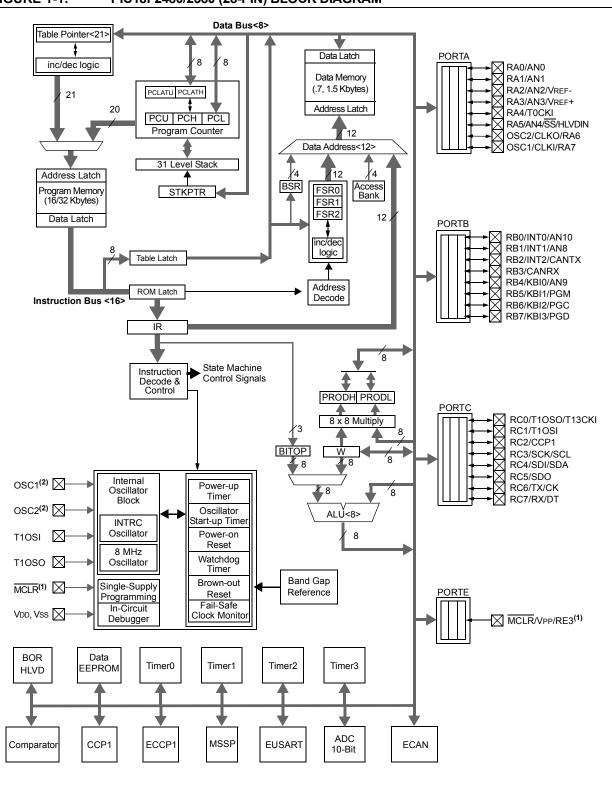


Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.


Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Details	
Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	25MHz
Connectivity	CANbus, I ² C, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, HLVD, POR, PWM, WDT
Number of I/O	25
Program Memory Size	16KB (8K x 16)
Program Memory Type	FLASH
EEPROM Size	256 x 8
RAM Size	768 x 8
Voltage - Supply (Vcc/Vdd)	4.2V ~ 5.5V
Data Converters	A/D 8x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Through Hole
Package / Case	28-DIP (0.300", 7.62mm)
Supplier Device Package	28-SPDIP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic18f2480-e-sp

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

FIGURE 1-1: PIC18F2480/2580 (28-PIN) BLOCK DIAGRAM

Note 1: RE3 is multiplexed with MCLR and is only available when the MCLR Resets are disabled.

2: OSC1/CLKI and OSC2/CLKO are only available in select oscillator modes and when these pins are not being used as digital I/O. Refer to Section 3.0 "Oscillator Configurations" for additional information.

3.0 OSCILLATOR CONFIGURATIONS

3.1 Oscillator Types

PIC18F2480/2580/4480/4580 devices can be operated in ten different oscillator modes. The user can program the Configuration bits, FOSC<3:0>, in Configuration Register 1H to select one of these ten modes:

- 1. LP Low-Power Crystal
- 2. XT Crystal/Resonator
- 3. HS High-Speed Crystal/Resonator
- 4. HSPLL High-Speed Crystal/Resonator with PLL Enabled
- 5. RC External Resistor/Capacitor with Fosc/4 Output on RA6
- 6. RCIO External Resistor/Capacitor with I/O on RA6
- 7. INTIO1 Internal Oscillator with Fosc/4 Output on RA6 and I/O on RA7
- 8. INTIO2 Internal Oscillator with I/O on RA6 and RA7
- 9. EC External Clock with Fosc/4 Output
- 10. ECIO External Clock with I/O on RA6

3.2 Crystal Oscillator/Ceramic Resonators

In XT, LP, HS or HSPLL Oscillator modes, a crystal or ceramic resonator is connected to the OSC1 and OSC2 pins to establish oscillation. Figure 3-1 shows the pin connections.

The oscillator design requires the use of a parallel resonant crystal.

Note: Use of a series resonant crystal may give a frequency out of the crystal manufacturer's specifications. FIGURE 3-1:

CRYSTAL/CERAMIC RESONATOR OPERATION (XT, LP, HS OR HSPLL CONFIGURATION)

TABLE 3-1:CAPACITOR SELECTION FOR
CERAMIC RESONATORS

Typical Capacitor Values Used: Mode OSC1 OSC2 Freq XT 56 pF 455 kHz 56 pF 47 pF 47 pF 2.0 MHz 4.0 MHz 33 pF 33 pF HS 8.0 MHz 27 pF 27 pF 16.0 MHz 22 pF 22 pF

Capacitor values are for design guidance only.

These capacitors were tested with the resonators listed below for basic start-up and operation. **These values are not optimized**.

Different capacitor values may be required to produce acceptable oscillator operation. The user should test the performance of the oscillator over the expected VDD and temperature range for the application.

See the notes on page 30 for additional information.

Resonators Used:						
455 kHz 4.0 MHz						
2.0 MHz	8.0 MHz					
16	.0 MHz					

Note: When using resonators with frequencies above 3.5 MHz, the use of HS mode, rather than XT mode, is recommended. HS mode may be used at any VDD for which the controller is rated. If HS is selected, it is possible that the gain of the oscillator will overdrive the resonator. Therefore, a series resistor should be placed between the OSC2 pin and the resonator. As a good starting point, the recommended value of Rs is 330Ω.

3.7.1 OSCILLATOR CONTROL REGISTER

The OSCCON register (Register 3-2) controls several aspects of the device clock's operation, both in full-power operation and in power-managed modes.

The System Clock Select bits, SCS<1:0>, select the clock source. The available clock sources are the primary clock (defined by the FOSC<3:0> Configuration bits), the secondary clock (Timer1 oscillator) and the internal oscillator block. The clock source changes immediately after one or more of the bits is written to, following a brief clock transition interval. The SCS bits are cleared on all forms of Reset.

The Internal Oscillator Frequency Select bits, IRCF<2:0>, select the frequency output of the internal oscillator block to drive the device clock. The choices are the INTRC source, the INTOSC source (8 MHz) or one of the frequencies derived from the INTOSC post-scaler (31 kHz to 4 MHz). If the internal oscillator block is supplying the device clock, changing the states of these bits will have an immediate change on the internal oscillator's output. On device Resets, the default output frequency of the internal oscillator block is set at 1 MHz.

When an output frequency of 31 kHz is selected (IRCF<2:0> = 000), users may choose which internal oscillator acts as the source. This is done with the INTSRC bit in the OSCTUNE register (OSCTUNE<7>). Setting this bit selects INTOSC as a 31.25 kHz clock source by enabling the divide-by-256 output of the INTOSC postscaler. Clearing INTSRC selects INTRC (nominally 31 kHz) as the clock source.

This option allows users to select the tunable and more precise INTOSC as a clock source, while maintaining power savings with a very low clock speed. Regardless of the setting of INTSRC, INTRC always remains the clock source for features such as the Watchdog Timer and the Fail-Safe Clock Monitor.

The OSTS, IOFS and T1RUN bits indicate which clock source is currently providing the device clock. The OSTS bit indicates that the Oscillator Start-up Timer (OST) has timed out and the primary clock is providing the device clock in primary clock modes. The IOFS bit indicates when the internal oscillator block has stabilized and is providing the device clock in RC Clock modes. The T1RUN bit (T1CON<6>) indicates when the Timer1 oscillator is providing the device clock in secondary clock modes. In power-managed modes, only one of these three bits will be set at any time. If none of these bits are set, the INTRC is providing the clock or the internal oscillator block has just started and is not yet stable. The IDLEN bit determines if the device goes into Sleep mode or one of the Idle modes when the SLEEP instruction is executed.

The use of the flag and control bits in the OSCCON register is discussed in more detail in **Section 4.0** "Power-Managed Modes".

- Note 1: The Timer1 oscillator must be enabled to select the secondary clock source. The Timer1 oscillator is enabled by setting the T1OSCEN bit in the Timer1 Control register (T1CON<3>). If the Timer1 oscillator is not enabled, then any attempt to select a secondary clock source when executing a SLEEP instruction will be ignored.
 - 2: It is recommended that the Timer1 oscillator be operating and stable before executing the SLEEP instruction, or a very long delay may occur while the Timer1 oscillator starts.

3.7.2 OSCILLATOR TRANSITIONS

PIC18F2480/2580/4480/4580 devices contain circuitry to prevent clock "glitches" when switching between clock sources. A short pause in the device clock occurs during the clock switch. The length of this pause is the sum of two cycles of the old clock source and three to four cycles of the new clock source. This formula assumes that the new clock source is stable.

Clock transitions are discussed in greater detail in **Section 4.1.2 "Entering Power-Managed Modes"**.

6.2.3 INSTRUCTIONS IN PROGRAM MEMORY

The program memory is addressed in bytes. Instructions are stored as two bytes or four bytes in program memory. The Least Significant Byte of an instruction word is always stored in a program memory location with an even address (LSB = 0). To maintain alignment with instruction boundaries, the PC increments in steps of 2 and the LSB will always read '0' (see **Section 6.1.1 "Program Counter"**).

Figure 6-4 shows an example of how instruction words are stored in the program memory.

The CALL and GOTO instructions have the absolute program memory address embedded into the instruction. Since instructions are always stored on word boundaries, the data contained in the instruction is a word address. The word address is written to PC<20:1>, which accesses the desired byte address in program memory. Instruction #2 in Figure 6-4 shows how the instruction, GOTO 0006h, is encoded in the program memory. Program branch instructions, which encode a relative address offset, operate in the same manner. The offset value stored in a branch instruction represents the number of single-word instructions that the PC will be offset by. **Section 26.0 "Instruction Set Summary"** provides further details of the instruction set.

	_		LSB = 1	LSB = 0	Word Address \downarrow
	Program N	•			000000h
	Byte Locat	ions \rightarrow			000002h
					000004h
					000006h
Instruction 1:	MOVLW	055h	0Fh	55h	000008h
Instruction 2:	GOTO	0006h	EFh	03h	00000Ah
			F0h	00h	00000Ch
Instruction 3:	MOVFF	123h, 456h	C1h	23h	00000Eh
			F4h	56h	000010h
					000012h
					000014h

FIGURE 6-4: INSTRUCTIONS IN PROGRAM MEMORY

6.2.4 TWO-WORD INSTRUCTIONS

The standard PIC18 instruction set has four, two-word instructions: CALL, MOVFF, GOTO and LSFR. In all cases, the second word of the instructions always has '1111' as its four Most Significant bits; the other 12 bits are literal data, usually a data memory address.

The use of '1111' in the 4 MSbs of an instruction specifies a special form of NOP. If the instruction is executed in proper sequence – immediately after the first word – the data in the second word is accessed and used by the instruction sequence. If the first word is skipped for some reason and the second word is executed by itself, a NOP is executed instead. This is necessary for cases when the two-word instruction is preceded by a conditional instruction that changes the PC. Example 6-4 shows how this works.

Note:	See Section 6.5 "Program Memory and
	the Extended Instruction Set" for infor-
	mation on two-word instructions in the
	extended instruction set.

CASE 1:		
Object Code	Source Code	
0110 0110 0000 0000	TSTFSZ REG1	; is RAM location 0?
1100 0001 0010 0011	MOVFF REG1, RE	G2 ; No, skip this word
1111 0100 0101 0110		; Execute this word as a NOP
0010 0100 0000 0000	ADDWF REG3	; continue code
CASE 2:		
Object Code	Source Code	
0110 0110 0000 0000	TSTFSZ REG1	; is RAM location 0?
1100 0001 0010 0011	MOVFF REG1, RE	G2 ; Yes, execute this word
1111 0100 0101 0110		; 2nd word of instruction
0010 0100 0000 0000	ADDWF REG3	; continue code

EXAMPLE 6-4: TWO-WORD INSTRUCTIONS

6.4 Data Addressing Modes

Note: The execution of some instructions in the core PIC18 instruction set are changed when the PIC18 extended instruction set is enabled. See Section 6.6 "Data Memory and the Extended Instruction Set" for more information.

While the program memory can be addressed in only one way – through the program counter – information in the data memory space can be addressed in several ways. For most instructions, the addressing mode is fixed. Other instructions may use up to three modes, depending on which operands are used and whether or not the extended instruction set is enabled.

The addressing modes are:

- Inherent
- Literal
- Direct
- Indirect

An additional addressing mode, Indexed Literal Offset, is available when the extended instruction set is enabled (XINST Configuration bit = 1). Its operation is discussed in greater detail in **Section 6.6.1 "Indexed Addressing with Literal Offset**".

6.4.1 INHERENT AND LITERAL ADDRESSING

Many PIC18 control instructions do not need any argument at all; they either perform an operation that globally affects the device or they operate implicitly on one register. This addressing mode is known as Inherent Addressing. Examples include SLEEP, RESET and DAW.

Other instructions work in a similar way but require an additional explicit argument in the opcode. This is known as Literal Addressing mode because they require some literal value as an argument. Examples include ADDLW and MOVLW which, respectively, add or move a literal value to the W register. Other examples include CALL and GOTO, which include a 20-bit program memory address.

6.4.2 DIRECT ADDRESSING

Direct Addressing specifies all or part of the source and/or destination address of the operation within the opcode itself. The options are specified by the arguments accompanying the instruction.

In the core PIC18 instruction set, bit-oriented and byte-oriented instructions use some version of Direct Addressing by default. All of these instructions include some 8-bit literal address as their Least Significant Byte. This address specifies either a register address in one of the banks of data RAM (Section 6.3.3 "General **Purpose Register File**") or a location in the Access Bank (Section 6.3.2 "Access Bank") as the data source for the instruction.

The Access RAM bit 'a' determines how the address is interpreted. When 'a' is '1', the contents of the BSR (Section 6.3.1 "Bank Select Register (BSR)") are used with the address to determine the complete 12-bit address of the register. When 'a' is '0', the address is interpreted as being a register in the Access Bank. Addressing that uses the Access RAM is sometimes also known as Direct Forced Addressing mode.

A few instructions, such as MOVFF, include the entire 12-bit address (either source or destination) in their opcodes. In these cases, the BSR is ignored entirely.

The destination of the operation's results is determined by the destination bit, 'd'. When 'd' is '1', the results are stored back in the source register, overwriting its original contents. When 'd' is '0', the results are stored in the W register. Instructions without the 'd' argument have a destination that is implicit in the instruction; their destination is either the target register being operated on or the W register.

6.4.3 INDIRECT ADDRESSING

Indirect Addressing allows the user to access a location in data memory without giving a fixed address in the instruction. This is done by using File Select Registers (FSRs) as pointers to the locations to be read or written to. Since the FSRs are themselves located in RAM as Special File Registers, they can also be directly manipulated under program control. This makes FSRs very useful in implementing data structures, such as tables and arrays in data memory.

The registers for Indirect Addressing are also implemented with Indirect File Operands (INDFs) that permit automatic manipulation of the pointer value with auto-incrementing, auto-decrementing or offsetting with another value. This allows for efficient code, using loops, such as the example of clearing an entire RAM bank in Example 6-5.

EXAMPLE 6-5: HOW TO CLEAR RAM (BANK 1) USING INDIRECT ADDRESSING

	LFSR	FSR0, 100h	;	
NEXT	CLRF	POSTINCO	;	Clear INDF
			;	register then
			;	inc pointer
	BTFSS	FSROH,1	;	All done with
			;	Bank1?
	BRA	NEXT	;	NO, clear next
CONTIN	UE		;	YES, continue

7.4 Erasing Flash Program Memory

The minimum erase block is 32 words or 64 bytes. Only through the use of an external programmer, or through ICSP control, can larger blocks of program memory be bulk erased. Word erase in the Flash array is not supported.

When initiating an erase sequence from the microcontroller itself, a block of 64 bytes of program memory is erased. The Most Significant 16 bits of the TBLPTR<21:5> point to the block being erased. TBLPTR<4:0> are ignored.

The EECON1 register commands the erase operation. The EEPGD bit must be set to point to the Flash program memory. The WREN bit must be set to enable write operations. The FREE bit is set to select an erase operation.

For protection, the write initiate sequence for EECON2 must be used.

A long write is necessary for erasing the internal Flash. Instruction execution is halted while in a long write cycle. The long write will be terminated by the internal programming timer.

7.4.1 FLASH PROGRAM MEMORY ERASE SEQUENCE

The sequence of events for erasing a block of internal program memory location is:

- 1. Load Table Pointer register with address of row being erased.
- 2. Set the EECON1 register for the erase operation:
 - set EEPGD bit to point to program memory;
 - · clear the CFGS bit to access program memory;
 - set WREN bit to enable writes;
 - set FREE bit to enable the erase.
- 3. Disable interrupts.
- 4. Write 55h to EECON2.
- 5. Write 0AAh to EECON2.
- 6. Set the WR bit. This will begin the row erase cycle.
- 7. The CPU will stall for duration of the erase (about 2 ms using internal timer).
- 8. Re-enable interrupts.

EXAMPLE 7-2:	ERASING A FLASH PROGRAM MEMORY ROW

	MOVLW MOVWF MOVLW MOVLW MOVLW	CODE_ADDR_UPPER TBLPTRU CODE_ADDR_HIGH TBLPTRH CODE_ADDR_LOW TBLPTRL		load TBLPTR with the base address of the memory block
ERASE_ROW				
	BSF	EECON1, EEPGD	;	point to Flash program memory
	BCF	EECON1, CFGS	;	access Flash program memory
	BSF	EECON1, WREN	;	enable write to memory
	BSF	EECON1, FREE	;	enable Row Erase operation
	BCF	INTCON, GIE	;	disable interrupts
Required	MOVLW	55h		
Sequence	MOVWF	EECON2	;	write 55h
	MOVLW	0AAh		
	MOVWF	EECON2	;	write OAAh
	BSF	EECON1, WR	;	start erase (CPU stall)
	BSF	INTCON, GIE	;	re-enable interrupts

Pin Name	Function	I/O	TRIS	Buffer	Description		
RA0/AN0/CVREF	RA0	OUT	0	DIG	LATA<0> data output.		
		IN	1	TTL	PORTA<0> data input.		
	AN0	IN	1	ANA	A/D Input Channel 0. Enabled on POR; this analog input overrides the digital input (read as clear – low level).		
	CVREF ⁽¹⁾	OUT	х	ANA	Comparator voltage reference analog output. Enabling this analog output overrides the digital I/O (read as clear – low level).		
RA1/AN1	RA1	OUT	0	DIG	LATA<1> data output.		
		IN	1	TTL	PORTA<1> data input.		
	AN1	IN	1	ANA	A/D Input Channel 1. Enabled on POR; this analog input overrides the digital input (read as clear – low level).		
RA2/AN2/VREF-	RA2	OUT	0	DIG	LATA<2> data output.		
		IN	1	TTL	PORTA<2> data input.		
	AN2	IN	1	ANA	A/D Input Channel 2. Enabled on POR; this analog input overrides the digital input (read as clear – low level).		
	VREF-	IN	1	ANA	A/D and comparator negative voltage analog input.		
RA3/AN3/VREF+	RA3	OUT	0	DIG	LATA<3> data output.		
		IN	1	TTL	PORTA<3> data input.		
	AN3	IN	1	ANA	A/D Input Channel 3. Enabled on POR; this analog input override digital input (read as clear – low level).		
	VREF+	IN	1	ANA	A/D and comparator positive voltage analog input.		
RA4/T0CKI	RA4	OUT	0	DIG	LATA<4> data output.		
		IN	1	TTL	PORTA<4> data input.		
	T0CKI	IN	1	ST	Timer0 clock input.		
RA5/AN4/SS/HLVDIN	RA5	OUT	0	DIG	LATA<5> data output.		
		IN	1	TTL	PORTA<5> data input.		
	AN4	IN	1	ANA	A/D Input Channel 4. Enabled on POR; this analog input overrides the digital input (read as clear – low level).		
	SS	IN	1	TTL	Slave select input for MSSP.		
	HLVDIN	IN	1	ANA	High/Low-Voltage Detect external trip point input.		
OSC2/CLKO/RA6	OSC2	OUT	X	ANA	Output connection; selected by FOSC<3:0> Configuration bits. Enabling OSC2 overrides digital I/O.		
	CLKO	OUT	Х	DIG	Output connection; selected by FOSC<3:0> Configuration bits. Enabling CLKO overrides digital I/O (FOSC/4).		
	RA6	OUT	0	DIG	LATA<6> data output.		
		IN	1	TTL	PORTA<6> data input.		
OSC1/CLKI/RA7	OSC1	IN	X	ANA	Main oscillator input connection determined by FOSC<3:0> Configuration bits. Enabling OSC1 overrides digital I/O.		
	CLKI	IN	Х	ANA	Main clock input connection determined by FOSC<3:0> Configuration bits. Enabling CLKI overrides digital I/O.		
	RA7	OUT	0	DIG	LATA<7> data output.		
		IN	1	TTL	PORTA<7> data input.		

TABLE 11-1: PORTA I/O SUMMARY

Legend: OUT = Output, IN = Input, ANA = Analog Signal, DIG = Digital Output, ST = Schmitt Buffer Input, TTL = TTL Buffer Input Note 1: Available on 40/44-pin devices only.

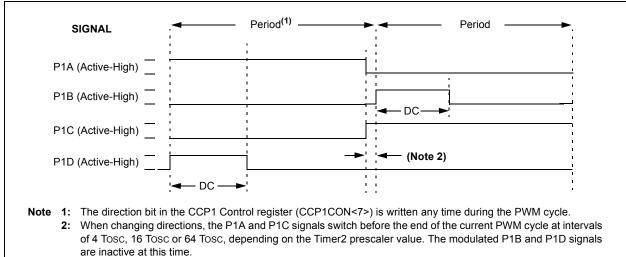
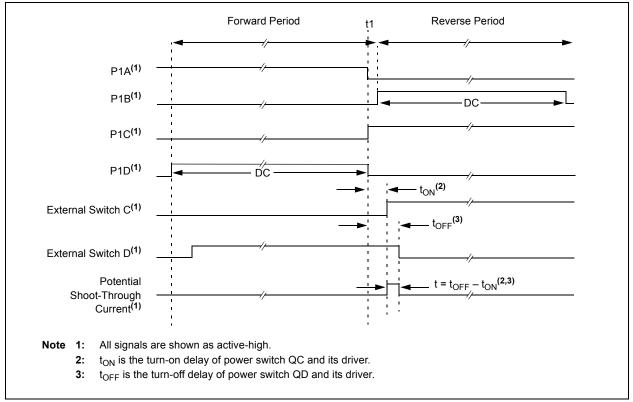



FIGURE 17-9: PWM DIRECTION CHANGE AT NEAR 100% DUTY CYCLE

17.4.7.1 Auto-Shutdown and Auto-Restart

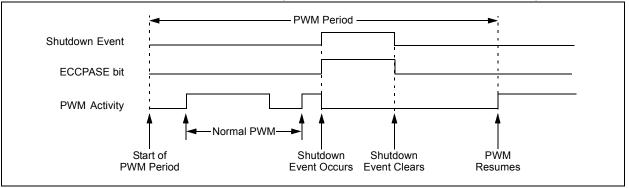
The auto-shutdown feature can be configured to allow automatic restarts of the module following a shutdown event. This is enabled by setting the PRSEN bit of the ECCP1DEL register (ECCP1DEL<7>).

In Shutdown mode with PRSEN = 1 (Figure 17-10), the ECCPASE bit will remain set for as long as the cause of the shutdown continues. When the shutdown condition clears, the ECCP1ASE bit is cleared. If PRSEN = 0 (Figure 17-11), once a shutdown condition occurs, the ECCPASE bit will remain set until it is cleared by firmware. Once ECCPASE is cleared, the Enhanced PWM will resume at the beginning of the next PWM period.

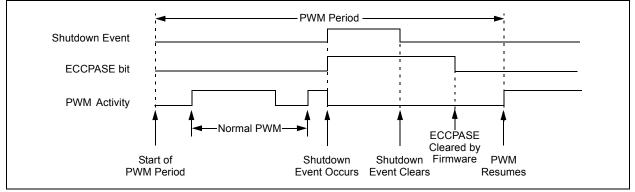
Note:	Writing to the ECCPASE bit is disabled
	while a shutdown condition is active.

Independent of the PRSEN bit setting, if the auto-shutdown source is one of the comparators, the shutdown condition is a level. The ECCPASE bit cannot be cleared as long as the cause of the shutdown persists.

The Auto-Shutdown mode can be forced by writing a '1' to the ECCPASE bit.


17.4.8 START-UP CONSIDERATIONS

When the ECCP module is used in the PWM mode, the application hardware must use the proper external pull-up and/or pull-down resistors on the PWM output pins. When the microcontroller is released from Reset, all of the I/O pins are in the high-impedance state. The external circuits must keep the power switch devices in the off state until the microcontroller drives the I/O pins with the proper signal levels, or activates the PWM output(s).


The CCP1M<1:0> bits (ECCP1CON<1:0>) allow the user to choose whether the PWM output signals are active-high or active-low for each pair of PWM output pins (P1A/P1C and P1B/P1D). The PWM output polarities must be selected before the PWM pins are configured as outputs. Changing the polarity configuration while the PWM pins are configured as outputs is not recommended, since it may result in damage to the application circuits.

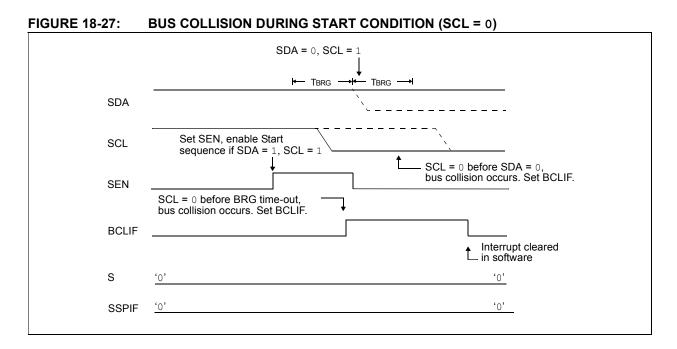

The P1A, P1B, P1C and P1D output latches may not be in the proper states when the PWM module is initialized. Enabling the PWM pins for output at the same time as the ECCP module may cause damage to the application circuit. The ECCP module must be enabled in the proper output mode and complete a full PWM cycle before configuring the PWM pins as outputs. The completion of a full PWM cycle is indicated by the TMR2IF bit being set as the second PWM period begins.

FIGURE 17-10: PWM AUTO-SHUTDOWN (PRSEN = 1, AUTO-RESTART ENABLED)

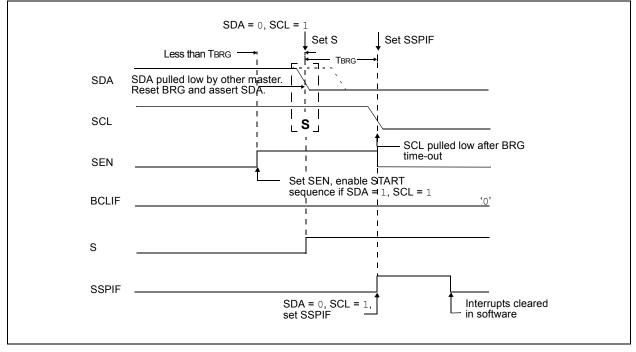
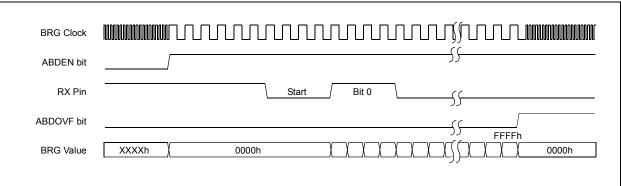


FIGURE 17-11: PWM AUTO-SHUTDOWN (PRSEN = 0, AUTO-RESTART DISABLED)



BRG Value	XXXXh		001Ch
RX Pin		Edge #1Edge #2Edge #3Edge #4 <u>Start Bit 0 Bit 1 Bit 2 Bit 3 Bit 4 Bit 5 Bit 6 Bit 7</u>	Edge #5 Stop Bit
BRG Clock			_10000400000000000000000000000000000000
ABDEN bit	Set by User		Auto-Cleared
RCIF bit (Interrupt)			
Read RCREG			
SPBRG		XXXXh	X 1Ch
SPBRGH		XXXXh) 00h

FIGURE 19-2: BRG OVERFLOW SEQUENCE

REGISTER 24-34: BnDLC: TX/RX BUFFER n DATA LENGTH CODE REGISTERS IN RECEIVE MODE $[0 \le n \le 5, TXnEN (BSEL \le n) = 0]^{(1)}$

Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as '0' -n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown bit 7 Unimplemented: Read as '0' bit 6 RXRTR: Receiver Remote Transmission Request bit 1 = This is a remote transmission request 0 = This is not a remote transmission request bit 5 RB1: Reserved bit 1 Reserved by CAN Spec and read as '0'. bit 4 RB0: Reserved bit 0 Reserved by CAN Spec and read as '0'.	U-0	R-x	R-x	R-x	R-x	R-x	R-x	R-x			
Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as '0' -n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown bit 7 Unimplemented: Read as '0' bit 6 RXRTR: Receiver Remote Transmission Request bit 1 = This is a remote transmission request 0 = This is not a remote transmission request bit 5 RB1: Reserved bit 1 Reserved by CAN Spec and read as '0'. bit 4 RB0: Reserved bit 0 Reserved by CAN Spec and read as '0'. bit 3-0 DLC<3:0>: Data Length Code bits 1111 = Reserved 1101 = Reserved 1101 = Reserved 1011 = Reserved 1011 = Reserved 1011 = Reserved 1011 = Reserved 1010 = Data length = 8 bytes 0111 = Data length = 7 bytes 0101 = Data length = 4 bytes 0101 = Data length = 4 bytes 0101 = Data length = 3 bytes 0101 = Data length = 3 bytes 0101 = Data length = 4 bytes 0101 = Data length = 4 bytes 0101 = Data length = 3 bytes 0111 = Data length = 4 bytes 0112 = Data length = 4 bytes 0113 = Data length = 4 bytes 0114 = Data length = 4 bytes 0115 = Data length = 4 bytes 0115 = Data length = 4 bytes 0116 = Data length = 4 bytes 0117 = Data length = 4 bytes 0118 = Data length = 4 bytes 0119 = Data length = 4 bytes 0111 = Dat	—	RXRTR	RB1	RB0	DLC3	DLC2	DLC1	DLC0			
R = Readable bit W = Writable bit U = Unimplemented bit, read as '0' -n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown bit 7 Unimplemented: Read as '0' bit 6 RXRTR: Receiver Remote Transmission Request bit 1 = This is a remote transmission request 0 = This is not a remote transmission request 0 = This is not a remote transmission request 0 = This is not a remote transmission request bit 5 RB1: Reserved bit 1 Reserved by CAN Spec and read as '0'. bit 4 RB0: Reserved bit 0 Reserved by CAN Spec and read as '0'. bit 3-0 DLC<3:0>: Data Length Code bits 1111 = Reserved 1100 = Reserved 1011 = Reserved 1001 = Reserved 1001 = Reserved 1002 = Reserved 1003 = Data length = 8 bytes 0111 = Data length = 7 bytes 0111 = Data length = 7 bytes 0112 = Data length = 4 bytes 0113 = Data length = 5 bytes 0141 = Data length = 5 bytes 0151 = Data length = 5 bytes 0161 = Data length = 2 bytes 017 = Data length = 2 bytes 018 = Data lengt	bit 7							bit 0			
R = Readable bit W = Writable bit U = Unimplemented bit, read as '0' -n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown bit 7 Unimplemented: Read as '0' bit 6 RXRTR: Receiver Remote Transmission Request bit 1 = This is a remote transmission request 0 = This is not a remote transmission request 0 = This is not a remote transmission request 0 = This is not a remote transmission request bit 5 RB1: Reserved bit 1 Reserved by CAN Spec and read as '0'. bit 4 RB0: Reserved bit 0 Reserved by CAN Spec and read as '0'. bit 3-0 DLC<3:0>: Data Length Code bits 1111 = Reserved 1100 = Reserved 1011 = Reserved 1001 = Reserved 1001 = Reserved 1002 = Reserved 1003 = Data length = 8 bytes 0111 = Data length = 7 bytes 0111 = Data length = 7 bytes 0112 = Data length = 4 bytes 0113 = Data length = 5 bytes 0141 = Data length = 5 bytes 0151 = Data length = 5 bytes 0161 = Data length = 2 bytes 017 = Data length = 2 bytes 018 = Data lengt											
-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown bit 7 Unimplemented: Read as '0' bit 6 RXRTR: Receiver Remote Transmission Request bit 1 = This is a remote transmission request 0 = This is not a remote transmission request bit 5 RB1: Reserved bit 1 Reserved by CAN Spec and read as '0'. bit 4 RB0: Reserved bit 0 Reserved by CAN Spec and read as '0'. bit 3-0 DLC<3:0>: Data Length Code bits 1111 = Reserved 1100 = Reserved 1010 = Reserved 1011 = Reserved 1000 = Data length = 8 bytes 0111 = Data length = 7 bytes 0101 = Data length = 5 bytes 0101 = Data length = 4 bytes 0101 = Data length = 4 bytes 0101 = Data length = 2 bytes 0101 = Data length = 4 bytes 0111 = Data length = 4 bytes 0111 = Data length = 1 bytes	Legend:										
bit 7 Unimplemented: Read as '0' bit 6 RXRTR: Receiver Remote Transmission Request bit 1 = This is a remote transmission request 0 = This is not a remote transmission request bit 5 RB1: Reserved bit 1 Reserved by CAN Spec and read as '0'. bit 4 RB0: Reserved bit 0 Reserved by CAN Spec and read as '0'. bit 3-0 DLC<3:0>: Data Length Code bits 1111 = Reserved 1110 = Reserved 1101 = Reserved 1101 = Reserved 1001 = Reserved 1001 = Reserved 1001 = Reserved 1002 = Data length = 8 bytes 0111 = Data length = 7 bytes 0103 = Data length = 5 bytes 0104 = Data length = 4 bytes 0105 = Data length = 2 bytes 0105 = Data length = 2 bytes 0106 = Data length = 2 bytes 0107 = Data length = 2 bytes 0108 = Data length = 1 bytes	R = Readable	bit	W = Writable	bit	U = Unimpler	mented bit, rea	d as '0'				
bit 6 RXRTR: Receiver Remote Transmission Request bit 1 = This is a remote transmission request 0 = This is not a remote transmission request bit 5 RB1: Reserved bit 1 Reserved by CAN Spec and read as '0'. bit 4 RB0: Reserved bit 0 Reserved by CAN Spec and read as '0'. bit 3-0 DLC<3:0>: Data Length Code bits 1111 = Reserved 1101 = Reserved 1100 = Reserved 1001 = Reserved 1001 = Reserved 1011 = Reserved 1010 = Reserved 1010 = Reserved 1011 = Reserved 1010 = Data length = 8 bytes 0111 = Data length = 5 bytes 0102 = Data length = 4 bytes 0112 = Data length = 4 bytes 0112 = Data length = 2 bytes 0112 = Data length = 2 bytes 0112 = Data length = 1 bytes 0114 = Data length = 1 bytes 0115 = Data length = 1 bytes 1016 = Data length = 1 bytes 1017 = Data length = 1 bytes 1018 = Data length = 1 bytes 1019 = Data length = 1 bytes 1010 = Data length = 1 bytes 1011 = Data len	-n = Value at F	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown			
bit 6 RXRTR: Receiver Remote Transmission Request bit 1 = This is a remote transmission request 0 = This is not a remote transmission request bit 5 RB1: Reserved bit 1 Reserved by CAN Spec and read as '0'. bit 4 RB0: Reserved bit 0 Reserved by CAN Spec and read as '0'. bit 3-0 DLC<3:0>: Data Length Code bits 1111 = Reserved 1101 = Reserved 1100 = Reserved 1001 = Reserved 1001 = Reserved 1011 = Reserved 1010 = Reserved 1010 = Reserved 1011 = Reserved 1010 = Data length = 8 bytes 0111 = Data length = 5 bytes 0102 = Data length = 4 bytes 0112 = Data length = 4 bytes 0112 = Data length = 2 bytes 0112 = Data length = 2 bytes 0112 = Data length = 1 bytes 0114 = Data length = 1 bytes 0115 = Data length = 1 bytes 1016 = Data length = 1 bytes 1017 = Data length = 1 bytes 1018 = Data length = 1 bytes 1019 = Data length = 1 bytes 1010 = Data length = 1 bytes 1011 = Data len											
1 = This is a remote transmission request 0 = This is not a remote transmission request bit 5 RB1: Reserved bit 1 Reserved by CAN Spec and read as '0'. bit 4 RB0: Reserved bit 0 Reserved by CAN Spec and read as '0'. bit 3-0 DLC<3:0>: Data Length Code bits 1111 = Reserved 1100 = Reserved 1011 = Reserved 1001 = Reserved 1000 = Data length = 8 bytes 0111 = Data length = 7 bytes 0101 = Data length = 5 bytes 0101 = Data length = 5 bytes 0101 = Data length = 3 bytes 0101 = Data length = 3 bytes 0101 = Data length = 2 bytes 0010 = Data length = 1 bytes	bit 7	Unimplemen	ted: Read as ')'							
0 = This is not a remote transmission request bit 5 RB1: Reserved bit 1 Reserved by CAN Spec and read as '0'. bit 4 RB0: Reserved bit 0 Reserved by CAN Spec and read as '0'. bit 3-0 DLC<3:0>: Data Length Code bits 1111 = Reserved 1101 = Reserved 1100 = Reserved 1001 = Reserved 1010 = Reserved 1001 = Reserved 1001 = Reserved 1001 = Reserved 1001 = Reserved 1001 = Reserved 1000 = Data length = 8 bytes 0111 = Data length = 5 bytes 0101 = Data length = 5 bytes 0100 = Data length = 3 bytes 0101 = Data length = 2 bytes 0011 = Data length = 3 bytes 0101 = Data length = 1 bytes 0001 = Data length = 1 bytes	bit 6	RXRTR: Rec	eiver Remote T	ransmission	Request bit						
Reserved by CAN Spec and read as '0'. bit 4 RB0: Reserved bit 0 Reserved by CAN Spec and read as '0'. bit 3-0 DLC<3:0>: Data Length Code bits 1111 = Reserved 1101 = Reserved 1010 = Reserved 1011 = Reserved 1010 = Reserved 1010 = Reserved 1010 = Reserved 1011 = Reserved 1010 = Reserved 1010 = Data length = 8 bytes 0111 = Data length = 7 bytes 0110 = Data length = 6 bytes 0101 = Data length = 5 bytes 0101 = Data length = 3 bytes 0110 = Data length = 4 bytes 011 = Data length = 3 bytes 0110 = Data length = 1 bytes											
bit 4 RB0: Reserved bit 0 Reserved by CAN Spec and read as '0'. bit 3-0 DLC<3:0>: Data Length Code bits 1111 = Reserved 1110 = Reserved 1101 = Reserved 1001 = Reserved 1010 = Reserved 1010 = Reserved 1001 = Reserved 1001 = Reserved 1000 = Data length = 8 bytes 0111 = Data length = 7 bytes 0110 = Data length = 5 bytes 0100 = Data length = 4 bytes 0101 = Data length = 3 bytes 0101 = Data length = 2 bytes 0001 = Data length = 1 bytes	bit 5	RB1: Reserve	ed bit 1								
Reserved by CAN Spec and read as '0'. bit 3-0 DLC<3:0>: Data Length Code bits 1111 = Reserved 1100 = Reserved 1101 = Reserved 1011 = Reserved 1010 = Reserved 1010 = Reserved 1001 = Reserved 1000 = Data length = 8 bytes 0111 = Data length = 7 bytes 0110 = Data length = 6 bytes 0101 = Data length = 5 bytes 0100 = Data length = 4 bytes 0101 = Data length = 3 bytes 0011 = Data length = 2 bytes 0010 = Data length = 1 bytes		Reserved by	CAN Spec and	read as '0'.							
bit 3-0 DLC<3:0>: Data Length Code bits 1111 = Reserved 1100 = Reserved 1101 = Reserved 1000 = Reserved 1011 = Reserved 1010 = Reserved 1001 = Reserved 1000 = Data length = 8 bytes 0111 = Data length = 7 bytes 0110 = Data length = 6 bytes 0101 = Data length = 5 bytes 0100 = Data length = 4 bytes 0101 = Data length = 3 bytes 0111 = Data length = 2 bytes 0001 = Data length = 1 bytes	bit 4	RB0: Reserve	ed bit 0								
1111 = Reserved 1110 = Reserved 1101 = Reserved 1010 = Reserved 1011 = Reserved 1010 = Reserved 1001 = Reserved 1000 = Data length = 8 bytes 0111 = Data length = 7 bytes 0110 = Data length = 6 bytes 0101 = Data length = 5 bytes 0100 = Data length = 4 bytes 0111 = Data length = 3 bytes 0011 = Data length = 2 bytes 0010 = Data length = 1 bytes		Reserved by CAN Spec and read as '0'.									
1110 = Reserved 1101 = Reserved 1100 = Reserved 1011 = Reserved 1010 = Reserved 1000 = Data length = 8 bytes 0111 = Data length = 7 bytes 0110 = Data length = 6 bytes 0101 = Data length = 5 bytes 0101 = Data length = 4 bytes 0101 = Data length = 3 bytes 0011 = Data length = 2 bytes 0001 = Data length = 1 bytes	bit 3-0	DLC<3:0>: D	ata Length Coo	le bits							
1101 = Reserved 1100 = Reserved 1011 = Reserved 1010 = Reserved 1000 = Data length = 8 bytes 0111 = Data length = 7 bytes 0110 = Data length = 6 bytes 0101 = Data length = 5 bytes 0100 = Data length = 4 bytes 0101 = Data length = 3 bytes 0011 = Data length = 2 bytes 0001 = Data length = 1 bytes											
1100 = Reserved 1011 = Reserved 1010 = Reserved 1001 = Reserved 1000 = Data length = 8 bytes 0111 = Data length = 7 bytes 0110 = Data length = 6 bytes 0101 = Data length = 5 bytes 0100 = Data length = 4 bytes 0011 = Data length = 3 bytes 0011 = Data length = 2 bytes 0001 = Data length = 1 bytes											
1011 = Reserved 1010 = Reserved 1001 = Reserved 1000 = Data length = 8 bytes 0111 = Data length = 7 bytes 0110 = Data length = 6 bytes 0101 = Data length = 5 bytes 0100 = Data length = 4 bytes 0011 = Data length = 3 bytes 0011 = Data length = 2 bytes 0001 = Data length = 1 bytes											
1010 = Reserved 1001 = Reserved 1000 = Data length = 8 bytes 0111 = Data length = 7 bytes 0110 = Data length = 6 bytes 0101 = Data length = 5 bytes 0100 = Data length = 4 bytes 0011 = Data length = 3 bytes 0011 = Data length = 2 bytes 0001 = Data length = 1 bytes											
1001 = Reserved 1000 = Data length = 8 bytes 0111 = Data length = 7 bytes 0110 = Data length = 6 bytes 0101 = Data length = 5 bytes 0100 = Data length = 4 bytes 0011 = Data length = 3 bytes 0010 = Data length = 2 bytes 0001 = Data length = 1 bytes											
0111 = Data length = 7 bytes 0110 = Data length = 6 bytes 0101 = Data length = 5 bytes 0100 = Data length = 4 bytes 0011 = Data length = 3 bytes 0010 = Data length = 2 bytes 0001 = Data length = 1 bytes											
0110 = Data length = 6 bytes 0101 = Data length = 5 bytes 0100 = Data length = 4 bytes 0011 = Data length = 3 bytes 0010 = Data length = 2 bytes 0001 = Data length = 1 bytes		1000 = Data	length = 8 byte	S							
0101 = Data length = 5 bytes 0100 = Data length = 4 bytes 0011 = Data length = 3 bytes 0010 = Data length = 2 bytes 0001 = Data length = 1 bytes		0111 = Data length = 7 bytes									
0100 = Data length = 4 bytes 0011 = Data length = 3 bytes 0010 = Data length = 2 bytes 0001 = Data length = 1 bytes											
0011 = Data length = 3 bytes 0010 = Data length = 2 bytes 0001 = Data length = 1 bytes											
0010 = Data length = 2 bytes 0001 = Data length = 1 bytes											
0001 = Data length = 1 bytes											
		0000 = Data	length = 0 byte	S							

Note 1: These registers are available in Mode 1 and 2 only.

REGISTER 24-39: RXFnEIDH: RECEIVE ACCEPTANCE FILTER n EXTENDED IDENTIFIER REGISTERS, HIGH BYTE [0 \leq n \leq 15]⁽¹⁾

| R/W-x |
|-------|-------|-------|-------|-------|-------|-------|-------|
| EID15 | EID14 | EID13 | EID12 | EID11 | EID10 | EID9 | EID8 |
| bit 7 | | | | | | | bit 0 |

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 7-0 EID<15:8>: Extended Identifier Filter bits

Note 1: Registers, RXF6EIDH:RXF15EIDH, are available in Mode 1 and 2 only.

REGISTER 24-40: RXFnEIDL: RECEIVE ACCEPTANCE FILTER n EXTENDED IDENTIFIER REGISTERS, LOW BYTE [0 \leq n \leq 15]^{(1)}

| R/W-x |
|-------|-------|-------|-------|-------|-------|-------|-------|
| EID7 | EID6 | EID5 | EID4 | EID3 | EID2 | EID1 | EID0 |
| bit 7 | | | | | | | bit 0 |

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	l as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 7-0 EID<7:0>: Extended Identifier Filter bits

Note 1: Registers, RXF6EIDL:RXF15EIDL, are available in Mode 1 and 2 only.

REGISTER 24-41: RXMnSIDH: RECEIVE ACCEPTANCE MASK n STANDARD IDENTIFIER MASK REGISTERS, HIGH BYTE [0 \leq n \leq 1]

R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
SID10	SID9	SID8	SID7	SID6	SID5	SID4	SID3
bit 7							bit 0
Legend:							
R = Readable b	bit	W = Writable	bit	U = Unimpler	nented bit, read	as '0'	
-n = Value at P	OR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown

bit 7-0 SID<10:3>: Standard Identifier Mask bits or Extended Identifier Mask bits (EID<28:21>)

R/W-0	R/W-1	R/W-0	R/W-1	R/W-0	R/W-0	R/W-0	R/W-0
FIL3_1	FIL3_0	FIL2_1	FIL2_0	FIL1_1	FIL1_0	FIL0_1	FIL0_0
bit 7				·			bit 0
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimpler	mented bit, read	l as '0'	
-n = Value at F	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown
bit 7-6	FIL3_<1:0>:	Filter 3 Select b	oits 1 and 0				
	11 = No masl	-					
	10 = Filter 15						
	01 = Accepta 00 = Accepta						
bit 5-4	•	Filter 2 Select b	oits 1 and 0				
	11 = No masl	k					
	10 = Filter 15						
	01 = Accepta 00 = Accepta						
bit 3-2	•	Filter 1 Select b	oits 1 and 0				
Sit o L	11 = No mas						
	10 = Filter 15	-					
	01 = Accepta						
	00 = Accepta						
bit 1-0	_	Filter 0 Select b	oits 1 and 0				
	11 = No masl	-					
	10 = Filter 15 01 = Accepta						
	00 = Accepta						

REGISTER 24-48: MSEL0: MASK SELECT REGISTER 0⁽¹⁾

Note 1: This register is available in Mode 1 and 2 only.

24.13 Bit Timing Configuration Registers

The Baud Rate Control registers (BRGCON1, BRGCON2, BRGCON3) control the bit timing for the CAN bus interface. These registers can only be modified when the PIC18F2480/2580/4480/4580 devices are in Configuration mode.

24.13.1 BRGCON1

The BRP bits control the baud rate prescaler. The SJW<1:0> bits select the synchronization jump width in terms of multiples of TQ.

24.13.2 BRGCON2

The PRSEG bits set the length of the propagation segment in terms of Tq. The SEG1PH bits set the length of Phase Segment 1 in To. The SAM bit controls how many times the RXCAN pin is sampled. Setting this bit to a '1' causes the bus to be sampled three times: twice at TQ/2 before the sample point and once at the normal sample point (which is at the end of Phase Segment 1). The value of the bus is determined to be the value read during at least two of the samples. If the SAM bit is set to a '0', then the RXCAN pin is sampled only once at the sample point. The SEG2PHTS bit controls how the length of Phase Segment 2 is determined. If this bit is set to a '1', then the length of Phase Segment 2 is determined by the SEG2PH bits of BRGCON3. If the SEG2PHTS bit is set to a '0', then the length of Phase Segment 2 is the greater of Phase Segment 1 and the information processing time (which is fixed at 2 To for the PIC18F2480/2580/4480/4580).

24.13.3 BRGCON3

The PHSEG2<2:0> bits set the length (in TQ) of Phase Segment 2 if the SEG2PHTS bit is set to a '1'. If the SEG2PHTS bit is set to a '0', then the PHSEG2<2:0> bits have no effect.

24.14 Error Detection

The CAN protocol provides sophisticated error detection mechanisms. The following errors can be detected.

24.14.1 CRC ERROR

With the Cyclic Redundancy Check (CRC), the transmitter calculates special check bits for the bit sequence, from the start of a frame until the end of the data field. This CRC sequence is transmitted in the CRC field. The receiving node also calculates the CRC sequence using the same formula and performs a comparison to the received sequence. If a mismatch is detected, a CRC error has occurred and an error frame is generated. The message is repeated.

24.14.2 ACKNOWLEDGE ERROR

In the Acknowledge field of a message, the transmitter checks if the Acknowledge slot (which was sent out as a recessive bit) contains a dominant bit. If not, no other node has received the frame correctly. An Acknowledge error has occurred, an error frame is generated and the message will have to be repeated.

24.14.3 FORM ERROR

If a node detects a dominant bit in one of the four segments, including End-Of-Frame (EOF), interframe space, Acknowledge delimiter or CRC delimiter, then a form error has occurred and an error frame is generated. The message is repeated.

24.14.4 BIT ERROR

A bit error occurs if a transmitter sends a dominant bit and detects a recessive bit, or if it sends a recessive bit and detects a dominant bit, when monitoring the actual bus level and comparing it to the just transmitted bit. In the case where the transmitter sends a recessive bit and a dominant bit is detected during the arbitration field and the Acknowledge slot, no bit error is generated because normal arbitration is occurring.

24.14.5 STUFF BIT ERROR

If, between the Start-Of-Frame (SOF) and the CRC delimiter, six consecutive bits with the same polarity are detected, the bit stuffing rule has been violated. A stuff bit error occurs and an error frame is generated. The message is repeated.

24.14.6 ERROR STATES

Detected errors are made public to all other nodes via error frames. The transmission of the erroneous message is aborted and the frame is repeated as soon as possible. Furthermore, each CAN node is in one of the three error states; "error-active", "error-passive" or "bus-off", according to the value of the internal error counters. The error-active state is the usual state where the bus node can transmit messages and activate error frames (made of dominant bits) without any restrictions. In the error-passive state, messages and passive error frames (made of recessive bits) may be transmitted. The bus-off state makes it temporarily impossible for the node to participate in the bus communication. During this state, messages can neither be received nor transmitted.

24.14.7 ERROR MODES AND ERROR COUNTERS

The PIC18F2480/2580/4480/4580 devices contain two error counters: the Receive Error Counter (RXERRCNT) and the Transmit Error Counter (TXERRCNT). The values of both counters can be read by the MCU. These counters are incremented or decremented in accordance with the CAN bus specification.

BNC	N	Branch if	Not Overflo	w	BNZ		Branch if	Not Zero		
Synta	ax:	BNOV n			Syntax:		BNZ n			
Oper	ands:	-128 ≤ n ≤ ′	127		Operand	ds:	-128 ≤ n ≤ 127			
Oper	ation:	if Overflow (PC) + 2 + 2	,		Operatio	on:	if Zero bit is (PC) + 2 +	,		
Statu	s Affected:	None			Status A	ffected:	None			
Enco	ding:	1110	0101 nn:	nn nnnn	Encodin	g:	1110	0001 n	nnn	nnnn
Desc	ription:	If the Overf program wi	low bit is '0', th Il branch.	hen the	Descript	Description: If the Zero bit is '0', then the pr will branch.		rogram		
		added to the incremente instruction,	d to fetch the i the new addre n. This instruct	e PC will have next ess will be			added to th incremente instruction,	nplement nu e PC. Since d to fetch the the new ado n. This instru nstruction.	the PC e next Iress w	will have
Word	ls:	1			Words:		1			
Cycle	es:	1(2)			Cycles:		1(2)			
	ycle Activity:				-	e Activity:				
lf Ju	Q1	Q2	Q3	Q4	lf Jump	Q1	Q2	Q3		Q4
	Decode	Read literal 'n'	Process Data	Write to PC		Decode	Read literal 'n'	Process Data	Wri	te to PC
	No	No	No	No		No	No	No		No
	operation	operation	operation	operation	0	peration	operation	operation	ор	eration
lf No	o Jump:				lf No Ju	ımp:				
	Q1	Q2	Q3	Q4		Q1	Q2	Q3		Q4
	Decode	Read literal 'n'	Process Data	No operation		Decode	Read literal 'n'	Process Data	ор	No eration
<u>Exan</u>	nple:	HERE	BNOV Jump		Example	<u>):</u>	HERE	BNZ Jum	ıp	
	Before Instruc PC After Instructio If Overflo If Overflo PC PC	= ad on ow = 0; = ad ow = 1;	dress (HERE dress (Jump dress (HERE)		fore Instruct PC er Instructio If Zero PC If Zero PC	= ad on = 0; = ad = 1;	dress (HERP dress (Jump dress (HERP	5))

РОР	Рор Тор	of Return S	tack				
Syntax:	POP	POP					
Operands:	None						
Operation:	$(TOS) \rightarrow b$	it bucket					
Status Affected:	None						
Encoding:	0000	0000 00	00 0110				
Description:	stack and i then becon was pushe This instrue the user to	off the return the TOS value us value that urn stack. ed to enable age the return ftware stack.					
Words:	1						
Cycles:	1						
Q Cycle Activity:							
Q1	Q2	Q3	Q4				
Decode	No operation	POP TOS value	No operation				
Example:	POP GOTO	NEW					
Before Instruc TOS Stack (1	ction level down)	= 0031/ = 01433					
After Instructi TOS PC	on	= 01433 = NEW	32h				

-	Push Top	Push Top of Return Stack					
Syntax:	PUSH						
Operands:	None						
Operation:	(PC + 2) \rightarrow	TOS					
Status Affected:	None						
Encoding:	0000	0000	000	0	0101		
Description:	The PC + 2 the return s value is pus This instruc software sta then pushin	tack. Th shed dow tion allo ack by m	e prev vn on t ws imp todifyir	ious the s blem ng T(TOS stack. enting a OS and		
Words:	1						
Cycles:	1						
Q Cycle Activity:							
Q1	Q2	Q	3		Q4		
Decode	PUSH	No			No		
Decode	PC + 2 onto return stack	opera	tion	ор	eration		
Example:		opera	tion	ор			
	return stack	= 3	tion 345Ah)124h	op			

RETFIE	Return fro	om Interrup	t	RET	LW	Return Li	teral to W	
Syntax:	RETFIE {	5}		Synt	ax:	RETLW k		
Operands:	$s \in [0,1]$			Oper	rands:	$0 \le k \le 255$		
Operation:	if s = 1,	IEH or PEIE/C	BIEL;	Oper	ration:	$k \rightarrow W$, (TOS) → PC, PCLATU, PCLATH are unch		nchanged
	$(WS) \rightarrow W$) \rightarrow STATUS,		Statu	is Affected:	None		
	$(BSRS) \rightarrow$			Enco	oding:	0000	1100 kk	kk kkkk
		CLATH are ur	nchanged.	Description:		W is loaded	with the eigh	t-bit literal 'k'.
Status Affected:	GIE/GIEH,	PEIE/GIEL.						aded from the
Encoding:	0000	0000 00	01 000s			•	tack (the retur Idress latch (F	,
Description:	Return fron	n interrupt. Sta	ack is popped			remains un	•	02/111/
	•	Stack (TOS) i		Word	ds:	1		
		errupts are ena er the high or		Cycle	es:	2		
			t. If 's' = 1, the	QC	ycle Activity:			
		the shadow re	•		Q1	Q2	Q3	Q4
		STATUSS and BSRS, are loaded into their corresponding registers, W,			Decode	Read	Process	POP PC
	STATUS ar		= 0, no update			literal 'k'	Data	from stack, Write to W
Words:	1				No	No	No	No
Cycles:	2				operation	operation	operation	operation
	2			_	_			
Q Cycle Activity: Q1	Q2	Q3	Q4	Exar	nple:			
Decode	No	No	POP PC		CALL TABLE	; W CONT ; offset	ains table value	
200000	operation	operation	from stack			; W now		
			Set GIEH or			; table	value	
			GIEL	TABI	: 			
No operation	No operation	No operation	No operation		ADDWF PCL	; W = of	fset	
operation	operation	operation	operation		RETLW k0	; Begin	table	
Example:	RETFIE	1		:	RETLW k1	;		
After Interrup	t			:	:			
PC		= TOS			RETLW kn	; End of	table	
W BSR		= WS = BSRS			Before Instruc			
STATUS	S H, PEIE/GIEL	= STATU = 1			W After Instructi	= 07h on		
GIE/GIE	II, FEIE/GIEL					••••		

Error Recognition Mode3 EUSART	30
Asynchronous Mode2	41
Associated Registers, Receive2	45
Associated Registers, Transmit2	43
Auto-Wake-up on Sync Break2	46
Break Character Sequence2	47
Receiver2	44
Setting up 9-Bit Mode with Address Detect2	44
Transmitter2	41
Baud Rate Generator (BRG)	
Associated Registers2	36
Auto-Baud Rate Detect2	
Baud Rate Error, Calculating2	36
Baud Rates, Asynchronous Modes2	37
High Baud Rate Select (BRGH Bit)	35
Operation in Power-Managed Mode2	35
Sampling2	35
Synchronous Master Mode2	48
Associated Registers, Receive2	50
Associated Registers, Transmit2	49
Reception2	50
Transmission2	48
Synchronous Slave Mode2	51
Associated Registers, Receive	52
Associated Registers, Transmit2	51
Reception2	52
Transmission2	51
Extended Instruction Set	
ADDFSR4	10
ADDULNK4	10
CALLW	11
MOVSF4	11
MOVSS4	12
PUSHL	12
SUBFSR4	13
SUBULNK4	13
External Clock Input	30

F

Fail-Safe Clock Monitor	
Interrupts in Power-Managed Modes	
POR or Wake-up from Sleep	
WDT During Oscillator Failure	
Fast Register Stack	
Firmware Instructions	
Flash Program Memory	
Associated Registers	
Control Registers	
EECON1 and EECON2	102
TABLAT (Table Latch) Register	
(, , , , , , , , , , , , , , , , , , ,	
TBLPTR (Table Pointer) Register	
Erase Sequence	
Erasing	
Operation During Code-Protect	
Reading	105
Table Pointer	
Boundaries Based on Operation	
Table Pointer Boundaries	
Table Reads and Table Writes	
Write Sequence	
Writing To	
Protection Against Spurious Writes	
Unexpected Termination	
Write Verify	
FSCM. See Fail-Safe Clock Monitor.	

G

GOTO	88
н	
Hardware Multiplier	
Introduction1	17
Operation1	17
Performance Comparison1	17
High/Low-Voltage Detect2	73
Applications2	76
Associated Registers2	77
Characteristics 4	37
Current Consumption2	75
Effects of a Reset2	77
Operation2	74
During Sleep2	77
Setup2	75
Start-up Time2	75
Typical Application2	
HLVD. See High/Low-Voltage Detect 2	73

I

I/O Ports		135
I ² C Mode (MSSP)		
Acknowledge Sequence Timing		224
Baud Rate Generator		217
Bus Collision		
During a Repeated Start Condition		228
During a Stop Condition		
Clock Arbitration		
Clock Stretching		
10-Bit Slave Receive Mode (SEN = 1)		
10-Bit Slave Transmit Mode		
7-Bit Slave Receive Mode (SEN = 1)		
7-Bit Slave Transmit Mode		210
Clock Synchronization and the CKP Bit		
(SEN = 1)		
Effect of a Reset		
General Call Address Support		
I ² C Clock Rate w/BRG		
Master Mode		
Operation		
Reception		
Repeated Start Condition Timing		
Start Condition		
Transmission		
Transmit Sequence		216
Multi-Master Communication, Bus Collision		
and Arbitration		
Multi-Master Mode		
Operation Read/Write Bit Information (R/\overline{W} Bit)		
Registers Serial Clock (RC3/SCK/SCL)		
Slave Mode		
Addressing		
Reception Transmission		
Sleep Operation Stop Condition Timing		
ID Locations		
INCE	,	
INCF		
In-Circuit Debugger		
In-Circuit Serial Programming (ICSP)	340	366
	. 549,	500

THE MICROCHIP WEB SITE

Microchip provides online support via our WWW site at www.microchip.com. This web site is used as a means to make files and information easily available to customers. Accessible by using your favorite Internet browser, the web site contains the following information:

- Product Support Data sheets and errata, application notes and sample programs, design resources, user's guides and hardware support documents, latest software releases and archived software
- General Technical Support Frequently Asked Questions (FAQ), technical support requests, online discussion groups, Microchip consultant program member listing
- Business of Microchip Product selector and ordering guides, latest Microchip press releases, listing of seminars and events, listings of Microchip sales offices, distributors and factory representatives

CUSTOMER CHANGE NOTIFICATION SERVICE

Microchip's customer notification service helps keep customers current on Microchip products. Subscribers will receive e-mail notification whenever there are changes, updates, revisions or errata related to a specified product family or development tool of interest.

To register, access the Microchip web site at www.microchip.com, click on Customer Change Notification and follow the registration instructions.

CUSTOMER SUPPORT

Users of Microchip products can receive assistance through several channels:

- Distributor or Representative
- Local Sales Office
- Field Application Engineer (FAE)
- Technical Support
- Development Systems Information Line

Customers should contact their distributor, representative or field application engineer (FAE) for support. Local sales offices are also available to help customers. A listing of sales offices and locations is included in the back of this document.

Technical support is available through the web site at: http://support.microchip.com