

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	40MHz
Connectivity	CANbus, I ² C, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, HLVD, POR, PWM, WDT
Number of I/O	25
Program Memory Size	16KB (8K x 16)
Program Memory Type	FLASH
EEPROM Size	256 x 8
RAM Size	768 x 8
Voltage - Supply (Vcc/Vdd)	4.2V ~ 5.5V
Data Converters	A/D 8x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	28-SOIC (0.295", 7.50mm Width)
Supplier Device Package	28-SOIC
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic18f2480t-i-so

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

TABLE 1-2: PIC18F2480/2580 PINOUT I/O DESCRIPTIONS

	Pin Nu	mber	Din	Buffor				
Pin Name	SPDIP, SOIC	QFN	Туре	Туре	Description			
MCLR/VPP/RE3 MCLR	1	26	I	ST	Master Clear (input) or programming voltage (input). Master Clear (Reset) input. This pin is an active-low Reset to the device.			
VPP			Р		Programming voltage input.			
RE3			I	ST	Digital input.			
OSC1/CLKI/RA7	9	6			Oscillator crystal or external clock input.			
OSC1			I	ST	Oscillator crystal input or external clock source input.			
					ST buffer when configured in RC mode; CMOS otherwise.			
CLKI			Ι	CMOS	External clock source input. Always associated with pin function OSC1 (See related OSC1/CLKL OSC2/CLKO pins)			
RA7			I/O	TTL	General purpose I/O pin.			
OSC2/CLKO/RA6	10	7			Oscillator crystal or clock output.			
OSC2			0	_	Oscillator crystal output. Connects to crystal or resonator in			
					Crystal Oscillator mode.			
CLKO			0	_	In RC mode, OSC2 pin outputs CLKO which has 1/4 the			
					frequency of OSC1 and denotes the instruction cycle rate.			
RA6			I/O	TTL	General purpose I/O pin.			
Legend: TTL = TTL	compati	ble inp	ut		CMOS = CMOS compatible input or output			

egenu. ompatible input

 $I^2C = I^2C^{TM}/SMBus$ input buffer

= Input = Power

Ρ

4.0 POWER-MANAGED MODES

PIC18F2480/2580/4480/4580 devices offer a total of seven operating modes for more efficient power management. These modes provide a variety of options for selective power conservation in applications where resources may be limited (i.e., battery-powered devices).

There are three categories of power-managed modes:

- Run modes
- Idle modes
- Sleep mode

These categories define which portions of the device are clocked, and sometimes, what speed. The Run and Idle modes may use any of the three available clock sources (primary, secondary or internal oscillator block); the Sleep mode does not use a clock source.

The power-managed modes include several power-saving features offered on previous PIC[®] devices. One is the clock switching feature, offered in other PIC18 devices, allowing the controller to use the Timer1 oscillator in place of the primary oscillator. Also included is the Sleep mode, offered by all PIC devices, where all device clocks are stopped.

4.1 Selecting Power-Managed Modes

Selecting a power-managed mode requires two decisions: if the CPU is to be clocked or not and the selection of a clock source. The IDLEN bit (OSCCON<7>) controls CPU clocking, while the SCS<1:0> bits (OSCCON<1:0>) select the clock source. The individual modes, bit settings, clock sources and affected modules are summarized in Table 4-1.

4.1.1 CLOCK SOURCES

The SCS<1:0> bits allow the selection of one of three clock sources for power-managed modes. They are:

- The primary clock, as defined by the FOSC<3:0> Configuration bits
- The secondary clock (the Timer1 oscillator)
- The internal oscillator block (for RC modes)

4.1.2 ENTERING POWER-MANAGED MODES

Switching from one power-managed mode to another begins by loading the OSCCON register. The SCS<1:0> bits select the clock source and determine which Run or Idle mode is to be used. Changing these bits causes an immediate switch to the new clock source, assuming that it is running. The switch may also be subject to clock transition delays. These are discussed in **Section 4.1.3 "Clock Transitions and Status Indicators"** and subsequent sections.

Entry to the power-managed Idle or Sleep modes is triggered by the execution of a SLEEP instruction. The actual mode that results depends on the status of the IDLEN bit.

Depending on the current mode and the mode being switched to, a change to a power-managed mode does not always require setting all of these bits. Many transitions may be done by changing the oscillator select bits, or changing the IDLEN bit, prior to issuing a SLEEP instruction. If the IDLEN bit is already configured correctly, it may only be necessary to perform a SLEEP instruction to switch to the desired mode.

			ODLO			
Mada	OSCC	ON<7,1:0>	Module Clocking			
wode	IDLEN ⁽¹⁾	SCS<1:0>	CPU	Peripherals		
Sleep	0	N/A	Off	Off	None – All clocks are disabled	
PRI_RUN	N/A	00	Clocked	Clocked	Primary – LP, XT, HS, HSPLL, RC, EC, INTRC ⁽²⁾ : This is the normal full-power execution mode.	
SEC_RUN	N/A	01	Clocked	Clocked	Secondary – Timer1 Oscillator	
RC_RUN	N/A	lx	Clocked	Clocked	Internal Oscillator Block ⁽²⁾	
PRI_IDLE	1	00	Off	Clocked	Primary – LP, XT, HS, HSPLL, RC, EC	
SEC_IDLE	1	01	Off	Clocked	Secondary – Timer1 Oscillator	
RC_IDLE	1	1x	Off	Clocked	Internal Oscillator Block ⁽²⁾	

TABLE 4-1: POWER-MANAGED MODES

Note 1: IDLEN reflects its value when the **SLEEP** instruction is executed.

2: Includes INTOSC and INTOSC postscaler, as well as the INTRC source.

If the IRCF bits and the INTSRC bit are all clear, the INTOSC output is not enabled and the IOFS bit will remain clear; there will be no indication of the current clock source. The INTRC source is providing the device clocks.

If the IRCF bits are changed from all clear (thus, enabling the INTOSC output) or if INTSRC is set, the IOFS bit becomes set after the INTOSC output becomes stable. Clocks to the device continue while the INTOSC source stabilizes after an interval of TIOBST.

If the IRCF bits were previously at a non-zero value or if INTSRC was set before setting SCS1 and the INTOSC source was already stable, the IOFS bit will remain set. On transitions from RC_RUN mode to PRI_RUN mode, the device continues to be clocked from the INTOSC multiplexer while the primary clock is started. When the primary clock becomes ready, a clock switch to the primary clock occurs (see Figure 4-4). When the clock switch is complete, the IOFS bit is cleared, the OSTS bit is set and the primary clock is providing the device clock. The IDLEN and SCS bits are not affected by the switch. The INTRC source will continue to run if either the WDT or the Fail-Safe Clock Monitor is enabled.

5.2 Master Clear Reset (MCLR)

The MCLR pin provides a method for triggering an external Reset of the device. A Reset is generated by holding the pin low. These devices have a noise filter in the MCLR Reset path which detects and ignores small pulses.

The MCLR pin is not driven low by any internal Resets, including the WDT.

In PIC18F2480/2580/4480/4580 devices, the MCLR input can be disabled with the MCLRE Configuration bit. When MCLR is disabled, the pin becomes a digital input. See **Section 11.5 "PORTE, TRISE and LATE Registers"** for more information.

5.3 Power-on Reset (POR)

A Power-on Reset pulse is generated on-chip whenever VDD rises above a certain threshold. This allows the device to start in the initialized state when VDD is adequate for operation.

To take advantage of the POR circuitry, tie the $\overline{\text{MCLR}}$ pin through a resistor (1 k Ω to 10 k Ω) to VDD. This will eliminate external RC components usually needed to create a Power-on Reset delay. A minimum rise rate for VDD is specified (parameter D004). For a slow rise time, see Figure 5-2.

When the device starts normal operation (i.e., exits the Reset condition), device operating parameters (voltage, frequency, temperature, etc.) must be met to ensure operation. If these conditions are not met, the device must be held in Reset until the operating conditions are met.

POR events are captured by the POR bit (RCON<1>). The state of the bit is set to '0' whenever a Power-on Reset occurs; it does not change for any other Reset event. POR is not reset to '1' by any hardware event. To capture multiple events, the user manually resets the bit to '1' in software following any Power-on Reset. FIGURE 5-2:

EXTERNAL POWER-ON RESET CIRCUIT (FOR SLOW VDD POWER-UP)

- Note 1: External Power-on Reset circuit is required only if the VDD power-up slope is too slow. The diode D helps discharge the capacitor quickly when VDD powers down.
 - 2: $R < 40 \text{ k}\Omega$ is recommended to make sure that the voltage drop across R does not violate the device's electrical specification.

	1									
Register	Applicable Devices		Power-on Reset, Brown-out Reset	MCLR Resets, WDT Reset, RESET Instruction, Stack Resets	Wake-up via WDT or Interrupt					
BSR	2480	2580	4480	4580	0000	0000	uuuu			
INDF2	2480	2580	4480	4580	N/A	N/A	N/A			
POSTINC2	2480	2580	4480	4580	N/A	N/A	N/A			
POSTDEC2	2480	2580	4480	4580	N/A	N/A	N/A			
PREINC2	2480	2580	4480	4580	N/A	N/A	N/A			
PLUSW2	2480	2580	4480	4580	N/A	N/A	N/A			
FSR2H	2480	2580	4480	4580	0000	0000	uuuu			
FSR2L	2480	2580	4480	4580	XXXX XXXX	սսսս սսսս	սսսս սսսս			
STATUS	2480	2580	4480	4580	x xxxx	u uuuu	u uuuu			
TMR0H	2480	2580	4480	4580	0000 0000	0000 0000	սսսս սսսս			
TMR0L	2480	2580	4480	4580	XXXX XXXX	นนนน นนนน	սսսս սսսս			
T0CON	2480	2580	4480	4580	1111 1111	1111 1111	นนนน นนนน			
OSCCON	2480	2580	4480	4580	0100 q000	0100 00q0	uuuu uuqu			
HLVDCON	2480	2580	4480	4580	0-00 0101	0-00 0101	0-uu uuuu			
WDTCON	2480	2580	4480	4580	0	0	u			
RCON ⁽⁴⁾	2480	2580	4480	4580	0q-1 11q0	0q-q qquu	uq-u qquu			
TMR1H	2480	2580	4480	4580	XXXX XXXX	սսսս սսսս	սսսս սսսս			
TMR1L	2480	2580	4480	4580	XXXX XXXX	นนนน นนนน	սսսս սսսս			
T1CON	2480	2580	4480	4580	0000 0000	u0uu uuuu	սսսս սսսս			
TMR2	2480	2580	4480	4580	0000 0000	0000 0000	սսսս սսսս			
PR2	2480	2580	4480	4580	1111 1111	1111 1111	1111 1111			
T2CON	2480	2580	4480	4580	-000 0000	-000 0000	-uuu uuuu			
SSPBUF	2480	2580	4480	4580	XXXX XXXX	սսսս սսսս	սսսս սսսս			
SSPADD	2480	2580	4480	4580	0000 0000	0000 0000	սսսս սսսս			
SSPSTAT	2480	2580	4480	4580	0000 0000	0000 0000	սսսս սսսս			
SSPCON1	2480	2580	4480	4580	0000 0000	0000 0000	นนนน นนนน			
SSPCON2	2480	2580	4480	4580	0000 0000	0000 0000	นนนน นนนน			
ADRESH	2480	2580	4480	4580	XXXX XXXX	นนนน นนนน	սսսս սսսս			
ADRESL	2480	2580	4480	4580	XXXX XXXX	นนนน นนนน	นนนน นนนน			
ADCON0	2480	2580	4480	4580	00 0000	00 0000	uu uuuu			
ADCON1	2480	2580	4480	4580	00 0qqq	00 0qqq	uu uuuu			

TABLE 5-4: INITIALIZATION CONDITIONS FOR ALL REGISTERS (CONTINUED)

Legend: u = unchanged, x = unknown, - = unimplemented bit, read as '0', q = value depends on condition. Shaded cells indicate conditions do not apply for the designated device.

Note 1: One or more bits in the INTCONx or PIRx registers will be affected (to cause wake-up).

2: When the wake-up is due to an interrupt and the GIEL or GIEH bit is set, the PC is loaded with the interrupt vector (0008h or 0018h).

3: When the wake-up is due to an interrupt and the GIEL or GIEH bit is set, the TOSU, TOSH and TOSL are updated with the current value of the PC. The STKPTR is modified to point to the next location in the hardware stack.

4: See Table 5-3 for Reset value for specific condition.

5: Bits 6 and 7 of PORTA, LATA and TRISA are enabled, depending on the oscillator mode selected. When not enabled as PORTA pins, they are disabled and read '0'.

6: This register reads all '0's until ECAN[™] technology is set up in Mode 1 or Mode 2.

File Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Details on Page:
PORTE ⁽³⁾	_	_	—	—	RE3 ⁽⁵⁾	RE2 ⁽³⁾	RE1 ⁽³⁾	RE0 ⁽³⁾	xxxx	58, 150
PORTD ⁽³⁾	PORTD Data I	Direction Regis	ster						xxxx xxxx	58, 143
PORTC	PORTC Data I	Direction Regis	ster						XXXX XXXX	58, 141
PORTB	PORTB Data	Direction Regis	ster						XXXX XXXX	58, 138
PORTA	RA7 ⁽⁶⁾	RA6 ⁽⁶⁾	PORTA Data	Direction Reg	jister				xx00 0000	58, 135
ECANCON	MDSEL1	MDSEL0	FIFOWM	EWIN4	EWIN3	EWIN2	EWIN1	EWIN0	0001 000	58, 286
TXERRCNT	TEC7	TEC6	TEC5	TEC4	TEC3	TEC2	TEC1	TEC0	0000 0000	58, 291
RXERRCNT	REC7	REC6	REC5	REC4	REC3	REC2	REC1	REC0	0000 0000	58, 299
COMSTAT Mode 0	RXB0OVFL	RXB10VFL	ТХВО	TXBP	RXBP	TXWARN	RXWARN	EWARN	0000 0000	58, 287
COMSTAT Mode 1	-	RXBnOVFL	ТХВО	TXBP	RXBP	TXWARN	RXWARN	EWARN	-000 0000	58, 287
COMSTAT Mode 2	FIFOEMPTY	RXBnOVFL	ТХВО	TXBP	RXBP	TXWARN	RXWARN	EWARN	0000 0000	58, 287
CIOCON	_	_	ENDRHI	CANCAP	_	-	—	_	00	58, 320
BRGCON3	WAKDIS	WAKFIL	—	—	_	SEG2PH2	SEG2PH1	SEG2PH0	00000	59, 319
BRGCON2	SEG2PHTS	SAM	SEG1PH2	SEG1PH1	SEG1PH0	PRSEG2	PRSEG1	PRSEG0	0000 0000	59, 318
BRGCON1	SJW1	SJW0	BRP5	BRP4	BRP3	BRP2	BRP1	BRP0	0000 0000	59, 317
CANCON Mode 0	REQOP2	REQOP1	REQOP0	ABAT	WIN2 ⁽⁷⁾	WIN1 ⁽⁷⁾	WIN0 ⁽⁷⁾	(7)	1000 000-	59, 282
CANCON Mode 1	REQOP2	REQOP1	REQOP0	ABAT	(7)	(7)	(7)	(7)	1000	59, 282
CANCON Mode 2	REQOP2	REQOP1	REQOP0	ABAT	FP3 ⁽⁷⁾	FP2 ⁽⁷⁾	FP1 ⁽⁷⁾	FP0 ⁽⁷⁾	1000 0000	59, 282
CANSTAT Mode 0	OPMODE2	OPMODE1	OPMODE0	(7)	ICODE3 ⁽⁷⁾	ICODE2 ⁽⁷⁾	ICODE1 ⁽⁷⁾	(7)	000- 0000	59, 283
CANSTAT Modes 1, 2	OPMODE2	OPMODE1	OPMODE0	EICODE4 ⁽⁷⁾	EICODE3 ⁽⁷⁾	EICODE2 ⁽⁷⁾	EICODE1 ⁽⁷⁾	EICODE0 ⁽⁷⁾	0000 0000	59, 283
RXB0D7	RXB0D77	RXB0D76	RXB0D75	RXB0D74	RXB0D73	RXB0D72	RXB0D71	RXB0D70	XXXX XXXX	59, 298
RXB0D6	RXB0D67	RXB0D66	RXB0D65	RXB0D64	RXB0D63	RXB0D62	RXB0D61	RXB0D60	xxxx xxxx	59, 298
RXB0D5	RXB0D57	RXB0D56	RXB0D55	RXB0D54	RXB0D53	RXB0D52	RXB0D51	RXB0D50	xxxx xxxx	59, 298
RXB0D4	RXB0D47	RXB0D46	RXB0D45	RXB0D44	RXB0D43	RXB0D42	RXB0D41	RXB0D40	xxxx xxxx	59, 298
RXB0D3	RXB0D37	RXB0D36	RXB0D35	RXB0D34	RXB0D33	RXB0D32	RXB0D31	RXB0D30	XXXX XXXX	59, 298
RXB0D2	RXB0D27	RXB0D26	RXB0D25	RXB0D24	RXB0D23	RXB0D22	RXB0D21	RXB0D20	XXXX XXXX	59, 298
RXB0D1	RXB0D17	RXB0D16	RXB0D15	RXB0D14	RXB0D13	RXB0D12	RXB0D11	RXB0D10	XXXX XXXX	59, 298
RXB0D0	RXB0D07	RXB0D06	RXB0D05	RXB0D04	RXB0D03	RXB0D02	RXB0D01	RXB0D00	**** ****	59, 298
RXB0DLC	—	RXRTR	RB1	RB0	DLC3	DLC2	DLC1	DLC0	-xxx xxxx	59, 298
RXB0EIDL	EID7	EID6	EID5	EID4	EID3	EID2	EID1	EID0	XXXX XXXX	59, 297
RXB0EIDH	EID15	EID14	EID13	EID12	EID11	EID10	EID9	EID8	**** ****	59, 297
RXB0SIDL	SID2	SID1	SID0	SRR	EXID	_	EID17	EID16	xxxx x-xx	59, 297
RXB0SIDH	SID10	SID9	SID8	SID7	SID6	SID5	SID4	SID3	****	59, 296

TABLE 6-2:REGISTER FILE SUMMARY (PIC18F2480/2580/4480/4580) (CONTINUED)

Legend: x = unknown, u = unchanged, - = unimplemented, q = value depends on condition

Note 1: Bit 21 of the PC is only available in Test mode and Serial Programming modes.

The SBOREN bit is only available when CONFIG2L<1:0> = 01; otherwise, it is disabled and reads as '0'. See Section 5.4 "Brown-out Reset (BOR)".
 These registers and/or bits are not implemented on PIC18F2X80 devices and are read as '0'. Reset values are shown for PIC18F4X80 devices; individual unimplemented bits should be interpreted as '-'.

4: The PLLEN bit is only available in specific oscillator configuration; otherwise, it is disabled and reads as '0'. See Section 3.6.4 "PLL in INTOSC Modes".

5: The RE3 bit is only available when Master Clear Reset is disabled (CONFIG3H<7> = 0); otherwise, RE3 reads as '0'. This bit is read-only.

6: RA6/RA7 and their associated latch and direction bits are individually configured as port pins based on various primary oscillator modes. When disabled, these bits read as '0'.

7: CAN bits have multiple functions depending on the selected mode of the CAN module.

8: This register reads all '0's until the ECAN™ technology is set up in Mode 1 or Mode 2.

9: These registers are available on PIC18F4X80 devices only.

NOTES:

11.6 Parallel Slave Port

Note:	The Parallel Slave Port is only available on
	PIC18F4X80 devices.

In addition to its function as a general I/O port, PORTD can also operate as an 8-bit wide Parallel Slave Port (PSP) or microprocessor port. PSP operation is controlled by the 4 upper bits of the TRISE register (Register 11-1). Setting control bit, PSPMODE (TRISE<4>), enables PSP operation, as long as the Enhanced CCP module is not operating in dual output or quad output PWM mode. In Slave mode, the port is asynchronously readable and writable by the external world.

The PSP can directly interface to an 8-bit microprocessor data bus. The external microprocessor can read or write the PORTD latch as an 8-bit latch. Setting the control bit PSPMODE enables the PORTE I/O pins to become control inputs for the microprocessor port. When set, port pin RE0 is the RD input, RE1 is the WR input and RE2 is the CS (Chip Select) input. For this functionality, the corresponding data direction bits of the TRISE register (TRISE<2:0>) must be configured as inputs (set). The A/D port Configuration bits, PFCG<3:0> (ADCON1<3:0>), must also be set to '1010'.

A write to the PSP occurs when both the \overline{CS} and \overline{WR} lines are first detected low and ends when either are detected high. The PSPIF and IBF flag bits are both set when the write ends.

A read from the PSP occurs when both the \overline{CS} and \overline{RD} lines are first detected low. The data in PORTD is read out and the OBF bit is set. If the user writes new data to PORTD to set OBF, the data is immediately read out; however, the OBF bit is not set.

When either the \overline{CS} or \overline{RD} lines are detected high, the PORTD pins return to the input state and the PSPIF bit is set. User applications should wait for PSPIF to be set before servicing the PSP; when this happens, the IBF and OBF bits can be polled and the appropriate action taken. The timing for the control signals in Write and Read modes is shown in Figure 11-3 and Figure 11-4, respectively.

FIGURE 11-2: PORTD AND PORTE BLOCK DIAGRAM (PARALLEL SLAVE PORT)

EXAMPLE 1	3-1:	IMPLEMENTING	J A REAL-TIME CLOCK USING A TIMER1 INTERRUPT SERVICE
RTCinit			
	MOVLW	80h	; Preload TMR1 register pair
	MOVWF	TMR1H	; for 1 second overflow
	CLRF	TMR1L	
	MOVLW	b'00001111'	; Configure for external clock,
	MOVWF	T1OSC	; Asynchronous operation, external oscillator
	CLRF	secs	; Initialize timekeeping registers
	CLRF	mins	;
	MOVLW	.12	
	MOVWF	hours	
	BSF	PIE1, TMR1IE	; Enable Timer1 interrupt
	RETURN	1	
RTCisr			
	BSF	TMR1H, 7	; Preload for 1 sec overflow
	BCF	PIR1, TMR1IF	; Clear interrupt flag
	INCF	secs, F	; Increment seconds
	MOVLW	.59	; 60 seconds elapsed?
	CPFSGI	' secs	
	RETURN	1	; No, done
	CLRF	secs	; Clear seconds
	INCE	mins, F	; Increment minutes
	MOVLW	.59	; 60 minutes elapsed?
	CPESGI	, mins	· No dono
	CIDE	mina	, No, done
	INCE	hours F	· Increment hours
	MOVIW	23	· 24 hours elansed?
	CPESGI	' hours	, 24 hours crupsed.
	RETURN	I	: No. done
	MOVLW	.01	; Reset hours to 1
	MOVWF	hours	,
	RETURN	1	; Done
1			

TABLE 13-2: REGISTERS ASSOCIATED WITH TIMER1 AS A TIMER/COUNTER

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Reset Values on Page:
INTCON	GIE/GIEH	PEIE/GIEL	TMR0IE	INT0IE	RBIE	TMR0IF	INT0IF	RBIF	55
PIR1	PSPIF ⁽¹⁾	ADIF	RCIF	TXIF	SSPIF	CCP1IF	TMR2IF	TMR1IF	58
PIE1	PSPIE ⁽¹⁾	ADIE	RCIE	TXIE	SSPIE	CCP1IE	TMR2IE	TMR1IE	58
IPR1	PSPIP ⁽¹⁾	ADIP	RCIP	TXIP	SSPIP	CCP1IP	TMR2IP	TMR1IP	58
TMR1L	Timer1 Reg	gister Low By	/te						56
TMR1H	TImer1 Register High Byte								56
T1CON	RD16	T1RUN	T1CKPS1	T1CKPS0	T1OSCEN	T1SYNC	TMR1CS	TMR10N	56

Legend: — = unimplemented, read as '0'. Shaded cells are not used by the Timer1 module.

Note 1: These bits are unimplemented on PIC18F2X80 devices; always maintain these bits clear.

ECCP1CON	SIGNAL	0 Duty	F	PR2 + 1
<7:6>		Cycle	Period	- -
0 (Single Output)	P1A Modulated			1 1
	P1A Modulated			1 1 1
0 (Half-Bridge)	P1B Modulated	;		
	P1A Active	_ :		
(Full-Bridge,	P1B Inactive			
	P1C Inactive	; ;		i I I
	P1D Modulated		1 	1 1
	P1A Inactive	;		
1 (Full-Bridge,	P1B Modulated	i	 	
Reverse)	P1C Active	;		1 1 1
	P1D Inactive		- 	1 1 1

FIGURE 17-2: PWM OUTPUT RELATIONSHIPS (ACTIVE-HIGH STATE)

FIGURE 17-3: PWM OUTPUT RELATIONSHIPS (ACTIVE-LOW STATE)

	ECCP1CON	SIGNAL	0 Duty	PR2 + 1
	<7:0>		- Period -	
00	(Single Output)	P1A Modulated	=	i i
		P1A Modulated		
10	(Half-Bridge)	P1B Modulated	Delay(") Delay(")	ŕ
		P1A Active		
01	(Full-Bridge,	P1B Inactive		
01	Forward)	P1C Inactive		
		P1D Modulated	ii	
		P1A Inactive		1 1
11	(Full-Bridge,	P1B Modulated		i i
	Reverse)	P1C Active	— ¦ ;	1 1
		P1D Inactive		

Relationships:

• Period = 4 * Tosc * (PR2 + 1) * (TMR2 Prescale Value)

• Duty Cycle = Tosc * (ECCPR1L<7:0>:ECCP1CON<5:4>) * (TMR2 Prescale Value)

• Delay = 4 * Tosc * (ECCP1DEL<6:0>)

Note 1: Dead-band delay is programmed using the ECCP1DEL register (Section 17.4.6 "Programmable Dead-Band Delay").

FIGURE 17-9: PWM DIRECTION CHANGE AT NEAR 100% DUTY CYCLE

18.4.17.2 Bus Collision During a Repeated Start Condition

During a Repeated Start condition, a bus collision occurs if:

- a) A low level is sampled on SDA when SCL goes from a low level to a high level.
- b) SCL goes low before SDA is asserted low, indicating that another master is attempting to transmit a data '1'.

When the user deasserts SDA and the pin is allowed to float high, the BRG is loaded with SSPADD<6:0> and counts down to 0. The SCL pin is then deasserted and when sampled high, the SDA pin is sampled.

If SDA is low, a bus collision has occurred (i.e., another master is attempting to transmit a data '0', see Figure 18-29). If SDA is sampled high, the BRG is reloaded and begins counting. If SDA goes from high-to-low before the BRG times out, no bus collision occurs because no two masters can assert SDA at exactly the same time.

If SCL goes from high-to-low before the BRG times out, and SDA has not already been asserted, a bus collision occurs. In this case, another master is attempting to transmit a data '1' during the Repeated Start condition, see Figure 18-30.

If, at the end of the BRG time-out, both SCL and SDA are still high, the SDA pin is driven low and the BRG is reloaded and begins counting. At the end of the count regardless of the status of the SCL pin, the SCL pin is driven low and the Repeated Start condition is complete.

FIGURE 18-29: BUS COLLISION DURING A REPEATED START CONDITION (CASE 1)

FIGURE 18-30: BUS COLLISION DURING REPEATED START CONDITION (CASE 2)

EXAMPLE 24-2: WIN AND ICODE BITS USAGE IN INTERRUPT SERVICE ROUTINE TO ACCESS TX/RX BUFFERS (CONTINUED)

ErrorInter	rupt	
BCF	PIR3, ERRIF	; Clear the interrupt flag
		; Handle error.
RETFIE		
TXB2Interr	upt	
BCF	PIR3, TXB2IF	; Clear the interrupt flag
GOTO	AccessBuffer	
TXB1Interr	upt	
BCF	PIR3, TXB1IF	; Clear the interrupt flag
GOTO	AccessBuffer	
TXB0Interr	upt	
BCF	PIR3, TXBOIF	; Clear the interrupt flag
GOTO	AccessBuffer	
RXBlInterr	upt	
BCF	PIR3, RXB1IF	; Clear the interrupt flag
GOTO	Accessbuffer	
RXB0Interr	upt	
BCF	PIR3, RXB0IF	; Clear the interrupt flag
GOTO	AccessBuffer	
AccessBuff	er	; This is either TX or RX interrupt
; Copy	CANSTAT.ICODE bits to CANC	CON.WIN bits
MOVF	TempCANCON, W	; Clear CANCON.WIN bits before copying
		; new ones.
ANDLW	B'11110001'	; Use previously saved CANCON value to
		; make sure same value.
MOVWF	TempCANCON	; Copy masked value back to TempCANCON
MOVF	TempCANSTAT, W	; Retrieve ICODE bits
ANDLW	B'00001110'	; Use previously saved CANSTAT value
		; to make sure same value.
IORWF	TempCANCON	; Copy ICODE bits to WIN bits.
MOVFF	TempCANCON, CANCON	; Copy the result to actual CANCON
; Acce	ss current buffer…	
; User	code	
; Rest	ore CANCON.WIN bits	
MOVF	CANCON, W	; Preserve current non WIN bits
ANDLW	B'11110001'	
IORWF	TempCANCON	; Restore original WIN bits
; Do n	ot need to restore CANSTAT	- it is read-only register.
; Retu	rn from interrupt or check	for another module interrupt source

24.6.3 TRANSMIT PRIORITY

Transmit priority is a prioritization within the PIC18F2480/2580/4480/4580 devices of the pending transmittable messages. This is independent from and not related to any prioritization implicit in the message arbitration scheme built into the CAN protocol. Prior to sending the Start-Of-Frame (SOF), the priority of all buffers that are queued for transmission is compared.

The transmit buffer with the highest priority will be sent first. If two buffers have the same priority setting, the buffer with the highest buffer number will be sent first. There are four levels of transmit priority. If the TXP bits for a particular message buffer are set to '11', that buffer has the highest possible priority. If the TXP bits for a particular message buffer are set to '00', that buffer has the lowest possible priority.

Bit Set f

BSF

BRA	A Contraction of the second seco	Uncondit	Unconditional Branch					
Synta	ax:	BRA n	BRA n					
Oper	ands:	-1024 ≤ n ≤	1023					
Oper	ation:	(PC) + 2 + 2	$2n \rightarrow PC$					
Statu	is Affected:	None						
Enco	oding:	1101	0nnn	nnnn	nnnn			
Desc	cription:	Add the 2's the PC. Sin incremente instruction, PC + 2 + 2r two-cycle ir	complem ace the PC d to fetch the new a n. This ins nstruction.	ent numb will have the next address w truction is	per '2n' to e vill be s a			
Word	ds:	1	1					
Cycle	es:	2						
QC	ycle Activity:							
	Q1	Q2	Q3		Q4			
	Decode	Read literal 'n'	Proces Data	s Wri	te to PC			
	No	No	No		No			
	operation	operation	operatio	on op	eration			
Exan	nple:	HERE	BRA J	ump				
	Before Instruc PC	tion = ad	dress (H	ERE)				
	After Instruction PC	on = ad	dress (J	ump)				

= address (Jump)

Syntax:	BSF f, b	{,a}		
Operands:	0 ≤ f ≤ 255 0 ≤ b ≤ 7 a ∈ [0,1]			
Operation:	$1 \rightarrow f \le b >$			
Status Affected:	None			
Encoding:	1000	bbba	ffff	ffff
Description:	Bit 'b' in re	Bit 'b' in register 'f' is set.		
	If 'a' is '0', the Access Bank is selected. If 'a' is '1', the BSR is used to select the GPR bank.			
	If 'a' is '0' a set is enab in Indexed mode when Section 26 Bit-Oriente Literal Off	Ind the ei led, this i Literal O never f ≤ 5.2.3 "By ed Instru set Mode	xtended in nstruction ffset Addre 95 (5Fh). te-Oriente ctions in e" for deta	struction operates essing See ed and Indexed ils.
Words:	1			
Cycles:	1			
Q Cycle Activity:				
Q1	Q2	Q3	5	Q4
Decode	Read register 'f'	Proce Data	ess a reg	Write gister 'f'
Example:	BSF 1	FLAG_RE	G, 7, 1	

FLAG_REG = 0Ah After Instruction FLAG_REG = 8Ah

Move W to f MOVWF f {,a}

 $0 \leq f \leq 255$ $a \in [0,1]$

 $(\mathsf{W}) \to \mathsf{f}$

MOVWF

Syntax: Operands:

Operation:

W REG

MO\	/LW	Move Literal to W				
Synta	ax:	MOVLW	MOVLW k			
Oper	ands:	$0 \le k \le 25$	$0 \le k \le 255$			
Oper	ation:	$k \to W$	$k \rightarrow W$			
Statu	s Affected:	None				
Enco	ding:	0000	1110	kkk	k	kkkk
Desc	ription:	The eight-bit literal 'k' is loaded into W.			into W.	
Word	s:	1				
Cycle	es:	1				
QC	ycle Activity:					
	Q1	Q2	Q3	3		Q4
	Decode	Read literal 'k'	Proce Data	ess a	Write	e to W
Exan	<u>nple:</u>	MOVLW	5Ah			

After Instruction W

=

5Ah

Statu	is Affected:	None				
Enco	oding:	0110	111a	ffff	ffff	
Desc	ription:	Move data from W to register 'f'. Location 'f' can be anywhere in the 256-byte bank. If 'a' is '0', the Access Bank is selected. If 'a' is '1', the BSR is used to select the GPR bank. If 'a' is '0' and the extended instruction set is enabled, this instruction operates in Indexed Literal Offset Addressing				
		mode whenever f ≤ 95 (5Fh). See Section 26.2.3 "Byte-Oriented and Bit-Oriented Instructions in Indexed Literal Offset Mode" for details.				
Word	ls:	1				
Cycle	es:	1				
QC	ycle Activity:					
	Q1	Q2	Q3		Q4	
	Decode	Read register 'f'	Proce Data	ss a re	Write gister 'f'	
<u>Exan</u>	<u>nple:</u>	MOVWF	REG, 0			
	Before Instruc W REG After Instructio	tion = 4Fh = FFh				

4Fh 4Fh

=

CAL	.LW	Subroutine Call Using WREG			
Synta	ax:	CALLW			
Oper	ands:	None			
Oper	ation:	$(PC + 2) \rightarrow TOS,$ $(W) \rightarrow PCL,$ $(PCLATH) \rightarrow PCH,$ $(PCLATU) \rightarrow PCU$			
Statu	is Affected:	None			
Enco	oding:	0000	0000 00	01 0100	
Desc	ription	First, the return address (PC + 2) is pushed onto the return stack. Next, th contents of W are written to PCL; the existing value is discarded. Then, the contents of PCLATH and PCLATU and latched into PCH and PCU, respectively. The second cycle is executed as a NOP instruction while th new next instruction is fetched. Unlike CALL, there is no option to			
Word	ls:	1			
Cvcle	es:	2			
QC	vcle Activity:				
	Q1	Q2	Q3	Q4	
	Decode	Read WREG	Push PC to stack	No operation	
	No	No	No	No	
<u>Exar</u>	operation	Operation HERE	CALLW	operation	
	PC PCLATH PCLATH PCLATU W After Instructic PC TOS PCLATH	= address = 10h = 00h = 06h on = 001006 = address = 10h	 6 (HERE) h 6 (HERE + 2))	

MOVSF	Move Inc	dexed to	f
Syntax:	MOVSF	[z _s], f _d	
Operands:	$\begin{array}{l} 0 \leq z_s \leq 127 \\ 0 \leq f_d \leq 4095 \end{array}$		
Operation:	$((FSR2) + z_s) \rightarrow f_d$		
Status Affected:	None		
Encoding:			
1st word (source)	1110	1011	
2nd word (destin.)	1111	ffff	
Description:	otion: The contents of the moved to destina actual address of determined by ad		sc n i e : ng

None				
1110 1111	1011 ffff	Ozzz ffff	zzzz _s ffff _d	
The contents of the source register are moved to destination register ' f_d '. The				

ddress of the source register is ned by adding the 7-bit literal offset 'z_s' in the first word to the value of FSR2. The address of the destination register is specified by the 12-bit literal f_d in the second word. Both addresses can be anywhere in the 4096-byte data space (000h to FFFh).

The MOVSF instruction cannot use the PCL, TOSU, TOSH or TOSL as the destination register.

If the resultant source address points to an indirect addressing register, the value returned will be 00h.

Q Cycle Activity:

Words:

Cycles:

Q1	Q2	Q3	Q4
Decode	Determine	Determine	Read
Decode	No operation No dummy read	No operation	Write register 'f' (dest)

Example: MOVSF [05h], REG2

2

2

Before Instruction		
FSR2	=	80h
Contents of 85h REG2	= =	33h 11h
After Instruction		
FSR2	=	80h
Contents	_	22h
DEC2	-	33h
ILLO2	_	5511

PCLATU =

_

w

00h

06h

27.7 MPLAB SIM Software Simulator

The MPLAB SIM Software Simulator allows code development in a PC-hosted environment by simulating the PIC MCUs and dsPIC[®] DSCs on an instruction level. On any given instruction, the data areas can be examined or modified and stimuli can be applied from a comprehensive stimulus controller. Registers can be logged to files for further run-time analysis. The trace buffer and logic analyzer display extend the power of the simulator to record and track program execution, actions on I/O, most peripherals and internal registers.

The MPLAB SIM Software Simulator fully supports symbolic debugging using the MPLAB C Compilers, and the MPASM and MPLAB Assemblers. The software simulator offers the flexibility to develop and debug code outside of the hardware laboratory environment, making it an excellent, economical software development tool.

27.8 MPLAB REAL ICE In-Circuit Emulator System

MPLAB REAL ICE In-Circuit Emulator System is Microchip's next generation high-speed emulator for Microchip Flash DSC and MCU devices. It debugs and programs PIC[®] Flash MCUs and dsPIC[®] Flash DSCs with the easy-to-use, powerful graphical user interface of the MPLAB Integrated Development Environment (IDE), included with each kit.

The emulator is connected to the design engineer's PC using a high-speed USB 2.0 interface and is connected to the target with either a connector compatible with incircuit debugger systems (RJ11) or with the new high-speed, noise tolerant, Low-Voltage Differential Signal (LVDS) interconnection (CAT5).

The emulator is field upgradable through future firmware downloads in MPLAB IDE. In upcoming releases of MPLAB IDE, new devices will be supported, and new features will be added. MPLAB REAL ICE offers significant advantages over competitive emulators including low-cost, full-speed emulation, run-time variable watches, trace analysis, complex breakpoints, a ruggedized probe interface and long (up to three meters) interconnection cables.

27.9 MPLAB ICD 3 In-Circuit Debugger System

MPLAB ICD 3 In-Circuit Debugger System is Microchip's most cost effective high-speed hardware debugger/programmer for Microchip Flash Digital Signal Controller (DSC) and microcontroller (MCU) devices. It debugs and programs PIC[®] Flash microcontrollers and dsPIC[®] DSCs with the powerful, yet easyto-use graphical user interface of MPLAB Integrated Development Environment (IDE).

The MPLAB ICD 3 In-Circuit Debugger probe is connected to the design engineer's PC using a high-speed USB 2.0 interface and is connected to the target with a connector compatible with the MPLAB ICD 2 or MPLAB REAL ICE systems (RJ-11). MPLAB ICD 3 supports all MPLAB ICD 2 headers.

27.10 PICkit 3 In-Circuit Debugger/ Programmer and PICkit 3 Debug Express

The MPLAB PICkit 3 allows debugging and programming of PIC[®] and dsPIC[®] Flash microcontrollers at a most affordable price point using the powerful graphical user interface of the MPLAB Integrated Development Environment (IDE). The MPLAB PICkit 3 is connected to the design engineer's PC using a full speed USB interface and can be connected to the target via an Microchip debug (RJ-11) connector (compatible with MPLAB ICD 3 and MPLAB REAL ICE). The connector uses two device I/O pins and the reset line to implement in-circuit debugging and In-Circuit Serial Programming[™].

The PICkit 3 Debug Express include the PICkit 3, demo board and microcontroller, hookup cables and CDROM with user's guide, lessons, tutorial, compiler and MPLAB IDE software.

28.0 ELECTRICAL CHARACTERISTICS

Absolute Maximum Ratings (†)

Ambient temperature under bias	40°C to +125°C
Storage temperature	65°C to +150°C
Voltage on any pin with respect to Vss (except VDD and MCLR)	0.3V to (VDD + 0.3V)
Voltage on VDD with respect to Vss	0.3V to +7.5V
Voltage on MCLR with respect to Vss (Note 2)	0V to +13.25V
Total power dissipation (Note 1)	1.0W
Maximum current out of Vss pin	300 mA
Maximum current into VDD pin	250 mA
Input clamp current, Iık (Vı < 0 or Vı > VDD)	±20 mA
Output clamp current, loк (Vo < 0 or Vo > VDD)	±20 mA
Maximum output current sunk by any I/O pin	25 mA
Maximum output current sourced by any I/O pin	25 mA
Maximum current sunk by all ports	200 mA
Maximum current sourced by all ports	200 mA

Note 1: Power dissipation is calculated as follows:

- $\mathsf{Pdis} = \mathsf{VDD} \times \{\mathsf{IDD} \sum \mathsf{IOH}\} + \sum \{(\mathsf{VDD} \mathsf{VOH}) \times \mathsf{IOH}\} + \sum (\mathsf{VOL} \times \mathsf{IOL})$
- **2:** Voltage spikes below Vss at the MCLR/VPP pin, inducing currents greater than 80 mA, may cause latch-up. Thus, a series resistor of 50-100Ω should be used when applying a "low" level to the MCLR/VPP/RE3 pin, rather than pulling this pin directly to Vss.

† NOTICE: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at those or any other conditions above those indicated in the operation listings of this specification is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability.

28.4 AC (Timing) Characteristics

28.4.1 TIMING PARAMETER SYMBOLOGY

The timing parameter symbols have been created using one of the following formats:

1. TppS2ppS		3. Tcc:st	(I ² C specifications only)
2. TppS		4. Ts	(I ² C specifications only)
Т			
F	Frequency	Т	Time
Lowercase le	tters (pp) and their meanings:		
рр			
сс	CCP1	osc	OSC1
ck	CLKO	rd	RD
cs	CS	rw	RD or WR
di	SDI	sc	SCK
do	SDO	SS	SS
dt	Data in	tO	TOCKI
io	I/O port	t1	T13CKI
mc	MCLR	wr	WR
Uppercase le	tters and their meanings:		
S			
F	Fall	Р	Period
н	High	R	Rise
1	Invalid (High-impedance)	V	Valid
L	Low	Z	High-impedance
I ² C only			
AA	output access	High	High
BUF	Bus free	Low	Low
TCC:ST (I ² C s	pecifications only)		
CC			
HD	Hold	SU	Setup
ST			
DAT	DATA input hold	STO	Stop condition
STA	Start condition		