setting TRISA<2> to '1'.

FIGURE 22-1: COMPARATOR VOLTAGE REFERENCE BLOCK DIAGRAM

22.2 Voltage Reference Accuracy/Error

The full range of voltage reference cannot be realized due to the construction of the module. The transistors on the top and bottom of the resistor ladder network (Figure 22-1) keep CVREF from approaching the reference source rails. The voltage reference is derived from the reference source; therefore, the CVREF output changes with fluctuations in that source. The tested absolute accuracy of the voltage reference can be found in **Section 28.0 "Electrical Characteristics"**.

22.3 Operation During Sleep

When the device wakes up from Sleep through an interrupt or a Watchdog Timer time-out, the contents of the CVRCON register are not affected. To minimize current consumption in Sleep mode, the voltage reference should be disabled.

22.4 Effects of a Reset

A device Reset disables the voltage reference by clearing bit, CVREN (CVRCON<7>). This Reset also disconnects the reference from the RA0 pin by clearing bit, CVROE (CVRCON<6>), and selects the high-voltage range by clearing bit, CVRR (CVRCON<5>). The CVR value select bits are also cleared.

22.5 Connection Considerations

The voltage reference module operates independently of the comparator module. The output of the reference generator may be connected to the RA0 pin if the TRISA<0> bit and the CVROE bit are both set. Enabling the voltage reference output onto the RA0 pin, with an input signal present, will increase current consumption. Connecting RA0 as a digital output with CVRSS enabled will also increase current consumption.

The RA0 pin can be used as a simple D/A output with limited drive capability. Due to the limited current drive capability, a buffer must be used on the voltage reference output for external connections to VREF. Figure 22-2 shows an example buffering technique.

$\label{eq:register24-28: BnEIDH: TX/RX BUFFER n EXTENDED IDENTIFIER REGISTERS, \\ HIGH BYTE IN RECEIVE MODE [0 \le n \le 5, TXnEN (BSEL0<n>) = 0]^{(1)}$

R-x	R-x	R-x	R-x	R-x	R-x	R-x	R-x
EID15	EID14	EID13	EID12	EID11	EID10	EID9	EID8
bit 7							bit 0
Legend:							

Legenu.					
R = Readable bit	W = Writable bit	U = Unimplemented bit, rea	it, read as '0'		
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown		

bit 7-0 EID<15:8>: Extended Identifier bits

Note 1: These registers are available in Mode 1 and 2 only.

$\label{eq:register24-29: BnEIDH: TX/RX BUFFER n EXTENDED IDENTIFIER REGISTERS, \\ HIGH BYTE IN TRANSMIT MODE [0 \le n \le 5, TXnEN (BSEL0<n>) = 1]^{(1)}$

| R/W-x |
|-------|-------|-------|-------|-------|-------|-------|-------|
| EID15 | EID14 | EID13 | EID12 | EID11 | EID10 | EID9 | EID8 |
| bit 7 | | | | | | | bit 0 |

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	l as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 7-0 EID<15:8>: Extended Identifier bits

Note 1: These registers are available in Mode 1 and 2 only.

$\label{eq:register24-30:BnEIDL: TX/RX BUFFER n EXTENDED IDENTIFIER REGISTERS, \\ LOW BYTE IN RECEIVE MODE [0 \le n \le 5, TXnEN (BSEL<n>) = 0]^{(1)}$

R-x	R-x	R-x	R-x	R-x	R-x	R-x	R-x
EID7	EID6	EID5	EID4	EID3	EID2	EID1	EID0
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimpler	mented bit, read	as '0'	
-n = Value at F	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown

bit 7-0 EID<7:0>: Extended Identifier bits

Note 1: These registers are available in Mode 1 and 2 only.

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
FIL15_1	FIL15_0	FIL14_1	FIL14_0	FIL13_1	FIL13_0	FIL12_1	FIL12_0
bit 7							bit C
Legend:							
R = Readable	e bit	W = Writable	bit	U = Unimpler	mented bit, read	l as '0'	
-n = Value at	POR	'1' = Bit is set	t	'0' = Bit is cle	ared	x = Bit is unki	nown
bit 7-6	FIL15_<1:0>:	: Filter 15 Sele	ct bits 1 and 0				
	11 = No masl	-					
	10 = Filter 15 01 = Accepta						
	00 = Accepta						
bit 5-4	FIL14_<1:0>:	: Filter 14 Sele	ct bits 1 and 0				
	11 = No masl	k					
	10 = Filter 15						
	01 = Accepta 00 = Accepta						
bit 3-2	•	: Filter 13 Sele	ct bits 1 and 0				
	11 = No masl						
	10 = Filter 15						
	01 = Accepta						
h:4 0	00 = Accepta						
bit 1-0	11 = No mas	: Filter 12 Sele	ct bits 1 and 0				
	10 = Filter 15	-					
	01 = Accepta						
	00 = Accepta	nce Mask 0					

REGISTER 24-51: MSEL3: MASK SELECT REGISTER 3⁽¹⁾

Note 1: This register is available in Mode 1 and 2 only.

24.13 Bit Timing Configuration Registers

The Baud Rate Control registers (BRGCON1, BRGCON2, BRGCON3) control the bit timing for the CAN bus interface. These registers can only be modified when the PIC18F2480/2580/4480/4580 devices are in Configuration mode.

24.13.1 BRGCON1

The BRP bits control the baud rate prescaler. The SJW<1:0> bits select the synchronization jump width in terms of multiples of TQ.

24.13.2 BRGCON2

The PRSEG bits set the length of the propagation segment in terms of Tq. The SEG1PH bits set the length of Phase Segment 1 in To. The SAM bit controls how many times the RXCAN pin is sampled. Setting this bit to a '1' causes the bus to be sampled three times: twice at TQ/2 before the sample point and once at the normal sample point (which is at the end of Phase Segment 1). The value of the bus is determined to be the value read during at least two of the samples. If the SAM bit is set to a '0', then the RXCAN pin is sampled only once at the sample point. The SEG2PHTS bit controls how the length of Phase Segment 2 is determined. If this bit is set to a '1', then the length of Phase Segment 2 is determined by the SEG2PH bits of BRGCON3. If the SEG2PHTS bit is set to a '0', then the length of Phase Segment 2 is the greater of Phase Segment 1 and the information processing time (which is fixed at 2 To for the PIC18F2480/2580/4480/4580).

24.13.3 BRGCON3

The PHSEG2<2:0> bits set the length (in TQ) of Phase Segment 2 if the SEG2PHTS bit is set to a '1'. If the SEG2PHTS bit is set to a '0', then the PHSEG2<2:0> bits have no effect.

24.14 Error Detection

The CAN protocol provides sophisticated error detection mechanisms. The following errors can be detected.

24.14.1 CRC ERROR

With the Cyclic Redundancy Check (CRC), the transmitter calculates special check bits for the bit sequence, from the start of a frame until the end of the data field. This CRC sequence is transmitted in the CRC field. The receiving node also calculates the CRC sequence using the same formula and performs a comparison to the received sequence. If a mismatch is detected, a CRC error has occurred and an error frame is generated. The message is repeated.

24.14.2 ACKNOWLEDGE ERROR

In the Acknowledge field of a message, the transmitter checks if the Acknowledge slot (which was sent out as a recessive bit) contains a dominant bit. If not, no other node has received the frame correctly. An Acknowledge error has occurred, an error frame is generated and the message will have to be repeated.

24.14.3 FORM ERROR

If a node detects a dominant bit in one of the four segments, including End-Of-Frame (EOF), interframe space, Acknowledge delimiter or CRC delimiter, then a form error has occurred and an error frame is generated. The message is repeated.

24.14.4 BIT ERROR

A bit error occurs if a transmitter sends a dominant bit and detects a recessive bit, or if it sends a recessive bit and detects a dominant bit, when monitoring the actual bus level and comparing it to the just transmitted bit. In the case where the transmitter sends a recessive bit and a dominant bit is detected during the arbitration field and the Acknowledge slot, no bit error is generated because normal arbitration is occurring.

24.14.5 STUFF BIT ERROR

If, between the Start-Of-Frame (SOF) and the CRC delimiter, six consecutive bits with the same polarity are detected, the bit stuffing rule has been violated. A stuff bit error occurs and an error frame is generated. The message is repeated.

24.14.6 ERROR STATES

Detected errors are made public to all other nodes via error frames. The transmission of the erroneous message is aborted and the frame is repeated as soon as possible. Furthermore, each CAN node is in one of the three error states; "error-active", "error-passive" or "bus-off", according to the value of the internal error counters. The error-active state is the usual state where the bus node can transmit messages and activate error frames (made of dominant bits) without any restrictions. In the error-passive state, messages and passive error frames (made of recessive bits) may be transmitted. The bus-off state makes it temporarily impossible for the node to participate in the bus communication. During this state, messages can neither be received nor transmitted.

24.14.7 ERROR MODES AND ERROR COUNTERS

The PIC18F2480/2580/4480/4580 devices contain two error counters: the Receive Error Counter (RXERRCNT) and the Transmit Error Counter (TXERRCNT). The values of both counters can be read by the MCU. These counters are incremented or decremented in accordance with the CAN bus specification.

TABLE 26	9-2: PI		ET (CON	INUE	U)			1	
Mnemo	onic,	Description	Cycles	16-E	Bit Instr	uction V	Vord	Status	Notes
Opera	inds	Description	Cycles	MSb			LSb	Affected	notes
BIT-ORIEN	ITED OP	ERATIONS							
BCF	f, b, a	Bit Clear f	1	1001	bbba	ffff	ffff	None	1, 2
BSF		Bit Set f	1	1000	bbba	ffff	ffff	None	1, 2
BTFSC	f, b, a	Bit Test f, Skip if Clear	1 (2 or 3)	1011	bbba	ffff	ffff	None	3, 4
BTFSS	f, b, a	Bit Test f, Skip if Set	1 (2 or 3)	1010	bbba	ffff	ffff	None	3, 4
BTG	f, b, a	Bit Toggle f	1	0111	bbba	ffff	ffff	None	1, 2
CONTROL	. OPERA	TIONS							
BC	n	Branch if Carry	1 (2)	1110	0010	nnnn	nnnn	None	
BN	n	Branch if Negative	1 (2)	1110	0110	nnnn	nnnn	None	
BNC	n	Branch if Not Carry	1 (2)	1110	0011	nnnn	nnnn	None	
BNN	n	Branch if Not Negative	1 (2)	1110	0111	nnnn	nnnn	None	
BNOV	n	Branch if Not Overflow	1 (2)	1110	0101	nnnn	nnnn	None	
BNZ	n	Branch if Not Zero	1 (2)	1110	0001	nnnn	nnnn	None	
BOV	n	Branch if Overflow	1 (2)	1110	0100	nnnn	nnnn	None	
BRA	n	Branch Unconditionally	2	1101	0nnn	nnnn	nnnn	None	
BZ	n	Branch if Zero	1 (2)	1110	0000	nnnn	nnnn	None	
CALL	n, s	Call Subroutine 1st word	2	1110	110s	kkkk	kkkk	None	
		2nd word		1111	kkkk	kkkk	kkkk		
CLRWDT	_	Clear Watchdog Timer	1	0000	0000	0000	0100	TO, PD	
DAW	_	Decimal Adjust WREG	1	0000	0000	0000	0111	С	
GOTO	n	Go to Address 1st word	2	1110	1111	kkkk	kkkk	None	
		2nd word		1111	kkkk	kkkk	kkkk		
NOP	—	No Operation	1	0000	0000	0000	0000	None	
NOP	—	No Operation	1	1111	XXXX	XXXX	XXXX	None	4
POP	—	Pop Top of Return Stack (TOS)	1	0000	0000	0000	0110	None	
PUSH	—	Push Top of Return Stack (TOS)	1	0000	0000	0000	0101	None	
RCALL	n	Relative Call	2	1101	1nnn	nnnn	nnnn	None	
RESET		Software Device Reset	1	0000	0000	1111		All	
RETFIE	S	Return from Interrupt Enable	2	0000	0000	0001	000s	GIE/GIEH,	
								PEIE/GIEL	
RETLW	k	Return with Literal in WREG	2	0000	1100	kkkk	kkkk	None	
RETURN	S	Return from Subroutine	2	0000	0000	0001	001s	None	
SLEEP	_	Go into Standby mode	1	0000	0000	0000	0011	TO, PD	

TABLE 26-2: PIC18FXXXX INSTRUCTION SET (CONTINUED)

Note 1: When a PORT register is modified as a function of itself (e.g., MOVF PORTB, 1, 0), the value used will be that value present on the pins themselves. For example, if the data latch is '1' for a pin configured as input and is driven low by an external device, the data will be written back with a '0'.

2: If this instruction is executed on the TMR0 register (and where applicable, 'd' = 1), the prescaler will be cleared if assigned.

3: If the Program Counter (PC) is modified or a conditional test is true, the instruction requires two cycles. The second cycle is executed as a NOP.

4: Some instructions are two-word instructions. The second word of these instructions will be executed as a NOP unless the first word of the instruction retrieves the information embedded in these 16 bits. This ensures that all program memory locations have a valid instruction.

5: If the table write starts the write cycle to internal memory, the write will continue until terminated.

IORLW	Inclusive	OR Lite	eral with	W
Syntax:	IORLW k			
Operands:	$0 \le k \le 255$	5		
Operation:	(W) .OR. k	$\rightarrow W$		
Status Affected:	N, Z			
Encoding:	0000	1001	kkkk	kkkk
Description:	The conter eight-bit lite in W.			
Words:	1			
Cycles:	1			
Q Cycle Activity:				
Q1	Q2	Q3	3	Q4
Decode	Read literal 'k'	Proce Data		rite to W
Example:	IORLW	35h		
Before Instru W	= 9Ah			

IORWF	Inclusive	OR W with	f
Syntax:	IORWF f	{,d {,a}}	
Operands:	$0 \le f \le 255$ $d \in [0,1]$ $a \in [0,1]$		
Operation:	(W) .OR. (f)) \rightarrow dest	
Status Affected:	N, Z		
Encoding:	0001	00da ff	ff ffff
Description:	 '0', the result is the result is If 'a' is '0', t If 'a' is '1', t GPR bank. If 'a' is '0' a set is enable in Indexed mode when Section 26 Bit-Oriente 	placed back he Access Ba he BSR is use nd the extend led, this instru Literal Offset / iever $f \le 95$ (5 .2.3 "Byte-Or ed Instruction	W. If 'd' is '1', in register 'f'. nk is selected. d to select the ed instruction ction operates Addressing Fh). See iented and is in Indexed
		set Mode" for	details.
Words:	1		
Cycles:	1		
Q Cycle Activity:			
Q1	Q2	Q3	Q4
Decode	Read register 'f'	Process Data	Write to destination

Example:

imple:	IORWF	RESULT,	Ο,	1
Before Instruction	on			
RESULT = W =	= 13h = 91h			
After Instruction				
RESULT = W =	= 13h = 93h			

After Instruction BFh W =

Move W to f MOVWF f {,a}

 $0 \leq f \leq 255$ $a \in [0,1]$

 $(\mathsf{W}) \to \mathsf{f}$

MOVWF

Syntax: Operands:

Operation:

W REG

MOVLW	Move Lite	eral to V	V	
Syntax:	MOVLW	k		
Operands:	$0 \le k \le 255$	5		
Operation:	$k\toW$			
Status Affected:	None			
Encoding:	0000	1110	kkk!	k kkkk
Description:	The eight-l	bit literal '	k' is loa	aded into W.
Words:	1			
Cycles:	1			
Q Cycle Activity:				
Q1	Q2	Q3		Q4
Decode	Read literal 'k'	Proce Data		Write to W
Example:	MOVLW	5Ah		

After Instruction W

=

5Ah

	. ,			
Status Affected:	None			
Encoding:	0110	111a	ffff	ffff
Description:	Move data Location 'f 256-byte b	" can be a	0	
	If 'a' is '0', If 'a' is '1', GPR bank	the BSR i		
	If 'a' is '0' set is enal in Indexed mode whe Section 2 Bit-Orient Literal Of	bled, this i I Literal O enever f ≤ 6.2.3 "By ted Instru	nstructior ffset Addr 95 (5Fh). te-Orient ctions in	operates essing See ed and Indexed
Words:	1			
Cycles:	1			
Q Cycle Activity:				
Q1	Q2	Q3	5	Q4
Decode	Read register 'f'	Proce Data		Write gister 'f'
		•		
Example:	MOVWF	REG, 0		
Before Instruc	tion			
W REG	= 4Fh = FFh			
After Instruction	n			

4Fh 4Fh

=

28.2 DC Characteristics:

Power-Down and Supply Current PIC18F2480/2580/4480/4580 (Industrial, Extended) PIC18LF2480/2580/4480/4580 (Industrial)

PIC18LF (Indu	2480/2580/4480/4580 strial)		rd Oper	-	proditions (unless otherwise state $-40^{\circ}C \le TA \le +85^{\circ}C$ for indust	•
	480/2580/4480/4580 strial, Extended)		rd Oper ing temp	•	ponditions (unless otherwise state $-40^{\circ}C \le TA \le +85^{\circ}C$ for indus $-40^{\circ}C \le TA \le +125^{\circ}C$ for extended	strial
Param No.	Device	Тур	Max	Units	Cond	itions
	Power-Down Current (IPD)	(1)				
	PIC18LF2X80/4X80	0.2	1.0	μA	-40°C	
		0.2	1.0	μA	+25°C	VDD = 2.0V
		0.3	4.0	μA	+60°C	(Sleep mode)
		0.4	6.0	μA	+85°C	
	PIC18LF2X80/4X80	0.2	1.5	μA	-40°C	
		0.2	2.0	μA	+25°C	VDD = 3.0V
		0.4	5.0	μA	+60°C	(Sleep mode)
		0.5	8.0	μA	+85°C	
	All devices	0.2	2.0	μA	-40°C	
		0.2	2.0	μA	+25°C	
		0.6	9.0	μA	+60°C	VDD = 5.0V (Sleep mode)
		1.0	15	μA	+85°C	
	Extended devices only	52.00	132.00	μA	+125°C	

Legend: Shading of rows is to assist in readability of the table.

Note 1: The power-down current in Sleep mode does not depend on the oscillator type. Power-down current is measured with the part in Sleep mode, with all I/O pins in high-impedance state and tied to VDD or VSs and all features that add delta current disabled (such as WDT, Timer1 Oscillator, BOR, etc.).

2: The supply current is mainly a function of operating voltage, frequency and mode. Other factors, such as I/O pin loading and switching rate, oscillator type and circuit, internal code execution pattern and temperature, also have an impact on the current consumption. The test conditions for all IDD measurements in active operation mode are:

OSC1 = external square wave, from rail-to-rail; all I/O pins tri-stated, pulled to VDD;

MCLR = VDD; WDT enabled/disabled as specified.

3: For RC oscillator configurations, current through REXT is not included. The current through the resistor can be estimated by the formula, Ir = VDD/2REXT (mA), with REXT in k Ω .

4: Standard low-cost 32 kHz crystals have an operating temperature range of -10°C to +70°C. Extended temperature crystals are available at a much higher cost.

Associated Registers 140
I/O Summary
LATB Register
PORTB Register
TRISB Register
PORTC
Associated Registers
-
I/O Summary
LATC Register
PORTC Register 141
RC3/SCK/SCL Pin205
TRISC Register 141
PORTD
Associated Registers145
I/O Summary 144
LATD Register143
Parallel Slave Port (PSP) Function
PORTD Register
TRISD Register
PORTE
Associated Registers
5
I/O Summary
LATE Register
PORTE Register 146
PSP Mode Select (PSPMODE Bit)143
TRISE Register 146
Postscaler, WDT
Assignment (PSA Bit)153
Rate Select (T0PS2:T0PS0 Bits)153
Switching Between Timer0 and WDT153
Power-Managed Modes
and A/D Operation
and EUSART Operation
and Multiple Sleep Commands40
and Multiple Sleep Commands40 Clock Transitions and Status Indicators40
and Multiple Sleep Commands
and Multiple Sleep Commands
and Multiple Sleep Commands 40 Clock Transitions and Status Indicators 40 Effects on Clock Sources 37 Entering 39 Exiting Idle and Sleep Modes 45
and Multiple Sleep Commands 40 Clock Transitions and Status Indicators 40 Effects on Clock Sources 37 Entering 39 Exiting Idle and Sleep Modes 45 by Interrupt 45
and Multiple Sleep Commands 40 Clock Transitions and Status Indicators 40 Effects on Clock Sources 37 Entering 39 Exiting Idle and Sleep Modes 45 by Interrupt 45 by Reset 45
and Multiple Sleep Commands40Clock Transitions and Status Indicators40Effects on Clock Sources37Entering39Exiting Idle and Sleep Modes45by Interrupt45by Reset45by WDT Time-out45
and Multiple Sleep Commands40Clock Transitions and Status Indicators40Effects on Clock Sources37Entering39Exiting Idle and Sleep Modes45by Interrupt45by Reset45by WDT Time-out45Without an Oscillator Start-up Delay46
and Multiple Sleep Commands40Clock Transitions and Status Indicators40Effects on Clock Sources37Entering39Exiting Idle and Sleep Modes45by Interrupt45by Reset45by WDT Time-out45Without an Oscillator Start-up Delay46Idle Modes43
and Multiple Sleep Commands 40 Clock Transitions and Status Indicators 40 Effects on Clock Sources 37 Entering 39 Exiting Idle and Sleep Modes 45 by Interrupt 45 by Reset 45 by WDT Time-out 45 Without an Oscillator Start-up Delay 46 Idle Modes 43 PRI_IDLE 44
and Multiple Sleep Commands40Clock Transitions and Status Indicators40Effects on Clock Sources37Entering39Exiting Idle and Sleep Modes45by Interrupt45by Reset45by WDT Time-out45Without an Oscillator Start-up Delay46Idle Modes43PRI_IDLE44RC_IDLE45
and Multiple Sleep Commands 40 Clock Transitions and Status Indicators 40 Effects on Clock Sources 37 Entering 39 Exiting Idle and Sleep Modes 45 by Interrupt 45 by Reset 45 by WDT Time-out 45 Without an Oscillator Start-up Delay 46 Idle Modes 43 PRI_IDLE 44 RC_IDLE 45 SEC_IDLE 44
and Multiple Sleep Commands 40 Clock Transitions and Status Indicators 40 Effects on Clock Sources 37 Entering 39 Exiting Idle and Sleep Modes 45 by Interrupt 45 by Reset 45 Without an Oscillator Start-up Delay 46 Idle Modes 43 PRI_IDLE 44 RC_IDLE 44 Run Modes 40
and Multiple Sleep Commands40Clock Transitions and Status Indicators40Effects on Clock Sources37Entering39Exiting Idle and Sleep Modes45by Interrupt45by Reset45by WDT Time-out45Without an Oscillator Start-up Delay46Idle Modes43PRI_IDLE44RC_IDLE44Run Modes40PRI_RUN40
and Multiple Sleep Commands 40 Clock Transitions and Status Indicators 40 Effects on Clock Sources 37 Entering 39 Exiting Idle and Sleep Modes 45 by Interrupt 45 by Reset 45 Without an Oscillator Start-up Delay 46 Idle Modes 43 PRI_IDLE 44 RC_IDLE 44 Run Modes 40 PRI_RUN 40 RC_RUN 41
and Multiple Sleep Commands40Clock Transitions and Status Indicators40Effects on Clock Sources37Entering39Exiting Idle and Sleep Modes45by Interrupt45by Reset45by WDT Time-out45Without an Oscillator Start-up Delay46Idle Modes43PRI_IDLE44RC_IDLE44Run Modes40PRI_RUN40RC_RUN41SEC_RUN40
and Multiple Sleep Commands40Clock Transitions and Status Indicators40Effects on Clock Sources37Entering39Exiting Idle and Sleep Modes45by Interrupt45by Reset45by WDT Time-out45Without an Oscillator Start-up Delay46Idle Modes43PRI_IDLE44RC_IDLE44Run Modes40PRI_RUN40RC_RUN41SEC_RUN40Selecting39
and Multiple Sleep Commands40Clock Transitions and Status Indicators40Effects on Clock Sources37Entering39Exiting Idle and Sleep Modes45by Interrupt45by Reset45by WDT Time-out45Without an Oscillator Start-up Delay46Idle Modes43PRI_IDLE44RC_IDLE44Run Modes40PRI_RUN40RC_RUN41SEC_RUN40Selecting39Sleep Mode43
and Multiple Sleep Commands40Clock Transitions and Status Indicators40Effects on Clock Sources37Entering39Exiting Idle and Sleep Modes45by Interrupt45by Reset45by WDT Time-out45Without an Oscillator Start-up Delay46Idle Modes43PRI_IDLE44RC_IDLE44Run Modes40PRI_RUN40RC_RUN41SEC_RUN40Selecting39Sleep Mode43Summary (table)39
and Multiple Sleep Commands40Clock Transitions and Status Indicators40Effects on Clock Sources37Entering39Exiting Idle and Sleep Modes45by Interrupt45by Reset45by WDT Time-out45Without an Oscillator Start-up Delay46Idle Modes43PRI_IDLE44RC_IDLE44Run Modes40PRI_RUN40RC_RUN41SEC_RUN40Selecting39Sleep Mode43
and Multiple Sleep Commands40Clock Transitions and Status Indicators40Effects on Clock Sources37Entering39Exiting Idle and Sleep Modes45by Interrupt45by Reset45by WDT Time-out45Without an Oscillator Start-up Delay46Idle Modes43PRI_IDLE44RC_IDLE44Run Modes40PRI_RUN40RC_RUN41SEC_RUN40Selecting39Sleep Mode43Summary (table)39
and Multiple Sleep Commands40Clock Transitions and Status Indicators40Effects on Clock Sources37Entering39Exiting Idle and Sleep Modes45by Interrupt45by Reset45by WDT Time-out45Without an Oscillator Start-up Delay46Idle Modes43PRI_IDLE44RC_IDLE44Run Modes40PRI_RUN40RC_RUN41SEC_RUN40Selecting39Sleep Mode43Summary (table)39Power-on Reset (POR)49
and Multiple Sleep Commands40Clock Transitions and Status Indicators40Effects on Clock Sources37Entering39Exiting Idle and Sleep Modes45by Interrupt45by Reset45by WDT Time-out45Without an Oscillator Start-up Delay46Idle Modes43PRI_IDLE44RC_IDLE44RC_IDLE44Run Modes40PRI_RUN40RC_RUN41SEC_RUN40Selecting39Sleep Mode43Summary (table)39Power-on Reset (POR)49Oscillator Start-up Timer (OST)51
and Multiple Sleep Commands40Clock Transitions and Status Indicators40Effects on Clock Sources37Entering39Exiting Idle and Sleep Modes45by Interrupt45by Reset45by WDT Time-out45Without an Oscillator Start-up Delay46Idle Modes43PRI_IDLE44RC_IDLE44RC_IDLE44Run Modes40PRI_RUN40RC_RUN41SEC_RUN40Selecting39Sleep Mode43Summary (table)39Power-on Reset (POR)49Oscillator Start-up Timer (OST)51Power-up Timer (PWRT)51
and Multiple Sleep Commands40Clock Transitions and Status Indicators40Effects on Clock Sources37Entering39Exiting Idle and Sleep Modes45by Interrupt45by Reset45by WDT Time-out45Without an Oscillator Start-up Delay46Idle Modes43PRI_IDLE44RC_IDLE44RC_IDLE44Run Modes40PRI_RUN40RC_RUN41SEC_RUN40Selecting39Sleep Mode43Summary (table)39Power-on Reset (POR)49Oscillator Start-up Timer (OST)51Power-up Timer (PWRT)51Time-out Sequence51
and Multiple Sleep Commands40Clock Transitions and Status Indicators40Effects on Clock Sources37Entering39Exiting Idle and Sleep Modes45by Interrupt45by Reset45by WDT Time-out45Without an Oscillator Start-up Delay46Idle Modes43PRI_IDLE44RC_IDLE45SEC_IDLE44Run Modes40PRI_RUN40Selecting39Sleep Mode43Summary (table)39Power-up Timer (PWRT)51Time-out Sequence51Power-up Delays37
and Multiple Sleep Commands40Clock Transitions and Status Indicators40Effects on Clock Sources37Entering39Exiting Idle and Sleep Modes45by Interrupt45by Reset45by WDT Time-out45Without an Oscillator Start-up Delay46Idle Modes43PRI_IDLE44RC_IDLE45SEC_IDLE44Run Modes40PRI_RUN40Selecting39Sleep Mode43Summary (table)39Power-up Timer (PWRT)51Time-out Sequence51Power-up Delays37Power-up Timer (PWRT)37, 51
and Multiple Sleep Commands40Clock Transitions and Status Indicators40Effects on Clock Sources37Entering39Exiting Idle and Sleep Modes45by Interrupt45by Reset45by WDT Time-out45Without an Oscillator Start-up Delay46Idle Modes43PRI_IDLE44RC_IDLE44Run Modes40PRI_RUN40RC_RUN41SEC_RUN40Selecting39Sleep Mode43Summary (table)39Power-up Timer (PWRT)51Time-out Sequence51Power-up Delays37Prescaler37, 51

Prescaler, Timer0	153
Assignment (PSA Bit)	
Rate Select (T0PS2:T0PS0 Bits)	
Switching Between Timer0 and WDT	153
Prescaler, Timer2	174
PRI_IDLE Mode	44
PRI_RUN Mode	40
Program Counter	68
PCL, PCH and PCU Registers	68
PCLATH and PCLATU Registers	68
Program Memory	
and the Extended Instruction Set	98
Code Protection	364
Instructions	72
Two-Word	72
Interrupt Vector	67
Look-up Tables	70
Map and Stack (diagram)	
Reset Vector	
Program Verification and Code Protection	363
Associated Registers	364
Programming, Device Instructions	
PSP. See Parallel Slave Port.	
Pulse-Width Modulation. See PWM (CCP Module)	
and PWM (ECCP Module).	
PUSH	396
PUSH and POP Instructions	69
PUSHL	412
PWM (CCP Module)	173
Associated Registers	
Auto-Shutdown	
CCPR1H:CCPR1L Registers	173
Duty Cycle	173
Example Frequencies/Resolutions	174
Period	173
Setup for PWM Operation	174
TMR2 to PR2 Match	173
PWM (ECCP Module)	179
Associated Registers	
Direction Change in Full-Bridge Output Mode	184
Duty Cycle	180
ECCPR1H:ECCPR1L Registers	179
Effects of a Reset	
Enhanced PWM Auto-Shutdown	186
Example Frequencies/Resolutions	180
Full-Bridge Application Example	
Full-Bridge Mode	183
Half-Bridge Mode	182
Half-Bridge Output Mode Applications Example	182
Output Configurations	
Output Relationships (Active-High)	181
Output Relationships (Active-Low)	181
Period	179
Programmable Dead-Band Delay	186
Start-up Considerations	188
TMR2 to PR2 Match	
0	
Q	
Q Clock 174	1, 180
R	