

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	40MHz
Connectivity	CANbus, I ² C, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, HLVD, POR, PWM, WDT
Number of I/O	25
Program Memory Size	16KB (8K x 16)
Program Memory Type	FLASH
EEPROM Size	256 x 8
RAM Size	768 x 8
Voltage - Supply (Vcc/Vdd)	4.2V ~ 5.5V
Data Converters	A/D 8x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	28-VQFN Exposed Pad
Supplier Device Package	28-QFN (6x6)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic18f2480-i-ml

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

FIGURE 5-4: TIME-OUT SEQUENCE ON POWER-UP (MCLR NOT TIED TO VDD): CASE 1

DS39637D-page 52

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Reset Values on Page:
PORTA	RA7 ⁽¹⁾	RA6 ⁽¹⁾	RA5	RA4	RA3	RA2	RA1	RA0	58
LATA	LATA7 ⁽¹⁾	LATA6 ⁽¹⁾	LATA Outp	ATA Output Latch Register					
TRISA	TRISA7 ⁽¹⁾	TRISA6 ⁽¹⁾	PORTA Da	ta Direction	Register				58
ADCON1	—	—	VCFG1	VCFG0	PCFG3	PCFG2	PCFG1	PCFG0	56
CVRCON ⁽²⁾	CVREN	CVROE	CVRR	CVRSS	CVR3	CVR2	CVR1	CVR0	57

Legend: — = unimplemented, read as '0'. Shaded cells are not used by PORTA.

Note 1: RA<7:6> and their associated latch and data direction bits are enabled as I/O pins based on oscillator configuration; otherwise, they are read as '0'.

2: These registers are unimplemented on PIC18F2X80 devices.

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Reset Values on Page:
INTCON	GIE/GIEH	PEIE/GIEL	TMR0IE	INT0IE	RBIE	TMR0IF	INT0IF	RBIF	55
RCON	IPEN	SBOREN ⁽²⁾	_	RI	TO	PD	POR	BOR	56
PIR1	PSPIF	ADIF	RCIF	TXIF	SSPIF	CCP1IF	TMR2IF	TMR1IF	58
PIE1	PSPIE	ADIE	RCIE	TXIE	SSPIE	CCP1IE	TMR2IE	TMR1IE	58
IPR1	PSPIP	ADIP	RCIP	TXIP	SSPIP	CCP1IP	TMR2IP	TMR1IP	58
TRISB	PORTB Data Direction Register								
TRISC	PORTC Data Direction Register								58
TMR2	Timer2 Register								56
PR2	Timer2 Peri	od Register					_		56
T2CON	—	T2OUTPS3	T2OUTPS2	T2OUTPS1	T2OUTPS0	TMR2ON	T2CKPS1	T2CKPS0	56
CCPR1L	Capture/Co	mpare/PWM	Register 1 Lo	ow Byte					57
CCPR1H	Capture/Co	mpare/PWM	Register 1 H	igh Byte					57
CCP1CON	—	-	DC1B1	DC1B0	CCP1M3	CCP1M2	CCP1M1	CCP1M0	57
ECCPR1L ⁽¹⁾	Enhanced (Capture/Comp	bare/PWM R	egister 1 Lov	v Byte				57
ECCPR1H ⁽¹⁾	Enhanced (Capture/Comp	pare/PWM R	egister 1 Hig	h Byte				57
ECCP1CON ⁽¹⁾	EPWM1M1	EPWM1M0	EDC1B1	EDC1B0	ECCP1M3	ECCP1M2	ECCP1M1	ECCP1M0	57

TABLE 16-5: REGISTERS ASSOCIATED WITH PWM A	AND TIMER2
---	------------

Legend: — = unimplemented, read as '0'. Shaded cells are not used by PWM or Timer2.

Note 1: These registers are unimplemented on PIC18F2X80 devices.

2: The SBOREN bit is only available when CONFIG2L<1:0> = 01; otherwise, it is disabled and reads as '0'. See Section 5.4 "Brown-out Reset (BOR)".

ECCP1CON	SIGNAL	0 Duty	F	PR2 + 1
<7:6>		Cycle	Period	- -
0 (Single Output)	P1A Modulated			1 1
	P1A Modulated			1 1 1
0 (Half-Bridge)	P1B Modulated	;		
	P1A Active	_ :		
(Full-Bridge,	P1B Inactive			
Forward)	P1C Inactive	; ;		i I I
	P1D Modulated		1 	1 1
	P1A Inactive	;		
1 (Full-Bridge,	P1B Modulated	i	 	
Reverse)	P1C Active	;		1 1 1
	P1D Inactive		- 	1 1 1

FIGURE 17-2: PWM OUTPUT RELATIONSHIPS (ACTIVE-HIGH STATE)

FIGURE 17-3: PWM OUTPUT RELATIONSHIPS (ACTIVE-LOW STATE)

	ECCP1CON	SIGNAL	0 Duty	PR2 + 1
	<7:0>		- Period -	
00	(Single Output)	P1A Modulated	=	i i
		P1A Modulated		
10	(Half-Bridge)	P1B Modulated	Delay(") Delay(")	ŕ
		P1A Active		
01	(Full-Bridge,	P1B Inactive		
01	Forward)	P1C Inactive		
		P1D Modulated	ii	
		P1A Inactive		1 1
11	(Full-Bridge,	P1B Modulated		i i
	Reverse)	P1C Active	— ¦ ;	1 1
		P1D Inactive		

Relationships:

• Period = 4 * Tosc * (PR2 + 1) * (TMR2 Prescale Value)

• Duty Cycle = Tosc * (ECCPR1L<7:0>:ECCP1CON<5:4>) * (TMR2 Prescale Value)

• Delay = 4 * Tosc * (ECCP1DEL<6:0>)

Note 1: Dead-band delay is programmed using the ECCP1DEL register (Section 17.4.6 "Programmable Dead-Band Delay").

EXAMPLE 19-1: CALCULATING BAUD RATE ERROR

For a device with FOSC of 16 MHz, desired baud rate of 9600, Asynchronous mode, 8-bit BRG:							
Desired Baud Rate	=	Fosc/(64 ([SPBRGH:SPBRG] + 1)					
Solving for SPBRGH:S	SPB	RG:					
Х	=	((FOSC/Desired Baud Rate)/64) – 1					
	=	((16000000/9600)/64) – 1					
	=	[25.042] = 25					
Calculated Baud Rate	=	16000000/(64 (25 + 1))					
	=	9615					
Error	=	(Calculated Baud Rate - Desired Baud Rate)/Desired Baud Rate					
	=	(9615 - 9600)/9600 = 0.16%					

TABLE 19-2: REGISTERS ASSOCIATED WITH BAUD RATE GENERATOR

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Reset Values on Page:
TXSTA	CSRC	TX9	TXEN	SYNC	SENDB	BRGH	TRMT	TX9D	57
RCSTA	SPEN	RX9	SREN	CREN	ADDEN	FERR	OERR	RX9D	57
BAUDCON	ABDOVF	RCIDL	—	SCKP	BRG16	—	WUE	ABDEN	57
SPBRGH	EUSART Baud Rate Generator Register High Byte								
SPBRG	EUSART E	Baud Rate G	Generator R	egister Low	v Byte				57

Legend: — = unimplemented, read as '0'. Shaded cells are not used by the BRG.

The analog reference voltage is software-selectable to either the device's positive and negative supply voltage (AVDD and AVSS), or the voltage level on the RA3/AN3/VREF+ and RA2/AN2/VREF-/CVREF pins.

The A/D Converter has a unique feature of being able to operate while the device is in Sleep mode. To operate in Sleep, the A/D conversion clock must be derived from the A/D's internal RC oscillator.

The output of the sample and hold is the input into the converter, which generates the result via successive approximation.

A device Reset forces all registers to their Reset state. This forces the A/D module to be turned off and any conversion in progress is aborted.

Each port pin associated with the A/D Converter can be configured as an analog input, or as a digital I/O. The ADRESH and ADRESL registers contain the result of the A/D conversion. When the A/D conversion is complete, the result is loaded into the ADRESH/ADRESL registers, the GO/DONE bit (ADCON0 register) is cleared and A/D Interrupt Flag bit, ADIF, is set. The block diagram of the A/D module is shown in Figure 20-1.

NOTES:

$\label{eq:register24-28:BnEIDH: TX/RX BUFFER n EXTENDED IDENTIFIER REGISTERS, \\ HIGH BYTE IN RECEIVE MODE [0 \le n \le 5, TXnEN (BSEL0<n>) = 0]^{(1)}$

R-x	R-x	R-x	R-x	R-x	R-x	R-x	R-x
EID15	EID14	EID13	EID12	EID11	EID10	EID9	EID8
bit 7							bit 0
Legend:							

Legena.			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	l as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 7-0 EID<15:8>: Extended Identifier bits

Note 1: These registers are available in Mode 1 and 2 only.

$\label{eq:register24-29: BnEIDH: TX/RX BUFFER n EXTENDED IDENTIFIER REGISTERS, \\ HIGH BYTE IN TRANSMIT MODE [0 \le n \le 5, TXnEN (BSEL0<n>) = 1]^{(1)}$

| R/W-x |
|-------|-------|-------|-------|-------|-------|-------|-------|
| EID15 | EID14 | EID13 | EID12 | EID11 | EID10 | EID9 | EID8 |
| bit 7 | | | | | | | bit 0 |

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 7-0 EID<15:8>: Extended Identifier bits

Note 1: These registers are available in Mode 1 and 2 only.

$\label{eq:register24-30:BnEIDL: TX/RX BUFFER n EXTENDED IDENTIFIER REGISTERS, \\ LOW BYTE IN RECEIVE MODE [0 \le n \le 5, TXnEN (BSEL<n>) = 0]^{(1)}$

R-x	R-x	R-x	R-x	R-x	R-x	R-x	R-x
EID7	EID6	EID5	EID4	EID3	EID2	EID1	EID0
bit 7					•	·	bit 0
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimplemented bit, read as '0'			
-n = Value at F	POR	'1' = Bit is set		'0' = Bit is cleared x = Bit is unknow			nown

bit 7-0 EID<7:0>: Extended Identifier bits

Note 1: These registers are available in Mode 1 and 2 only.

REGISTER 24-42: RXMnSIDL: RECEIVE ACCEPTANCE MASK n STANDARD IDENTIFIER MASK REGISTERS, LOW BYTE [0 \leq n \leq 1]

R/W-x	R/W-x	R/W-x	U-0	R/W-0	U-0	R/W-x	R/W-x
SID2	SID1	SID0		EXIDEN ⁽¹⁾	—	EID17	EID16
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimpler	mented bit, read	as '0'	
-n = Value at P	OR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown
bit 7-5 SID<2:0>: Standard Identifier Mask bits or Extended Identifier Mask bits (EID<20:18>) bit 4 Unimplemented: Read as '0' bit 3 Mode 0: Unimplemented: Read as '0' Mode 1, 2: EXIDEN: Extended Identifier Filter Enable Mask bit ⁽¹⁾ 1 = Messages selected by the EXIDEN bit in RXFnSIDL will be accepted 0 = Both standard and extended identifier messages will be accepted							
bit 2	Unimplemen	ted: Read as '	כי				
bit 1-0	EID<17:16>:	Extended Iden	tifier Mask bits	6			

Note 1: This bit is available in Mode 1 and 2 only.

REGISTER 24-43: RXMnEIDH: RECEIVE ACCEPTANCE MASK n EXTENDED IDENTIFIER MASK REGISTERS, HIGH BYTE [0 \leq n \leq 1]

| R/W-x |
|-------|-------|-------|-------|-------|-------|-------|-------|
| EID15 | EID14 | EID13 | EID12 | EID11 | EID10 | EID9 | EID8 |
| bit 7 | | | | | | | bit 0 |

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	l as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 7-0 EID<15:8>: Extended Identifier Mask bits

REGISTER 24-44: RXMnEIDL: RECEIVE ACCEPTANCE MASK n EXTENDED IDENTIFIER MASK REGISTERS, LOW BYTE [0 \leq n \leq 1]

| R/W-x |
|-------|-------|-------|-------|-------|-------|-------|-------|
| EID7 | EID6 | EID5 | EID4 | EID3 | EID2 | EID1 | EID0 |
| bit 7 | | | | | | | bit 0 |

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	l as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 7-0 EID<7:0>: Extended Identifier Mask bits

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
FIL15_1	FIL15_0	FIL14_1	FIL14_0	FIL13_1	FIL13_0	FIL12_1	FIL12_0
bit 7	·					-	bit 0
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimple	mented bit, read	l as '0'	
-n = Value at F	POR	'1' = Bit is set		'0' = Bit is cle	eared	x = Bit is unkr	Iown
L:1 7 0							
bit 7-6	FIL15_<1:0>	: Filter 15 Sele	ct bits 1 and 0				
	11 = NO masi 10 = Filter 15	ĸ					
	01 = Accepta	nce Mask 1					
	00 = Accepta	nce Mask 0					
bit 5-4	FIL14_<1:0>	: Filter 14 Sele	ct bits 1 and 0				
	11 = No mas	k					
	10 = Filter 15	naa Maak 1					
	01 = Accepta 00 = Accepta	nce Mask 0					
bit 3-2	FIL13 <1:0>	: Filter 13 Sele	ct bits 1 and 0				
		k					
	10 = Filter 15	i					
	01 = Accepta	nce Mask 1					
	00 = Accepta	nce Mask 0					
bit 1-0	FIL12_<1:0>	: Filter 12 Sele	ct bits 1 and 0				
	11 = NO masi 10 = Eilter 15	ĸ					
	01 = Accepta	nce Mask 1					
	00 = Accepta	nce Mask 0					

REGISTER 24-51: MSEL3: MASK SELECT REGISTER 3⁽¹⁾

Note 1: This register is available in Mode 1 and 2 only.

24.9 Baud Rate Setting

All nodes on a given CAN bus must have the same nominal bit rate. The CAN protocol uses Non-Returnto-Zero (NRZ) coding which does not encode a clock within the data stream. Therefore, the receive clock must be recovered by the receiving nodes and synchronized to the transmitter's clock.

As oscillators and transmission time may vary from node to node, the receiver must have some type of Phase Lock Loop (PLL) synchronized to data transmission edges to synchronize and maintain the receiver clock. Since the data is NRZ coded, it is necessary to include bit stuffing to ensure that an edge occurs at least every six bit times to maintain the Digital Phase Lock Loop (DPLL) synchronization.

The bit timing of the PIC18F2480/2580/4480/4580 is implemented using a DPLL that is configured to synchronize to the incoming data and provides the nominal timing for the transmitted data. The DPLL breaks each bit time into multiple segments made up of minimal periods of time called the *Time Quanta* (TQ).

Bus timing functions executed within the bit time frame, such as synchronization to the local oscillator, network transmission delay compensation and sample point positioning, are defined by the programmable bit timing logic of the DPLL.

All devices on the CAN bus must use the same bit rate. However, all devices are not required to have the same master oscillator clock frequency. For the different clock frequencies of the individual devices, the bit rate has to be adjusted by appropriately setting the baud rate prescaler and number of time quanta in each segment.

The *Nominal Bit Rate* is the number of bits transmitted per second, assuming an ideal transmitter with an ideal oscillator, in the absence of resynchronization. The nominal bit rate is defined to be a maximum of 1 Mb/s.

The Nominal Bit Time is defined as:

EQUATION 24-1:

TBIT = 1/Nominal Bit Rate

FIGURE 24-4: BIT TIME PARTITIONING

The Nominal Bit Time can be thought of as being divided into separate, non-overlapping time segments. These segments (Figure 24-4) include:

- Synchronization Segment (Sync Seg)
- Propagation Time Segment (Prop Seg)
- Phase Buffer Segment 1 (Phase_Seg1)
- Phase Buffer Segment 2 (Phase_Seg2)

The time segments (and thus, the Nominal Bit Time) are, in turn, made up of integer units of time called Time Quanta or TQ (see Figure 24-4). By definition, the Nominal Bit Time is programmable from a minimum of 8 TQ to a maximum of 25 TQ. Also by definition, the minimum Nominal Bit Time is 1 μ s, corresponding to a maximum 1 Mb/s rate. The actual duration is given by the following relationship.

EQUATION 24-2:

The Time Quantum is a fixed unit derived from the oscillator period. It is also defined by the programmable baud rate prescaler, with integer values from 1 to 64, in addition to a fixed divide-by-two for clock generation. Mathematically, this is:

EQUATION 24-3:

$T_Q (\mu s) = (2 * (BRP+1))/FOSC (MHz)$
or
$T_Q (\mu s) = (2 * (BRP+1)) * TOSC (\mu s)$

where FOSC is the clock frequency, TOSC is the corresponding oscillator period and BRP is an integer (0 through 63) represented by the binary values of BRGCON1<5:0>. The equation above refers to the effective clock frequency used by the microcontroller. If, for example, a 10 MHz crystal in HS mode is used, then FOSC = 10 MHz and TOSC = 100 ns. If the same 10 MHz crystal is used in HS-PLL mode, then the effective frequency is FOSC = 40 MHz and TOSC = 25 ns.

Table 24-3 shows the relation between the clock generated by the PLL and the frequency error from jitter (measured jitter-induced error of 2%, Gaussian distribution, within 3 standard deviations), as a percentage of the nominal clock frequency.

This is clearly smaller than the expected drift of a crystal oscillator, typically specified at 100 ppm or 0.01%. If we add jitter to oscillator drift, we have a total frequency drift of 0.0132%. The total oscillator frequency errors for common clock frequencies and bit rates, including both drift and jitter, are shown in Table 24-4.

TABLE 24-3:	FREQUENCY ERROR FROM JITTER AT VARIOUS PLL-GENERATED CLOCK SPEEDS

BLI			Frequency Error at Various Nominal Bit Times (Bit Rates)					
Output P _{jitter}	7 _{jitter}	8 μs (125 Kb/s)	4 μs (250 Kb/s)	2 μs (500 Kb/s)	1 μs (1 Mb/s)			
40 MHz	0.5 ns	1 ns	0.00125%	0.00250%	0.005%	0.01%		
24 MHz	0.83 ns	1.67 ns	0.00209%	0.00418%	0.008%	0.017%		
16 MHz	1.25 ns	2.5 ns	0.00313%	0.00625%	0.013%	0.025%		

TABLE 24-4:TOTAL FREQUENCY ERROR AT VARIOUS PLL-GENERATED CLOCK SPEEDS
(100 PPM OSCILLATOR DRIFT, INCLUDING ERROR FROM JITTER)

	Frequency Error at Various Nominal Bit Times (Bit Rates)							
Nominal PLL Output	8 μs (125 Kb/s)	4 μs (250 Kb/s)	2 μs (500 Kb/s)	1 μs (1 Mb/s)				
40 MHz	0.01125%	0.01250%	0.015%	0.02%				
24 MHz	0.01209%	0.01418%	0.018%	0.027%				
16 MHz	0.01313%	0.01625%	0.023%	0.035%				

24.13 Bit Timing Configuration Registers

The Baud Rate Control registers (BRGCON1, BRGCON2, BRGCON3) control the bit timing for the CAN bus interface. These registers can only be modified when the PIC18F2480/2580/4480/4580 devices are in Configuration mode.

24.13.1 BRGCON1

The BRP bits control the baud rate prescaler. The SJW<1:0> bits select the synchronization jump width in terms of multiples of TQ.

24.13.2 BRGCON2

The PRSEG bits set the length of the propagation segment in terms of Tq. The SEG1PH bits set the length of Phase Segment 1 in To. The SAM bit controls how many times the RXCAN pin is sampled. Setting this bit to a '1' causes the bus to be sampled three times: twice at TQ/2 before the sample point and once at the normal sample point (which is at the end of Phase Segment 1). The value of the bus is determined to be the value read during at least two of the samples. If the SAM bit is set to a '0', then the RXCAN pin is sampled only once at the sample point. The SEG2PHTS bit controls how the length of Phase Segment 2 is determined. If this bit is set to a '1', then the length of Phase Segment 2 is determined by the SEG2PH bits of BRGCON3. If the SEG2PHTS bit is set to a '0', then the length of Phase Segment 2 is the greater of Phase Segment 1 and the information processing time (which is fixed at 2 To for the PIC18F2480/2580/4480/4580).

24.13.3 BRGCON3

The PHSEG2<2:0> bits set the length (in TQ) of Phase Segment 2 if the SEG2PHTS bit is set to a '1'. If the SEG2PHTS bit is set to a '0', then the PHSEG2<2:0> bits have no effect.

24.14 Error Detection

The CAN protocol provides sophisticated error detection mechanisms. The following errors can be detected.

24.14.1 CRC ERROR

With the Cyclic Redundancy Check (CRC), the transmitter calculates special check bits for the bit sequence, from the start of a frame until the end of the data field. This CRC sequence is transmitted in the CRC field. The receiving node also calculates the CRC sequence using the same formula and performs a comparison to the received sequence. If a mismatch is detected, a CRC error has occurred and an error frame is generated. The message is repeated.

24.14.2 ACKNOWLEDGE ERROR

In the Acknowledge field of a message, the transmitter checks if the Acknowledge slot (which was sent out as a recessive bit) contains a dominant bit. If not, no other node has received the frame correctly. An Acknowledge error has occurred, an error frame is generated and the message will have to be repeated.

24.14.3 FORM ERROR

If a node detects a dominant bit in one of the four segments, including End-Of-Frame (EOF), interframe space, Acknowledge delimiter or CRC delimiter, then a form error has occurred and an error frame is generated. The message is repeated.

24.14.4 BIT ERROR

A bit error occurs if a transmitter sends a dominant bit and detects a recessive bit, or if it sends a recessive bit and detects a dominant bit, when monitoring the actual bus level and comparing it to the just transmitted bit. In the case where the transmitter sends a recessive bit and a dominant bit is detected during the arbitration field and the Acknowledge slot, no bit error is generated because normal arbitration is occurring.

24.14.5 STUFF BIT ERROR

If, between the Start-Of-Frame (SOF) and the CRC delimiter, six consecutive bits with the same polarity are detected, the bit stuffing rule has been violated. A stuff bit error occurs and an error frame is generated. The message is repeated.

24.14.6 ERROR STATES

Detected errors are made public to all other nodes via error frames. The transmission of the erroneous message is aborted and the frame is repeated as soon as possible. Furthermore, each CAN node is in one of the three error states; "error-active", "error-passive" or "bus-off", according to the value of the internal error counters. The error-active state is the usual state where the bus node can transmit messages and activate error frames (made of dominant bits) without any restrictions. In the error-passive state, messages and passive error frames (made of recessive bits) may be transmitted. The bus-off state makes it temporarily impossible for the node to participate in the bus communication. During this state, messages can neither be received nor transmitted.

24.14.7 ERROR MODES AND ERROR COUNTERS

The PIC18F2480/2580/4480/4580 devices contain two error counters: the Receive Error Counter (RXERRCNT) and the Transmit Error Counter (TXERRCNT). The values of both counters can be read by the MCU. These counters are incremented or decremented in accordance with the CAN bus specification.

25.5 Program Verification and Code Protection

The overall structure of the code protection on the PIC18 Flash devices differs significantly from other $\text{PIC}^{\texttt{®}}$ devices.

The user program memory is divided into five blocks. One of these is a boot block of 2 Kbytes. The remainder of the memory is divided into four blocks on binary boundaries. Each of the five blocks has three code protection bits associated with them. They are:

- Code-Protect bit (CPn)
- Write-Protect bit (WRTn)
- External Block Table Read bit (EBTRn)

Figure 25-5 shows the program memory organization for 16 and 32-Kbyte devices and the specific code protection bit associated with each block. The actual locations of the bits are summarized in Table 25-3.

FIGURE 25-5: CODE-PROTECTED PROGRAM MEMORY FOR PIC18F2480/2580/4480/4580

Address	MEMORY SIZE/DEVICE					
Range	32 Kbytes (PIC18F2580/4580)		16 K (PIC18F2	bytes 480/4480)	Block Code Protection Controlled by:	
BBSIZ	0	1	0	1		
000000h	Boot Block		Boot Block			
0007FFh	1 kW	Boot Block	1 kW	Boot Block	CPB, WRTB, EBRTB	
000800h		2 kW		2 kW	(Boot Block)	
000FFFh	Block 0		Block 0		CP0, WRT0, EBRT0	
001000h	3 kW	Block 0	3 kW	Block 0		
001FFFh		2 kW		2 kW	(Block 0)	
002000h						
	Block 1 4 kW	Block 1 4 kW	Block 1 4 kW	Block 1 4 kW	CP!, WRT1, EBRT1 (Block 1)	
003FFFh						
004000h						
	Block 2 4 kW	Block 2 4 kW			CP2, WRT2, EBRT2 (Block 2)	
005FFFh						
006000h						
	Block 3 4 kW	Block 3 4 kW			CP3, WRT3, EBTR3 (Block 3)	
007FFFh						
008000h	Unimplemented Read '0's	Unimplemented Read '0's	Unimplemented Read '0's	Unimplemented Read '0's	(Unimplemented Memory Space)	
1FFFFFh						

			- •		, ,		_
Param No.	Sym	Characteristic	Min	Тур†	Мах	Units	Conditions
F10	Fosc	Oscillator Frequency Range	4	_	10	MHz	HS mode only
F11	Fsys	On-Chip VCO System Frequency	16	—	40	MHz	HS mode only
F12	t _{rc}	PLL Start-up Time (lock time)	—	—	2	ms	
F13	ΔCLK	CLKO Stability (jitter)	-2	—	+2	%	

TABLE 28-7:	PLL CLOCK TIMING SPECIFICATIONS (VDD = 4.2V TO 5.5V)
-------------	--

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

TABLE 28-8:AC CHARACTERISTICS: INTERNAL RC ACCURACYPIC18F2480/2580/4480/4580 (INDUSTRIAL)PIC18LF2480/2580/4480/4580 (INDUSTRIAL)

PIC18F2480/2580/4480/4580 (Industrial)		$\begin{array}{ll} \mbox{Standard Operating Conditions (unless otherwise stated)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for industrial} \\ -40^{\circ}C < TA < +125^{\circ}C \mbox{ for extended} \end{array}$						
Param No.	Device	Min	Тур	Max	Units	Conditions		
	INTOSC Accuracy @ Freq = 8 MHz, 4 MHz, 2 MHz, 1 MHz, 500 kHz, 250 kHz, 125 kHz ⁽¹⁾							
	PIC18LF2X80/4X80	-2	+/-1	2	%	+25°C VDD = 2.7-3.3V		
		-5	—	5	%	-10°C to +85°C	VDD = 2.7-3.3V	
		-10	+/-1	10	%	-40°C to +85°C	VDD = 2.7-3.3V	
	PIC18F2X80/4X80	-2	+/-1	2	%	+25°C	VDD = 4.5-5.5V	
		-5	—	5	%	-10°C to +85°C	VDD = 4.5-5.5V	
		-10	+/-1	10	%	-40°C to +85°C	VDD = 4.5-5.5V	
	INTRC Accuracy @ Freq = 31 kHz							
	PIC18LF2X80/4X80	26.562	—	35.938	kHz	-40°C to +85°C	VDD = 2.7-3.3V	
	PIC18F2X80/4X80	26.562	_	35.938	kHz	-40°C to +85°C	VDD = 4.5-5.5V	

Note 1: Frequency calibrated at 25°C. OSCTUNE register can be used to compensate for temperature drift.

44-Lead Plastic Thin Quad Flatpack (PT) – 10x10x1 mm Body, 2.00 mm [TQFP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	Units	MILLIMETERS			
Dim	nension Limits	MIN	NOM	MAX	
Number of Leads	N	44			
Lead Pitch	е	0.80 BSC			
Overall Height	А	-	-	1.20	
Molded Package Thickness	A2	0.95	1.00	1.05	
Standoff	A1	0.05	-	0.15	
Foot Length	L	0.45	0.60	0.75	
Footprint	L1	1.00 REF			
Foot Angle	φ	0°	3.5°	7°	
Overall Width	E	12.00 BSC			
Overall Length	D	12.00 BSC			
Molded Package Width	E1	10.00 BSC			
Molded Package Length	D1	10.00 BSC			
Lead Thickness	С	0.09	-	0.20	
Lead Width	b	0.30	0.37	0.45	
Mold Draft Angle Top	α	11°	12°	13°	
Mold Draft Angle Bottom	β	11°	12°	13°	

Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

2. Chamfers at corners are optional; size may vary.

3. Dimensions D1 and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed 0.25 mm per side.

4. Dimensioning and tolerancing per ASME Y14.5M.

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-076B

44-Lead Plastic Quad Flat, No Lead Package (ML) – 8x8 mm Body [QFN]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	MILLIMETERS			
Dimension	MIN	NOM	MAX	
Contact Pitch	E	0.65 BSC		
Optional Center Pad Width	W2			6.80
Optional Center Pad Length				6.80
Contact Pad Spacing	C1		8.00	
Contact Pad Spacing	C2		8.00	
Contact Pad Width (X44)	X1			0.35
Contact Pad Length (X44)	Y1			0.80
Distance Between Pads	G	0.25		

Notes:

1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing No. C04-2103A

NOTES:

Accession d Descinteres 140
Associated Registers
I/O Summary
LATB Register
PORTB Register 138
TRISB Register 138
PORTC
Associated Registers 142
I/O Sulfilling
LATC Register
PORIC Register 141
RC3/SCK/SCL Pin205
TRISC Register 141
PORTD
Associated Registers 145
I/O Summary144
LATD Register143
Parallel Slave Port (PSP) Function 143
PORTD Register 143
TRISD Register 143
Associated Pagistore 148
Associated Registers
1/0 Summary
LATE Register
PORIE Register146
PSP Mode Select (PSPMODE Bit)143
TRISE Register 146
Postscaler, WDT
Assignment (PSA Bit)153
Rate Select (T0PS2:T0PS0 Bits)153
Switching Between Timer0 and WDT153
Power-Managed Modes
and A/D Operation
and EUSART Operation
and Multiple Sleep Commands
Clock Transitions and Status Indicators 40
Effects on Clock Sources 37
Entering 39
Exiting Idle and Sleen Modes 45
Exiting fulle and Sleep Modes
by Interrupt 45
by Interrupt45
by Interrupt
by Interrupt 45 by Reset 45 by WDT Time-out 45 Without an Oscillator Start-up Delay 46 Idle Modes 43 PRI_IDLE 44 RC_IDLE 45 SEC_IDLE 44 Run Modes 40 PRI_RUN 40
by Interrupt 45 by Reset 45 by WDT Time-out 45 Without an Oscillator Start-up Delay 46 Idle Modes 43 PRI_IDLE 44 RC_IDLE 45 SEC_IDLE 44 Run Modes 40 PRI_RUN 40 RC_RUN 41
by Interrupt 45 by Reset 45 by WDT Time-out 45 Without an Oscillator Start-up Delay 46 Idle Modes 43 PRI_IDLE 44 RC_IDLE 45 SEC_IDLE 44 Run Modes 40 PRI_RUN 40 RC_RUN 41 SEC_RUN 40
by Interrupt 45 by Reset 45 by WDT Time-out 45 Without an Oscillator Start-up Delay 46 Idle Modes 43 PRI_IDLE 44 RC_IDLE 45 SEC_IDLE 44 Run Modes 40 PRI_RUN 40 RC_RUN 41 SEC_RUN 40 Selecting 39
by Interrupt 45 by Reset 45 by WDT Time-out 45 Without an Oscillator Start-up Delay 46 Idle Modes 43 PRI_IDLE 44 RC_IDLE 45 SEC_IDLE 44 Run Modes 40 PRI_RUN 40 RC_RUN 41 SEC_RUN 40 Selecting 39 Sleep Mode 43
by Interrupt 45 by Reset 45 by WDT Time-out 45 Without an Oscillator Start-up Delay 46 Idle Modes 43 PRI_IDLE 44 RC_IDLE 45 SEC_IDLE 44 Run Modes 40 PRI_RUN 40 RC_RUN 41 SEC_RUN 40 Selecting 39 Sleep Mode 43 Summary (table) 39
by Interrupt 45 by Reset 45 by WDT Time-out 45 Without an Oscillator Start-up Delay 46 Idle Modes 43 PRI_IDLE 44 RC_IDLE 45 SEC_IDLE 44 Run Modes 40 PRI_RUN 40 RC_RUN 41 SEC_RUN 40 Selecting 39 Sleep Mode 43 Summary (table) 39 Power-on Reset (POR) 49
by Interrupt 45 by Reset 45 by WDT Time-out 45 Without an Oscillator Start-up Delay 46 Idle Modes 43 PRI_IDLE 44 RC_IDLE 45 SEC_IDLE 44 Run Modes 40 PRI_RUN 40 SEC_RUN 40 Selecting 39 Sleep Mode 43 Summary (table) 39 Power-on Reset (POR) 49 Oscillator Start-up Timer (OST) 51
by Interrupt 45 by Reset 45 by WDT Time-out 45 Without an Oscillator Start-up Delay 46 Idle Modes 43 PRI_IDLE 44 RC_IDLE 45 SEC_IDLE 44 Run Modes 40 PRI_RUN 40 RC_RUN 41 SEC_RUN 40 Selecting 39 Sleep Mode 43 Summary (table) 39 Power-on Reset (POR) 49 Oscillator Start-up Timer (OST) 51
by Interrupt 45 by Reset 45 by WDT Time-out 45 Without an Oscillator Start-up Delay 46 Idle Modes 43 PRI_IDLE 44 RC_IDLE 45 SEC_IDLE 44 Run Modes 40 PRI_RUN 40 RC_RUN 41 SEC_RUN 40 Selecting 39 Sleep Mode 43 Summary (table) 39 Power-on Reset (POR) 49 Oscillator Start-up Timer (OST) 51 Power-up Timer (PWRT) 51 Time-out Sequence 51
by Interrupt 45 by Reset 45 by WDT Time-out 45 Without an Oscillator Start-up Delay 46 Idle Modes 43 PRI_IDLE 44 RC_IDLE 45 SEC_IDLE 44 Run Modes 40 PRI_RUN 40 RC_RUN 41 SEC_RUN 40 Selecting 39 Sleep Mode 43 Summary (table) 39 Power-on Reset (POR) 49 Oscillator Start-up Timer (OST) 51 Time-out Sequence 51 Power-up Delays 37
by Interrupt 45 by Reset 45 by WDT Time-out 45 Without an Oscillator Start-up Delay 46 Idle Modes 43 PRI_IDLE 44 RC_IDLE 45 SEC_IDLE 44 Run Modes 40 PRI_RUN 40 RC_RUN 41 SEC_RUN 40 Selecting 39 Sleep Mode 43 Summary (table) 39 Power-up Timer (PWRT) 51 Time-out Sequence 51 Power-up Delays 37
by Interrupt 45 by Reset 45 by WDT Time-out 45 Without an Oscillator Start-up Delay 46 Idle Modes 43 PRI_IDLE 44 RC_IDLE 45 SEC_IDLE 44 Run Modes 40 PRI_RUN 40 RC_RUN 41 SEC_RUN 40 Selecting 39 Sleep Mode 43 Summary (table) 39 Power-on Reset (POR) 49 Oscillator Start-up Timer (OST) 51 Power-up Timer (PWRT) 51 Time-out Sequence 51 Power-up Timer (PWRT) 37 Power-up Timer (PWRT) 37, 51 Prescaler 37
by Interrupt 45 by Reset 45 by WDT Time-out 45 Without an Oscillator Start-up Delay 46 Idle Modes 43 PRI_IDLE 44 RC_IDLE 45 SEC_IDLE 44 Run Modes 40 PRI_RUN 40 RC_RUN 41 SEC_RUN 40 Selecting 39 Sleep Mode 43 Summary (table) 39 Power-on Reset (POR) 49 Oscillator Start-up Timer (OST) 51 Power-up Dimer (PWRT) 51 Power-up Timer (PWRT) 37 Prescaler 1 Timer2 180
by Interrupt 45 by Reset 45 by WDT Time-out 45 Without an Oscillator Start-up Delay 46 Idle Modes 43 PRI_IDLE 44 RC_IDLE 45 SEC_IDLE 44 Run Modes 40 PRI_RUN 40 RC_RUN 41 SEC_RUN 40 Selecting 39 Sleep Mode 43 Summary (table) 39 Power-on Reset (POR) 49 Oscillator Start-up Timer (OST) 51 Power-up Delays 37 Power-up Timer (PWRT) 37, 51 Prescaler 180 Prescaler 169

Prescaler, Timer0	153
Assignment (PSA Bit)	153
Rate Select (T0PS2:T0PS0 Bits)	153
Switching Between Timer0 and WDT	153
Prescaler, Timer2	174
PRI_IDLE Mode	44
PRI_RUN Mode	40
Program Counter	68
PCL, PCH and PCU Registers	68
PCLATH and PCLATU Registers	68
Program Memory	
and the Extended Instruction Set	98
Code Protection	364
Instructions	72
Two-Word	72
Interrupt Vector	67
Look-up Tables	70
Map and Stack (diagram)	67
Reset Vector	67
Program Verification and Code Protection	363
Associated Registers	364
Programming, Device Instructions	367
PSP. See Parallel Slave Port.	
Pulse-Width Modulation. See PWM (CCP Module)	
and PWM (ECCP Module).	
PUSH	396
PUSH and POP Instructions	69
PUSHL	412
PWM (CCP Module)	173
Associated Registers	175
Auto-Shutdown	174
CCPR1H:CCPR1L Registers	173
Duty Cycle	173
Example Frequencies/Resolutions	174
Period	173
Setup for PWM Operation	174
TMR2 to PR2 Match	173
PWM (ECCP Module)	179
Associated Registers	190
Direction Change in Full-Bridge Output Mode	184
Duty Cycle	180
ECCPR1H:ECCPR1L Registers	179
Effects of a Reset	189
Enhanced PWM Auto-Shutdown	186
Example Frequencies/Resolutions	180
Full-Bridge Application Example	184
Full-Bridge Mode	183
Half-Bridge Mode	182
Half-Bridge Output Mode Applications Example	182
Output Configurations	180
Output Relationships (Active-High)	181
Output Relationships (Active-Low)	181
Period	179
Programmable Dead-Band Delay	186
Start-up Considerations	188
TMR2 to PR2 Match	179
0	
Q Clock 174	4, 180
R	
• •	

NOTES: