

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	25MHz
Connectivity	CANbus, I ² C, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, HLVD, POR, PWM, WDT
Number of I/O	25
Program Memory Size	32KB (16K x 16)
Program Memory Type	FLASH
EEPROM Size	256 x 8
RAM Size	1.5K x 8
Voltage - Supply (Vcc/Vdd)	4.2V ~ 5.5V
Data Converters	A/D 8x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	28-VQFN Exposed Pad
Supplier Device Package	28-QFN (6x6)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic18f2580-e-ml

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Table of Contents

1.0	Device Overview	9
2.0	Guidelines for Getting Started with PIC18F Microcontrollers	
3.0	Oscillator Configurations	
4.0	Power-Managed Modes	
5.0	Reset	
6.0	Memory Organization	
7.0	Flash Program Memory	101
8.0	Data EEPROM Memory	111
9.0	8 x 8 Hardware Multiplier	117
10.0	Interrupts	119
11.0	I/O Ports	135
12.0	Timer0 Module	151
13.0	Timer1 Module	155
14.0	Timer2 Module	
	Timer3 Module	
	Capture/Compare/PWM (CCP) Modules	
17.0	Enhanced Capture/Compare/PWM (ECCP) Module	
18.0	Master Synchronous Serial Port (MSSP) Module	
19.0	Enhanced Universal Synchronous Receiver Transmitter (EUSART)	
20.0	10-Bit Analog-to-Digital Converter (A/D) Module	
21.0	Comparator Module	
22.0	Comparator Voltage Reference Module	
23.0	High/Low-Voltage Detect (HLVD)	
	ECAN Module	
25.0	Special Features of the CPU	
26.0		
27.0	Development Support	
	Electrical Characteristics	
	Packaging Information	
	endix A: Revision History	
	endix B: Device Differences	
•••	endix C: Conversion Considerations	
	endix D: Migration from Baseline to Enhanced Devices	
	endix E: Migration From Mid-Range to Enhanced Devices	
	endix F: Migration From High-End to Enhanced Devices	
	Microchip Web Site	
	omer Change Notification Service	
	omer Support	
	ler Response	
PIC1	8F2480/2580/4480/4580 Product Identification System	

NOTES:

5.6 Reset State of Registers

Most registers are unaffected by a Reset. Their status is unknown on a Power-on Reset and unchanged by all other Resets. The other registers are forced to a "Reset state" depending on the type of Reset that occurred.

Most registers are not affected by a WDT wake-up, since this is viewed as the resumption of normal operation. Status bits from the RCON register, RI, TO, PD, POR and BOR, are set or cleared differently in different Reset situations, as indicated in Table 5-3. These bits are used in software to determine the nature of the Reset.

Table 5-4 describes the Reset states for all of the Special Function Registers. These are categorized by Power-on and Brown-out Resets, Master Clear and WDT Resets and WDT wake-ups.

TABLE 5-3:STATUS BITS, THEIR SIGNIFICANCE AND THE INITIALIZATION CONDITION FOR
RCON REGISTER

Condition	Program		RCC	DN Reg	jister			STKPTR	Register
Condition	Counter ⁽¹⁾	SBOREN	RI	то	PD	POR	BOR	STKFUL	STKUNF
Power-on Reset	0000h	1	1	1	1	0	0	0	0
RESET Instruction	0000h	u (2)	0	u	u	u	u	u	u
Brown-out Reset	0000h	u (2)	1	1	1	u	0	u	u
MCLR Reset during Power-Managed Run modes	0000h	_ປ (2)	u	1	u	u	u	u	u
MCLR Reset during Power-Managed Idle modes and Sleep mode	0000h	u (2)	u	1	0	u	u	u	u
WDT Time-out during Full Power or Power-Managed Run modes	0000h	u (2)	u	0	u	u	u	u	u
MCLR Reset during Full-Power execution	0000h	_ປ (2)	u	u	u	u	u	u	u
Stack Full Reset (STVREN = 1)	0000h	u (2)	u	u	u	u	u	1	u
Stack Underflow Reset (STVREN = 1)	0000h	_ປ (2)	u	u	u	u	u	u	1
Stack Underflow Error (not an actual Reset, STVREN = 0)	0000h	u (2)	u	u	u	u	u	u	1
WDT Time-out during Power-Managed Idle or Sleep modes	PC + 2	ս (2)	u	0	0	u	u	u	u
Interrupt Exit from Power-Managed modes	PC + 2	u (2)	u	u	0	u	u	u	u

Legend: u = unchanged

Note 1: When the wake-up is due to an interrupt and the GIEH or GIEL bits are set, the PC is loaded with the interrupt vector (008h or 0018h).

2: Reset state is '1' for POR and unchanged for all other Resets when software BOR is enabled (BOREN<1:0> Configuration bits = 01 and SBOREN = 1); otherwise, the Reset state is '0'.

File Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Details on Page:
SPBRGH	EUSART Bau	d Rate Genera	tor High Byte						0000 0000	57, 236
SPBRG	EUSART Bau	d Rate Genera	itor						0000 0000	57, 236
RCREG	EUSART Rec	eive Register							0000 0000	57, 244
TXREG	EUSART Trar	nsmit Register							0000 0000	57, 241
TXSTA	CSRC	TX9	TXEN	SYNC	SENDB	BRGH	TRMT	TX9D	0000 0010	57, 243
RCSTA	SPEN	RX9	SREN	CREN	ADDEN	FERR	OERR	RX9D	0000 000x	57, 243
EEADR	EEPROM Add	dress Register					•	•	0000 0000	57, 111
EEDATA	EEPROM Dat	a Register							0000 0000	57, 111
EECON2	EEPROM Cor	ntrol Register 2	(not a physic	al register)					0000 0000	57, 111
EECON1	EEPGD	CFGS		FREE	WRERR	WREN	WR	RD	xx-0 x000	57, 111
IPR3 Mode 0	IRXIP	WAKIP	ERRIP	TXB2IP	TXB1IP	TXB0IP	RXB1IP	RXB0IP	1111 1111	57, 132
IPR3 Mode 1, 2	IRXIP	WAKIP	ERRIP	TXBnIP	TXB1IP ⁽⁸⁾	TXB0IP ⁽⁸⁾	RXBnIP	FIFOWMIP	1111 1111	57, 132
PIR3 Mode 0	IRXIF	WAKIF	ERRIF	TXB2IF	TXB1IF	TXB0IF	RXB1IF	RXB0IF	0000 0000	57, 126
PIR3 Mode 1, 2	IRXIF	WAKIF	ERRIF	TXBnlF	TXB1IF ⁽⁸⁾	TXB0IF ⁽⁸⁾	RXBnIF	FIFOWMIF	0000 0000	57, 126
PIE3 Mode 0	IRXIE	WAKIE	ERRIE	TXB2IE	TXB1IE	TXB0IE	RXB1IE	RXB0IE	0000 0000	57, 129
PIE3 Mode 1, 2	IRXIE	WAKIE	ERRIE	TXBnIE	TXB1IE ⁽⁸⁾	TXB0IE ⁽⁸⁾	RXBnIE	FIFOMWIE	0000 0000	57, 129
IPR2	OSCFIP	CMIP ⁽⁹⁾	—	EEIP	BCLIP	HLVDIP	TMR3IP	ECCP1IP ⁽⁹⁾	11-1 1111	57, 131
PIR2	OSCFIF	CMIF ⁽⁹⁾	_	EEIF	BCLIF	HLVDIF	TMR3IF	ECCP1IF ⁽⁹⁾	00-0 0000	58, 125
PIE2	OSCFIE	CMIE ⁽⁹⁾	_	EEIE	BCLIE	HLVDIE	TMR3IE	ECCP1IE ⁽⁹⁾	00-0 0000	58, 128
IPR1	PSPIP ⁽³⁾	ADIP	RCIP	TXIP	SSPIP	CCP1IP	TMR2IP	TMR1IP	1111 1111	58, 130
PIR1	PSPIF ⁽³⁾	ADIF	RCIF	TXIF	SSPIF	CCP1IF	TMR2IF	TMR1IF	0000 0000	58, 124
PIE1	PSPIE ⁽³⁾	ADIE	RCIE	TXIE	SSPIE	CCP1IE	TMR2IE	TMR1IE	0000 0000	58, 127
OSCTUNE	INTSRC	PLLEN ⁽⁴⁾	_	TUN4	TUN3	TUN2	TUN1	TUN0	0q-0 0000	33, 58
TRISE ⁽³⁾	IBF	OBF	IBOV	PSPMODE	_	TRISE2	TRISE1	TRISE0	0000 -111	58, 146
TRISD ⁽³⁾	PORTD Data	Direction Regi	ster						1111 1111	58, 143
TRISC	PORTC Data Direction Register								1111 1111	58, 141
TRISB	PORTB Data	PORTB Data Direction Register								58, 138
TRISA	TRISA7 ⁽⁶⁾	TRISA6 ⁽⁶⁾	PORTA Data	a Direction Reg	ister				1111 1111	58, 135
LATE ⁽³⁾	—	_	—	_	_	LATE2	LATE1	LATE0	xxx	58, 146
LATD ⁽³⁾	LATD Output	Latch Register							XXXX XXXX	58, 143
LATC	LATC Output	Latch Register							XXXX XXXX	58, 141
LATB	LATB Output	Latch Register							XXXX XXXX	58, 138
LATA	LATA7 ⁽⁶⁾	LATA6 ⁽⁶⁾	LATA Outpu	t Latch Registe	r				XXXX XXXX	58, 135

TABLE 6-2:	REGISTER FILE SUMMARY	PIC18F2480/2580/4480/4580)	(CONTINUED)
------------	-----------------------	----------------------------	-------------

Legend: x = unknown, u = unchanged, - = unimplemented, q = value depends on condition

Note 1: Bit 21 of the PC is only available in Test mode and Serial Programming modes.

The SBOREN bit is only available when CONFIG2L<1:0> = 01; otherwise, it is disabled and reads as '0'. See Section 5.4 "Brown-out Reset (BOR)".
 These registers and/or bits are not implemented on PIC18F2X80 devices and are read as '0'. Reset values are shown for PIC18F4X80 devices; individual unimplemented bits should be interpreted as '-'.

4: The PLLEN bit is only available in specific oscillator configuration; otherwise, it is disabled and reads as '0'. See Section 3.6.4 "PLL in INTOSC Modes".

5: The RE3 bit is only available when Master Clear Reset is disabled (CONFIG3H<7> = 0); otherwise, RE3 reads as '0'. This bit is read-only.

6: RA6/RA7 and their associated latch and direction bits are individually configured as port pins based on various primary oscillator modes. When disabled, these bits read as '0'.

7: CAN bits have multiple functions depending on the selected mode of the CAN module.

8: This register reads all '0's until the ECAN™ technology is set up in Mode 1 or Mode 2.

9: These registers are available on PIC18F4X80 devices only.

9.0 8 x 8 HARDWARE MULTIPLIER

9.1 Introduction

All PIC18 devices include an 8 x 8 hardware multiplier as part of the ALU. The multiplier performs an unsigned operation and yields a 16-bit result that is stored in the product register pair, PRODH:PRODL. The multiplier's operation does not affect any flags in the STATUS register.

Making multiplication a hardware operation allows it to be completed in a single instruction cycle. This has the advantages of higher computational throughput and reduced code size for multiplication algorithms and allows the PIC18 devices to be used in many applications previously reserved for digital signal processors. A comparison of various hardware and software multiply operations, along with the savings in memory and execution time, is shown in Table 9-1.

9.2 Operation

Example 9-1 shows the instruction sequence for an 8 x 8 unsigned multiplication. Only one instruction is required when one of the arguments is already loaded in the WREG register.

Example 9-2 shows the sequence to do an 8 x 8 signed multiplication. To account for the signed bits of the arguments, each argument's Most Significant bit (MSb) is tested and the appropriate subtractions are done.

EXAMPLE 9-1: 8 x 8 UNSIGNED MULTIPLY ROUTINE

MOVF	ARG1, W	;
MULWF	ARG2	; ARG1 * ARG2 ->
		; PRODH:PRODL

EXAMPLE 9-2: 8 x 8 SIGNED

		MULTIPLY ROUTINE	
MOVF	ARG1, W		
MULWF	ARG2	; ARG1 * ARG2 ->	
		; PRODH:PRODL	
BTFSC	ARG2, SB	; Test Sign Bit	
SUBWF	PRODH, F	; PRODH = PRODH	
		; – ARG1	
MOVF	ARG2, W		
BTFSC	ARG1, SB	; Test Sign Bit	
SUBWF	PRODH, F	; PRODH = PRODH	
		; – ARG2	

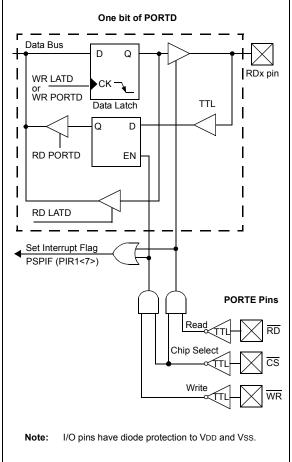
		Program	Cycles	Time			
Routine	Multiply Method	Memory (Words)	(Max)	@ 40 MHz	@ 10 MHz	@ 4 MHz	
9 x 9 uppignod	Without hardware multiply	13	69	6.9 μs	27.6 μs	69 μs	
8 x 8 unsigned	Hardware multiply	1	1	100 ns	400 ns	1 μs	
8 x 8 signed	Without hardware multiply	33	91	9.1 μs	36.4 μs	91 μs	
	Hardware multiply	6	6	600 ns	2.4 μs	6 μ s	
10 × 10 unsigned	Without hardware multiply	21	242	24.2 μs	96.8 μs	242 μs	
16 x 16 unsigned	Hardware multiply	28	28	2.8 μs	11.2 μs	28 μs	
40 · · · 40 · · · · · · · · · ·	Without hardware multiply	52	254	25.4 μs	102.6 μs	254 μs	
16 x 16 signed	Hardware multiply	35	40	4.0 μs	16.0 μs	40 μs	

TABLE 9-1: PERFORMANCE COMPARISON FOR VARIOUS MULTIPLY OPERATIONS

11.6 Parallel Slave Port

Note:	The Parallel Slave Port is only available on
	PIC18F4X80 devices.

In addition to its function as a general I/O port, PORTD can also operate as an 8-bit wide Parallel Slave Port (PSP) or microprocessor port. PSP operation is controlled by the 4 upper bits of the TRISE register (Register 11-1). Setting control bit, PSPMODE (TRISE<4>), enables PSP operation, as long as the Enhanced CCP module is not operating in dual output or quad output PWM mode. In Slave mode, the port is asynchronously readable and writable by the external world.


The PSP can directly interface to an 8-bit microprocessor data bus. The external microprocessor can read or write the PORTD latch as an 8-bit latch. Setting the control bit PSPMODE enables the PORTE I/O pins to become control inputs for the microprocessor port. When set, port pin RE0 is the RD input, RE1 is the WR input and RE2 is the CS (Chip Select) input. For this functionality, the corresponding data direction bits of the TRISE register (TRISE<2:0>) must be configured as inputs (set). The A/D port Configuration bits, PFCG<3:0> (ADCON1<3:0>), must also be set to '1010'.

A write to the PSP occurs when both the \overline{CS} and \overline{WR} lines are first detected low and ends when either are detected high. The PSPIF and IBF flag bits are both set when the write ends.

A read from the PSP occurs when both the \overline{CS} and \overline{RD} lines are first detected low. The data in PORTD is read out and the OBF bit is set. If the user writes new data to PORTD to set OBF, the data is immediately read out; however, the OBF bit is not set.

When either the \overline{CS} or \overline{RD} lines are detected high, the PORTD pins return to the input state and the PSPIF bit is set. User applications should wait for PSPIF to be set before servicing the PSP; when this happens, the IBF and OBF bits can be polled and the appropriate action taken. The timing for the control signals in Write and Read modes is shown in Figure 11-3 and Figure 11-4, respectively.

FIGURE 11-2: PORTD AND PORTE BLOCK DIAGRAM (PARALLEL SLAVE PORT)

12.0 TIMER0 MODULE

The Timer0 module incorporates the following features:

- Software-selectable operation as a timer or counter in both 8-bit or 16-bit modes
- · Readable and writable registers
- Dedicated 8-bit, software programmable
 prescaler
- Selectable clock source (internal or external)
- Edge select for external clock
- Interrupt-on-overflow

The T0CON register (Register 12-1) controls all aspects of the module's operation, including the prescale selection. It is both readable and writable.

A simplified block diagram of the Timer0 module in 8-bit mode is shown in Figure 12-1. Figure 12-2 shows a simplified block diagram of the Timer0 module in 16-bit mode.

REGISTER 12-1: T0CON: TIMER0 CONTROL REGISTER

R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
TMR0ON	T08BIT	TOCS	TOSE	PSA	T0PS2	T0PS1	T0PS0
bit 7							bit 0

Legend:				
R = Readable bit		W = Writable bit	U = Unimplemented bit,	read as '0'
-n = Value	at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown
bit 7		: Timer0 On/Off Control bit es Timer0 Timer0		
bit 6	1 = Timer	imer0 8-Bit/16-Bit Control bi 0 is configured as an 8-bit tiı 0 is configured as a 16-bit tiı	mer/counter	
bit 5	1 = Trans	ner0 Clock Source Select bi ition on T0CKI pin input edg al clock (Fosc/4)		
bit 4	1 = Increr	ner0 Source Edge Select bit nent on high-to-low transition nent on low-to-high transition	n on T0CKI pin	
bit 3	1 = TImer		it Timer0 clock input bypasses er0 clock input comes from p	-
bit 2-0	111 = 1:2 110 = 1:1 101 = 1:6 100 = 1:3 011 = 1:1 010 = 1:8 001 = 1:4	 >: Timer0 Prescaler Select 56 Prescale value 28 Prescale value 4 Prescale value 2 Prescale value 6 Prescale value Prescale value Prescale value Prescale value Prescale value Prescale value 	bits	

17.4.7.1 Auto-Shutdown and Auto-Restart

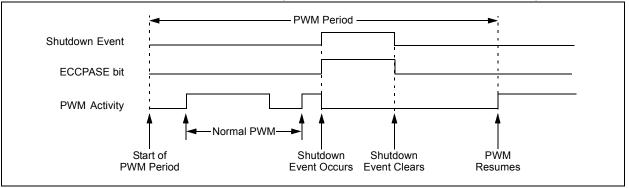
The auto-shutdown feature can be configured to allow automatic restarts of the module following a shutdown event. This is enabled by setting the PRSEN bit of the ECCP1DEL register (ECCP1DEL<7>).

In Shutdown mode with PRSEN = 1 (Figure 17-10), the ECCPASE bit will remain set for as long as the cause of the shutdown continues. When the shutdown condition clears, the ECCP1ASE bit is cleared. If PRSEN = 0 (Figure 17-11), once a shutdown condition occurs, the ECCPASE bit will remain set until it is cleared by firmware. Once ECCPASE is cleared, the Enhanced PWM will resume at the beginning of the next PWM period.

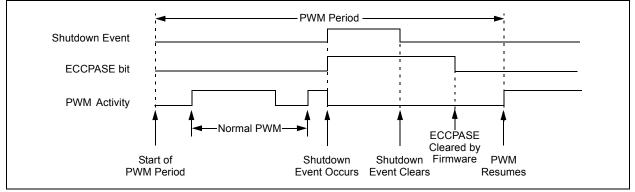
Note:	Writing to the ECCPASE bit is disabled
	while a shutdown condition is active.

Independent of the PRSEN bit setting, if the auto-shutdown source is one of the comparators, the shutdown condition is a level. The ECCPASE bit cannot be cleared as long as the cause of the shutdown persists.

The Auto-Shutdown mode can be forced by writing a '1' to the ECCPASE bit.


17.4.8 START-UP CONSIDERATIONS

When the ECCP module is used in the PWM mode, the application hardware must use the proper external pull-up and/or pull-down resistors on the PWM output pins. When the microcontroller is released from Reset, all of the I/O pins are in the high-impedance state. The external circuits must keep the power switch devices in the off state until the microcontroller drives the I/O pins with the proper signal levels, or activates the PWM output(s).


The CCP1M<1:0> bits (ECCP1CON<1:0>) allow the user to choose whether the PWM output signals are active-high or active-low for each pair of PWM output pins (P1A/P1C and P1B/P1D). The PWM output polarities must be selected before the PWM pins are configured as outputs. Changing the polarity configuration while the PWM pins are configured as outputs is not recommended, since it may result in damage to the application circuits.

The P1A, P1B, P1C and P1D output latches may not be in the proper states when the PWM module is initialized. Enabling the PWM pins for output at the same time as the ECCP module may cause damage to the application circuit. The ECCP module must be enabled in the proper output mode and complete a full PWM cycle before configuring the PWM pins as outputs. The completion of a full PWM cycle is indicated by the TMR2IF bit being set as the second PWM period begins.

FIGURE 17-10: PWM AUTO-SHUTDOWN (PRSEN = 1, AUTO-RESTART ENABLED)

FIGURE 17-11: PWM AUTO-SHUTDOWN (PRSEN = 0, AUTO-RESTART DISABLED)

18.3.5 MASTER MODE

The master can initiate the data transfer at any time because it controls the SCK. The master determines when the slave (Processor 2, Figure 18-2) is to broadcast data by the software protocol.

In Master mode, the data is transmitted/received as soon as the SSPBUF register is written to. If the SPI is only going to receive, the SDO output could be disabled (programmed as an input). The SSPSR register will continue to shift in the signal present on the SDI pin at the programmed clock rate. As each byte is received, it will be loaded into the SSPBUF register as if a normal received byte (interrupts and status bits appropriately set). This could be useful in receiver applications as a "Line Activity Monitor" mode. The clock polarity is selected by appropriately programming the CKP bit (SSPCON1<4>). This then, would give waveforms for SPI communication as shown in Figure 18-3, Figure 18-5 and Figure 18-6, where the MSB is transmitted first. In Master mode, the SPI clock rate (bit rate) is user-programmable to be one of the following:

- Fosc/4 (or Tcy)
- Fosc/16 (or 4 Tcy)
- Fosc/64 (or 16 Tcy)
- Timer2 output/2

This allows a maximum data rate (at 40 MHz) of 10.00 Mbps.

Figure 18-3 shows the waveforms for Master mode. When the CKE bit is set, the SDO data is valid before there is a clock edge on SCK. The change of the input sample is shown based on the state of the SMP bit. The time when the SSPBUF is loaded with the received data is shown.

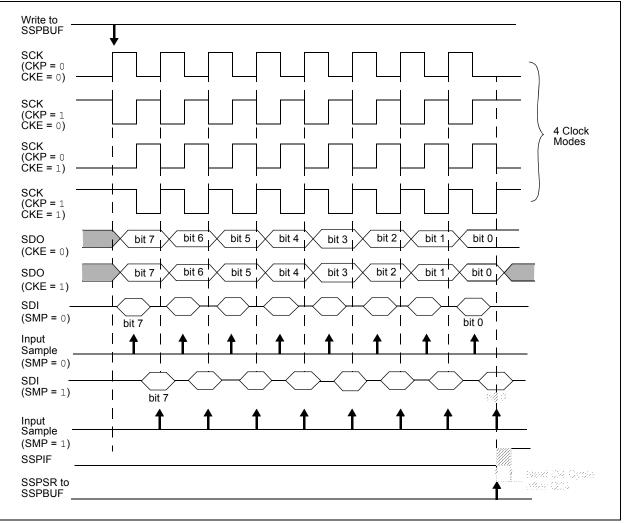


FIGURE 18-3: SPI MODE WAVEFORM (MASTER MODE)

18.4.4 CLOCK STRETCHING

Both 7 and 10-Bit Slave modes implement automatic clock stretching during a transmit sequence.

The SEN bit (SSPCON2<0>) allows clock stretching to be enabled during receives. Setting SEN will cause the SCL pin to be held low at the end of each data receive sequence.

18.4.4.1 Clock Stretching for 7-Bit Slave Receive Mode (SEN = 1)

In 7-Bit Slave Receive mode, <u>on the falling edge of the</u> ninth clock at the end of the ACK sequence if the BF bit is set, the CKP bit in the SSPCON1 register is automatically cleared, forcing the SCL output to be held low. The CKP bit being cleared to '0' will assert the SCL line low. The CKP bit must be set in the user's ISR before reception is allowed to continue. By holding the SCL line low, the user has time to service the ISR and read the contents of the SSPBUF before the master device can initiate another receive sequence. This will prevent buffer overruns from occurring (see Figure 18-13).

- Note 1: If the user reads the contents of the SSPBUF before the falling edge of the ninth clock, thus clearing the BF bit, the CKP bit will not be cleared and clock stretching will not occur.
 - 2: The CKP bit can be set in software regardless of the state of the BF bit. The user should be careful to clear the BF bit in the ISR before the next receive sequence in order to prevent an overflow condition.

18.4.4.2 Clock Stretching for 10-Bit Slave Receive Mode (SEN = 1)

In 10-Bit Slave Receive mode, during the address sequence, clock stretching automatically takes place but CKP is not cleared. During this time, if the UA bit is set after the ninth clock, clock stretching is initiated. The UA bit is set after receiving the upper byte of the 10-bit address and following the receive of the second byte of the 10-bit address with the R/W bit cleared to '0'. The release of the clock line occurs upon updating SSPADD. Clock stretching will occur on each data receive sequence as described in 7-bit mode.

Note: If the user polls the UA bit and clears it by updating the SSPADD register before the falling edge of the ninth clock occurs, and if the user hasn't cleared the BF bit by reading the SSPBUF register before that time, then the CKP bit will still NOT be asserted low. Clock stretching on the basis of the state of the BF bit only occurs during a data sequence, not an address sequence.

18.4.4.3 Clock Stretching for 7-Bit Slave Transmit Mode

7-Bit Slave Transmit mode implements clock stretching by clearing the CKP bit after the falling edge of the ninth clock if the BF bit is clear. This occurs regardless of the state of the SEN bit.

The user's ISR must set the CKP bit before transmission is allowed to continue. By holding the SCL line low, the user has time to service the ISR and load the contents of the SSPBUF before the master device can initiate another transmit sequence (see Figure 18-9).

- Note 1: If the user loads the contents of SSPBUF, setting the BF bit before the falling edge of the ninth clock, the CKP bit will not be cleared and clock stretching will not occur.
 - 2: The CKP bit can be set in software regardless of the state of the BF bit.

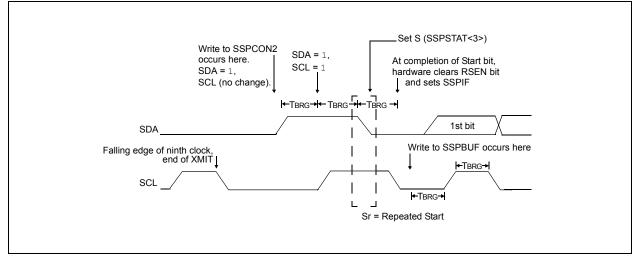
18.4.4.4 Clock Stretching for 10-Bit Slave Transmit Mode

In 10-Bit Slave Transmit mode, clock stretching is controlled during the first two address sequences by the state of the UA bit, just as it is in 10-Bit Slave Receive mode. The first two addresses are followed by a third address sequence, which contains the high-order bits of the 10-bit address and the R/W bit set to '1'. After the third address sequence is performed, the UA bit is not set, the module is now configured in Transmit mode and clock stretching is controlled by the BF flag as in 7-Bit Slave Transmit mode (see Figure 18-11).

18.4.9 I²C MASTER MODE REPEATED START CONDITION TIMING

A Repeated Start condition occurs when the RSEN bit (SSPCON2<1>) is programmed high and the I²C logic module is in the Idle state. When the RSEN bit is set, the SCL pin is asserted low. When the SCL pin is sampled low, the Baud Rate Generator is loaded with the contents of SSPADD<5:0> and begins counting. The SDA pin is released (brought high) for one Baud Rate Generator count (TBRG). When the Baud Rate Generator times out, and if SDA is sampled high, the SCL pin will be deasserted (brought high). When SCL is sampled high, the Baud Rate Generator is reloaded with the contents of SSPADD<6:0> and begins counting. SDA and SCL must be sampled high for one TBRG. This action is then followed by assertion of the SDA pin (SDA = 0) for one TBRG while SCL is high. Following this, the RSEN bit (SSPCON2<1>) will be automatically cleared and the Baud Rate Generator will not be reloaded, leaving the SDA pin held low. As soon as a Start condition is detected on the SDA and SCL pins, the S bit (SSPSTAT<3>) will be set. The SSPIF bit will not be set until the Baud Rate Generator has timed out.

- Note 1: If RSEN is programmed while any other event is in progress, it will not take effect.
 - **2:** A bus collision during the Repeated Start condition occurs if:
 - SDA is sampled low when SCL goes from low-to-high.
 - SCL goes low before SDA is asserted low. This may indicate that another master is attempting to transmit a data '1'.


Immediately following the SSPIF bit getting set, the user may write the SSPBUF with the 7-bit address in 7-bit mode, or the default first address in 10-bit mode. After the first eight bits are transmitted and an ACK is received, the user may then transmit an additional eight bits of address (10-bit mode) or eight bits of data (7-bit mode).

18.4.9.1 WCOL Status Flag

If the user writes the SSPBUF when a Repeated Start sequence is in progress, the WCOL is set and the contents of the buffer are unchanged (the write doesn't occur).

Note: Because queueing of events is not allowed, writing of the lower 5 bits of SSPCON2 is disabled until the Repeated Start condition is complete.

FIGURE 18-20: REPEAT START CONDITION WAVEFORM

R/W-0 R-0 R/W-0 R/W-0 R/W-0 R/W-0 R-0 R-x SPEN RX9 SREN CREN ADDEN FERR OERR RX9D bit 7 bit 0 Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as '0' -n = Value at POR '0' = Bit is cleared '1' = Bit is set x = Bit is unknown bit 7 SPEN: Serial Port Enable bit 1 = Serial port enabled (configures RX/DT and TX/CK pins as serial port pins) 0 = Serial port disabled (held in Reset) bit 6 RX9: 9-Bit Receive Enable bit 1 = Selects 9-bit reception 0 = Selects 8-bit reception bit 5 SREN: Single Receive Enable bit Asynchronous mode: Don't care. Synchronous mode - Master: 1 = Enables single receive 0 = Disables single receive This bit is cleared after reception is complete. Synchronous mode - Slave: Don't care. bit 4 **CREN:** Continuous Receive Enable bit Asynchronous mode: 1 = Enables receiver 0 = Disables receiver Synchronous mode: 1 = Enables continuous receive until enable bit CREN is cleared (CREN overrides SREN) 0 = Disables continuous receive bit 3 ADDEN: Address Detect Enable bit Asynchronous mode 9-bit (RX9 = 1): 1 = Enables address detection, enables interrupt and loads the receive buffer when RSR<8> is set 0 = Disables address detection, all bytes are received and ninth bit can be used as parity bit Asynchronous mode 9-bit (RX9 = 0): Don't care. bit 2 FERR: Framing Error bit 1 = Framing error (can be updated by reading RCREG register and receiving next valid byte) 0 = No framing error bit 1 **OERR:** Overrun Error bit 1 = Overrun error (can be cleared by clearing bit CREN) 0 = No overrun error bit 0 RX9D: 9th bit of Received Data This can be an address/data bit or a parity bit and must be calculated by user firmware.

REGISTER 19-2: RCSTA: RECEIVE STATUS AND CONTROL REGISTER

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
FIL15_1	FIL15_0	FIL14_1	FIL14_0	FIL13_1	FIL13_0	FIL12_1	FIL12_0
bit 7							bit C
Legend:							
R = Readable	e bit	W = Writable	bit	U = Unimpler	mented bit, read	l as '0'	
-n = Value at	POR	'1' = Bit is set	t	'0' = Bit is cle	ared	x = Bit is unki	nown
bit 7-6	FIL15_<1:0>:	: Filter 15 Sele	ct bits 1 and 0				
	11 = No masl	-					
	10 = Filter 15 01 = Accepta						
	00 = Accepta						
bit 5-4	FIL14_<1:0>:	: Filter 14 Sele	ct bits 1 and 0				
	11 = No masl	k					
	10 = Filter 15						
	01 = Accepta 00 = Accepta						
bit 3-2	•	: Filter 13 Sele	ct bits 1 and 0				
	11 = No masl						
	10 = Filter 15						
	01 = Accepta						
h:4 0	00 = Accepta						
bit 1-0	11 = No mas	: Filter 12 Sele	ct bits 1 and 0				
	10 = Filter 15	-					
	01 = Accepta						
	00 = Accepta	nce Mask 0					

REGISTER 24-51: MSEL3: MASK SELECT REGISTER 3⁽¹⁾

Note 1: This register is available in Mode 1 and 2 only.

Address ⁽¹⁾	Name	Address	Name	Address	Name	Address	Name
E7Fh	CANCON_RO4 ⁽²⁾	E5Fh	CANCON_RO6 ⁽²⁾	E3Fh	CANCON_RO8 ⁽²⁾	E1Fh	(4)
E7Eh	CANSTAT_RO4 ⁽²⁾	E5Eh	CANSTAT_RO6 ⁽²⁾	E3Eh	CANSTAT_RO8 ⁽²⁾	E1Eh	(4)
E7Dh	B5D7	E5Dh	B3D7	E3Dh	B1D7	E1Dh	(4)
E7Ch	B5D6	E5Ch	B3D6	E3Ch	B1D6	E1Ch	(4)
E7Bh	B5D5	E5Bh	B3D5	E3Bh	B1D5	E1Bh	(4)
E7Ah	B5D4	E5Ah	B3D4	E3Ah	B1D4	E1Ah	(4)
E79h	B5D3	E59h	B3D3	E39h	B1D3	E19h	(4)
E78h	B5D2	E58h	B3D2	E38h	B1D2	E18h	(4)
E77h	B5D1	E57h	B3D1	E37h	B1D1	E17h	(4)
E76h	B5D0	E56h	B3D0	E36h	B1D0	E16h	(4)
E75h	B5DLC	E55h	B3DLC	E35h	B1DLC	E15h	(4)
E74h	B5EIDL	E54h	B3EIDL	E34h	B1EIDL	E14h	(4)
E73h	B5EIDH	E53h	B3EIDH	E33h	B1EIDH	E13h	(4)
E72h	B5SIDL	E52h	B3SIDL	E32h	B1SIDL	E12h	(4)
E71h	B5SIDH	E51h	B3SIDH	E31h	B1SIDH	E11h	(4)
E70h	B5CON	E50h	B3CON	E30h	B1CON	E10h	(4)
E6Fh	CANCON_RO5	E4Fh	CANCON_RO7	E2Fh	CANCON_RO9	E0Fh	(4)
E6Eh	CANSTAT_RO5	E4Eh	CANSTAT_RO7	E2Eh	CANSTAT_RO9	E0Eh	(4)
E6Dh	B4D7	E4Dh	B2D7	E2Dh	B0D7	E0Dh	(4)
E6Ch	B4D6	E4Ch	B2D6	E2Ch	B0D6	E0Ch	(4)
E6Bh	B4D5	E4Bh	B2D5	E2Bh	B0D5	E0Bh	(4)
E6Ah	B4D4	E4Ah	B2D4	E2Ah	B0D4	E0Ah	(4)
E69h	B4D3	E49h	B2D3	E29h	B0D3	E09h	(4)
E68h	B4D2	E48h	B2D2	E28h	B0D2	E08h	(4)
E67h	B4D1	E47h	B2D1	E27h	B0D1	E07h	(4)
E66h	B4D0	E46h	B2D0	E26h	B0D0	E06h	(4)
E65h	B4DLC	E45h	B2DLC	E25h	B0DLC	E05h	(4)
E64h	B4EIDL	E44h	B2EIDL	E24h	B0EIDL	E04h	(4)
E63h	B4EIDH	E43h	B2EIDH	E23h	B0EIDH	E03h	(4)
E62h	B4SIDL	E42h	B2SIDL	E22h	B0SIDL	E02h	(4)
E61h	B4SIDH	E41h	B2SIDH	E21h	B0SIDH	E01h	(4)
E60h	B4CON	E40h	B2CON	E20h	B0CON	E00h	(4)

TABLE 24-1: CAN CONTROLLER REGISTER MAP (CONTINUED)

Note 1: Shaded registers are available in Access Bank low area, while the rest are available in Bank 15.

2: CANSTAT register is repeated in these locations to simplify application firmware. Unique names are given for each instance of the controller register due to the Microchip header file requirement.

3: These registers are not CAN registers.

4: Unimplemented registers are read as '0'.

GOTO	Uncondit	ional Branc	h	INCF	Incremen	tf	
Syntax:	GOTO k			Syntax:	INCF f{,c	1 {,a}}	
Operands:	$0 \le k \le 104$	8575		Operands:	$0 \leq f \leq 255$		
Operation:	$k \rightarrow PC<20$):1>			d ∈ [0,1]		
Status Affected:	None			Operation:	$a \in [0,1]$ (f) + 1 $\rightarrow de$	act	
Encoding:				Status Affected:	$(1) \neq 1 \rightarrow 0$ C, DC, N, (
1st word (k<7:0>)	1110	,	kk kkkk ₀				
2nd word(k<19:8>	1111	k ₁₉ kkk kk	kk kkkk ₈	Encoding: Description:	0010	10da ff	ff ffff
Description:	anywhere w 2-Mbyte me	two-cycle		Decomption.	incremente placed in W placed bac lf 'a' is '0', t	d. If 'd' is '0', t /. If 'd' is '1', tf k in register 'f' he Access Ba he BSR is use	the result is ne result is nk is selected
Words:	2					nd the extend	ed instruction
Cycles:	2					led, this instru	
Q Cycle Activity:						Literal Offset	•
Q1	Q2	Q3	Q4			never f ≤ 95 (5 5. 2.3 "Byte-O r	,
Decode	Read literal 'k'<7:0>,	No operation	Read literal 'k'<19:8>, Write to PC		Bit-Oriente	ed Instruction set Mode" for	ns in Indexed
No	No	No	No	Words:	1		
operation	operation	operation	operation	Cycles:	1		
				Q Cycle Activity:			
Example:	GOTO THE	RE		Q1	Q2	Q3	Q4
After Instructi PC =	on Address (T	HERE)		Decode	Read register 'f'	Process Data	Write to destination
				Example:	INCF	CNT, 1, 0)
				Before Instruc CNT Z C DC	tion = FFh = 0 = ? = ?		

After Instruction

CNT Z C DC

= = =

MULLW	Multiply	Multiply Literal with W						
Syntax:	MULLW	MULLW k						
Operands:	$0 \le k \le 258$	5						
Operation:	(W) x k \rightarrow	PRODH:	PRODL					
Status Affected:	None							
Encoding:	0000	1101	kkkk	kkkk				
Description:	out betwee 8-bit literal placed in t pair. PROI W is uncha	An unsigned multiplication is carried out between the contents of W and the 8-bit literal 'k'. The 16-bit result is placed in the PRODH:PRODL register pair. PRODH contains the high byte. W is unchanged.						
	Note that r possible in	None of the Status flags are affected. Note that neither overflow nor carry is possible in this operation. A zero result is possible but not detected.						
Words:	1							
Cycles:	1							
Q Cycle Activity:								
Q1	Q2	Q3		Q4				
Decode	Read literal 'k'	Proce Data	i r	Write egisters PRODH: PRODL				
Example:	MIITIM	0C4b						

Example:	MULLW	0C4h
Before Instructior	า	
W	=	E2h
PRODH	=	?
PRODL	=	?
After Instruction		
W	=	E2h
PRODH	=	ADh
PRODL	=	08h

MULWF		W with f		
Syntax:	MULWF	f {,a}		
Operands:	0 ≤ f ≤ 255 a ∈ [0,1]	5		
Operation:		> PRODH:	PRODI	
Status Affected:	None	/ I KODII.	TROBE	
Encoding:	0000	001a	ffff	ffff
	register fill result is st register pa high byte. unchange None of th Note that i possible in result is po If 'a' is '0', selected. I to select th If 'a' is '0' instruction Offset Add $f \le 95$ (5FH "Byte-Ori	e Status fli neither over n this opera ossible but the Access f 'a' is '1', ' ne GPR ba and the ex set is ena operates tressing m n). See Sec ented and ns in Indez	f'. The 1 PRODE I contair ad 'f' are ags are erflow nc ation. A : not dete s Bank i the BSR ank. tended bled, thi in Index ode whe ction 26 Bit-Orie	6-bit 1:PRODI is the affected. or carry is zero ected. s is used s ed Litera enever .2.3 ented
Words:	1			
Cycles:	1			
Q Cycle Activity:				
Q1	Q2	Q3		Q4
Decode	Read register 'f'	Process Data	re Pl	Write gisters RODH: RODL
Example:	MULWF	REG, 1		
Before Instruc W REG PRODH PRODL After Instructi	= C4 = B5 = ? = ?			

=	C4h
=	B5h
=	8Ah
=	94h
	= =

SUE	WFB	S	ubtract	W from	ı f wit	h Borrow
Synta	ax:	S	JBWFB	f {,d {,	a}}	
Oper	ands:		≤ f ≤ 255			
			∈ [0,1]			
			∈ [0,1]	_		
•	ation:		- (W) - (est	
Statu	s Affected:	Ν,	OV, C, D	C, Z		
Enco	ding:		0101	10da	fff	ff ffff
Description:		fro in in If Gl Se in	om registe ethod). If W. If 'd' is register 'f 'a' is '0', tl 'a' is '1', tl PR bank. 'a' is '0' a et is enabl	er 'f' (2's 'd' is '0', s '1', the r'. he Acce he BSR nd the e ed, this Literal C	compl the re result ss Bar is used xtende instruct	sult is stored is stored back ik is selected. d to select the ed instruction tion operates ddressing
Word	ls:	Se Bi	ection 26	.2.3 "By d Instru	rte-Òri uction:	ented and s in Indexed
Cycle	es:	1				
•	ycle Activity:					
	Q1		Q2	Q	3	Q4
	Decode		Read gister 'f'	Proc Da		Write to destination
Exan	nple 1:	:	SUBWFB	REG,	1, 0	
	Before Instruc	tion				
	REG W C	= = =	19h 0Dh 1	(000 (000)1 100)0 110	
	After Instruction	n				
	REG W	=	0Ch 0Dh		100 102	,
	С	=	1	(000	0 110	J _]
	Z N	=	0 0	· resi	ult is po	ositive
Fxan	nple 2:		SUBWFB	REG, (55.1170
<u></u>	Before Instruc				, .	
	REG W C	= = =	1Bh 1Ah 0	(000 (000)1 101)1 101	
	After Instructio REG W	on = =	1Bh 00h	(000	01 103	11)
	C Z	=	1	· rooi	ult in Tr	
	Z N	=	1 0	, rest	ult is ze	510
Exan	nple 3:	:	SUBWFB	REG,	1, 0	
	Before Instruc					
	REG W C	= = =	03h 0Eh 1		00 001 00 110	
	After Instructic REG	on =	F5h		.1 010 comp]	
	W C Z N	= = =	0Eh 0 0	(000	0 110	01)
	Ν	=	1	; resi	ult is ne	egative

SWAPF	Swap f							
Syntax:	SWAPF f	{,d {,a}}						
Operands:	$\begin{array}{l} 0 \leq f \leq 255 \\ d \in [0,1] \\ a \in [0,1] \end{array}$	d ∈ [0,1]						
Operation:		(f<3:0>) → dest<7:4>, (f<7:4>) → dest<3:0>						
Status Affected:	None							
Encoding:	0011	10da ff	ff ffff					
Description:	'f' are excha is placed in placed in re If 'a' is '0', t If 'a' is '1', t GPR bank. If 'a' is '0' a set is enabl in Indexed mode wher	The upper and lower nibbles of register 'f' are exchanged. If 'd' is '0', the result is placed in W. If 'd' is '1', the result is placed in register 'f'. If 'a' is '0', the Access Bank is selected. If 'a' is '1', the BSR is used to select the GPR bank. If 'a' is '0' and the extended instruction set is enabled, this instruction operates in Indexed Literal Offset Addressing mode whenever $f \le 95$ (5Fh). See Section 26.2.3 "Byte-Oriented and						
		set Mode" for	details.					
Words:	1							
Cycles:	1							
Q Cycle Activity:			<u>.</u>					
Q1 Decode	Q2 Read	Q3 Process	Q4 Write to					
Decode	register 'f'	Data	destination					
Example: Before Instruc REG After Instructio REG	tion = 53h	REG, 1, 0						

28.2 DC Characteristics:

Power-Down and Supply Current PIC18F2480/2580/4480/4580 (Industrial, Extended) PIC18LF2480/2580/4480/4580 (Industrial) (Continued)

PIC18LF2480/2580/4480/4580 (Industrial) PIC18F2480/2580/4480/4580 (Industrial, Extended)		$\begin{tabular}{lllllllllllllllllllllllllllllllllll$							
	Supply Current (IDD) ^(2,3)								
	PIC18LF2X80/4X80	1.4	2.2	mA	-40°C				
		1.4	2.2	mA	+25°C	VDD = 2.0V			
		1.4	2.2	mA	+85°C				
	PIC18LF2X80/4X80	2.3	3.3	mA	-40°C		_		
		2.3	3.3	mA	+25°C	VDD = 3.0V	Fosc = 4 MHz (PRI_RUN ,		
		2.3	3.3	mA	+85°C		EC oscillator)		
	All devices	4.5	6.6	mA	-40°C		,		
		4.3	6.6	mA	+25°C	VDD = 5.0V			
		4.3	6.6	mA	+85°C	VDD - 5.0V			
	Extended devices only	5	7.7	mA	+125°C				
		15	23	mA	+125°C	VDD = 4.2V	Fosc = 25 MHz		
		20	31	mA	+125°C	VDD = 5.0V	(PRI_RUN , EC oscillator)		
	All devices	30	38	mA	-40°C				
		31	38	mA	+25°C	VDD = 4.2V			
		31	38	mA	+85°C		Fosc = 40 MHz (PRI RUN ,		
	All devices	37	44	mA	-40°C		EC oscillator)		
		38	44	mA	+25°C	VDD = 5.0V	,		
		39	44	mA	+85°C				

Legend: Shading of rows is to assist in readability of the table.

Note 1: The power-down current in Sleep mode does not depend on the oscillator type. Power-down current is measured with the part in Sleep mode, with all I/O pins in high-impedance state and tied to VDD or VSs and all features that add delta current disabled (such as WDT, Timer1 Oscillator, BOR, etc.).

2: The supply current is mainly a function of operating voltage, frequency and mode. Other factors, such as I/O pin loading and switching rate, oscillator type and circuit, internal code execution pattern and temperature, also have an impact on the current consumption. The test conditions for all IDD measurements in active operation mode are:

OSC1 = external square wave, from rail-to-rail; all I/O pins tri-stated, pulled to VDD;

MCLR = VDD; WDT enabled/disabled as specified.

3: For RC oscillator configurations, current through REXT is not included. The current through the resistor can be estimated by the formula, Ir = VDD/2REXT (mA), with REXT in kΩ.

4: Standard low-cost 32 kHz crystals have an operating temperature range of -10°C to +70°C. Extended temperature crystals are available at a much higher cost.

28.3 DC Characteristics: PIC18F2480/2580/4480/4580 (Industrial) PIC18LF2480/2580/4480/4580 (Industrial)

DC CHARACTERISTICS		$\begin{array}{l} \mbox{Standard Operating Conditions (unless otherwise stated)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for industrial} \\ & -40^{\circ}C \leq TA \leq +125^{\circ}C \mbox{ for extended} \end{array}$				
Param No.	Symbol	Characteristic	Min	Max	Units	Conditions
	VIL	Input Low Voltage				
		I/O Ports:				
D030		with TTL Buffer	Vss	0.15 Vdd	V	VDD < 4.5V
D030A			—	0.8	V	$4.5V \leq V\text{DD} \leq 5.5V$
D031		with Schmitt Trigger Buffer	Vss	0.2 Vdd	V	
D031A		RC3 and RC4	Vss	0.3 Vdd	V	I ² C [™] enabled
D031B			Vss	0.8	V	SMBus enabled
D032		MCLR	Vss	0.2 Vdd	V	
D033		OSC1	Vss	0.3 VDD	V	HS, HSPLL modes
D033A		OSC1	Vss	0.2 VDD	V	RC, EC modes ⁽¹⁾
D033B		OSC1	Vss	0.3	V	XT, LP modes
D034		T13CKI	Vss	0.3	V	,
	Viн	Input High Voltage				
		I/O Ports:				
D040		with TTL Buffer	0.25 VDD + 0.8V	Vdd	V	VDD < 4.5V
D040A			2.0	Vdd	V	$4.5V \le VDD \le 5.5V$
D041		with Schmitt Trigger Buffer	0.8 Vdd	Vdd	V	
D041A		RC3 and RC4	0.7 Vdd	Vdd	V	I ² C [™] enabled
D041B			2.1	Vdd	v	SMBus enabled, $VDD \ge 3V$
D042		MCLR	0.8 VDD	Vdd	v	,,
D043		OSC1	0.7 VDD	VDD	V	HS, HSPLL modes
D043A		OSC1	0.8 VDD	VDD	V	EC mode
D043B		OSC1	0.9 VDD	VDD	V	RC mode ⁽¹⁾
D043C		OSC1	1.6	VDD	V	XT, LP modes
D044		T13CKI	1.6	VDD	V	,
-	liL	Input Leakage Current ^(2,3)	-			
D060		I/O Ports	_	±200	nA	VDD < 5.5V, VSS ≤ VPIN ≤ VDD, Pin at high-impedance
			_	±50	nA	$V_{DD} < 3V$, $V_{SS} \le V_{PIN} \le V_{DD}$, Pin at high-impedance
D061		MCLR	_	±1	μA	$Vss \le VPIN \le VDD$
D063		OSC1	_	±1	μΑ	V ss \leq VPIN \leq VDD
2000	IPU	Weak Pull-up Current		<u> </u>	pur	
D070	IPURB	PORTB Weak Pull-up Current	50	400	μA	VDD = 5V, VPIN = VSS
		oscillator configuration, the OSC1/Cl				

Note 1: In RC oscillator configuration, the OSC1/CLKI pin is a Schmitt Trigger input. It is not recommended that the PIC[®] device be driven with an external clock while in RC mode.

2: The leakage current on the MCLR pin is strongly dependent on the applied voltage level. The specified levels represent normal operating conditions. Higher leakage current may be measured at different input voltages.

3: Negative current is defined as current sourced by the pin.

Write Verify	113
Writing	113
Data Memory	73
Access Bank	
and the Extended Instruction Set	
Bank Select Register (BSR)	
General Purpose Registers	
Map for PIC18F2480/4480	74
Special Function Registers	
DAW	
DC Characteristics	
Power-Down and Supply Current	
Supply Voltage	
DCFSNZ	
DECF	
DECFSZ	
Development Support	
Device Differences	
Device Overview	9
Features (table)	
Device Reset Timers	51
Oscillator Start-up Timer (OST)	
PLL Lock Time-out	
Power-up Timer (PWRT)	
Direct Addressing	
5	

Е

ECAN Module	279
Baud Rate Setting	338
Bit Time Partitioning	338
Bit Timing Configuration Registers	
Calculating To, Nominal Bit Rate and	
Nominal Bit Time	341
CAN Baud Rate Registers	317
CAN Control and Status Registers	281
CAN Controller Register Map	325
CAN I/O Control Register	320
CAN Interrupt Registers	321
CAN Interrupts	345
Acknowledge	347
Bus Activity Wake-up	346
Bus-Off	347
Code Bits	346
Error	346
Message Error	346
Receive	346
Receiver Bus Passive	347
Receiver Overflow	347
Receiver Warning	347
Transmit	
Transmitter Bus Passive	347
Transmitter Warning	347
CAN Message Buffers	332
Dedicated Receive	332
Dedicated Transmit	332
Programmable Auto-RTR	
Programmable Transmit/Receive	332
CAN Message Transmission	333
Aborting	333
Initiating	333
Priority	
CAN Modes of Operation	
CAN Registers	
Configuration Mode	
Dedicated CAN Receive Buffer Registers	293

Dedicated CAN Transmit Buffer Registers	288
Disable Mode	
Error Detection	
Acknowledge	344
Bit	344
CRC	
Error Modes and Counters	344
Error States	311
Form	344
Stuff Bit	344
Error Modes State (diagram)	
Error Recognition Mode	331
Filter-Mask Truth (table)	336
Functional Modes	
Mode 0 (Legacy Mode)	331
Mode 1 (Enhanced Legacy Mode)	331
Mode 2 (Enhanced FIFO Mode)	
Information Processing Time (IPT)	341
Lengthening a Bit Period	
Listen Only Mode	331
Loopback Mode	331
Message Acceptance Filters and Masks 308,	
	550
Message Acceptance Mask and	
Filter Operation	337
Message Reception	
Enhanced FIFO Mode	336
Priority	
Time-Stamping	
Normal Mode	330
Oscillator Tolerance	
Overview	279
Phase Buffer Segments	341
Programmable TX/RX and Auto-RTR Buffers	
Programming Time Segments	343
Propagation Segment	341
Propagation Segment Sample Point	341 341
Propagation Segment	341 341
Propagation Segment Sample Point Shortening a Bit Period	341 341 343
Propagation Segment Sample Point Shortening a Bit Period Synchronization	341 341 343 342
Propagation Segment Sample Point Shortening a Bit Period Synchronization Hard	341 341 343 342 342
Propagation Segment Sample Point Shortening a Bit Period Synchronization	341 341 343 342 342
Propagation Segment Sample Point Shortening a Bit Period Synchronization Hard Resynchronization	341 343 342 342 342 342
Propagation Segment Sample Point Shortening a Bit Period Synchronization Hard Resynchronization Rules	341 343 342 342 342 342 342
Propagation Segment Sample Point Shortening a Bit Period Synchronization Hard Resynchronization Rules Synchronization Segment	341 343 342 342 342 342 342 342
Propagation Segment	341 343 342 342 342 342 342 341 341
Propagation Segment	341 343 342 342 342 342 342 341 341
Propagation Segment	341 343 342 342 342 342 342 341 341
Propagation Segment	341 343 342 342 342 342 342 341 341 346
Propagation Segment	341 343 342 342 342 342 342 341 341 346
Propagation Segment	341 343 342 342 342 342 342 341 341 346 178
Propagation Segment	 341 343 342 342 342 342 341 341 346 178 178
Propagation Segment	341 343 342 342 342 342 342 341 341 346 178 98
Propagation Segment	341 343 342 342 342 342 342 341 341 346 178 98
Propagation Segment	341 343 342 342 342 342 342 341 341 346 178 98
Propagation Segment	341 343 342 342 342 342 341 341 346 178 178 178 414
Propagation Segment	341 343 342 342 342 342 341 341 346 178 178 178 414
Propagation Segment	341 343 342 342 342 342 341 341 341 346 178 178 178 414 37
Propagation Segment	341 343 342 342 342 342 342 341 341 346 178 178 414 37 421
Propagation Segment	341 343 342 342 342 342 342 341 341 346 178 178 414 37 421
Propagation Segment	341 343 342 342 342 342 342 341 341 346 178 178 414 37 421
Propagation Segment	341 343 342 342 342 342 341 341 341 346 98 414 37 421 177
Propagation Segment	341 343 342 342 342 342 341 341 341 346 98 414 37 421 177 178
Propagation Segment	341 343 342 342 342 342 341 341 341 346 98 414 37 421 177 178
Propagation Segment	341 343 342 342 342 342 341 341 341 346 98 414 37 421 177 178
Propagation Segment	341 341 343 342 342 342 342 341 341 346 178 178 414 37 421 177 178 178
Propagation Segment	341 341 343 342 342 342 341 341 346 178 414 98 414 37 421 177 178 178 178
Propagation Segment	341 341 342 342 342 342 341 341 346 178 414 98 414 37 421 177 178 178 178 178
Propagation Segment	341 341 342 342 342 342 341 341 341 346 178 414 177 178 421 177 178 178 178 258
Propagation Segment	341 341 342 342 342 342 341 341 341 346 178 414 177 178 421 177 178 178 178 258
Propagation Segment	341 341 343 342 342 342 341 341 346 178 414 98 414 98 414 37 178 178 178 178 178 258 258