

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	40MHz
Connectivity	CANbus, I ² C, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, HLVD, POR, PWM, WDT
Number of I/O	25
Program Memory Size	32KB (16K x 16)
Program Memory Type	FLASH
EEPROM Size	256 x 8
RAM Size	1.5K x 8
Voltage - Supply (Vcc/Vdd)	4.2V ~ 5.5V
Data Converters	A/D 8x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	28-VQFN Exposed Pad
Supplier Device Package	28-QFN (6x6)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic18f2580-i-ml

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

		l	l	l
Features	PIC18F2480	PIC18F2580	PIC18F4480	PIC18F4580
Operating Frequency	DC – 40 MHz			
Program Memory (Bytes)	16384	32768	16384	32768
Program Memory (Instructions)	8192	16384	8192	16384
Data Memory (Bytes)	768	1536	768	1536
Data EEPROM Memory (Bytes)	256	256	256	256
Interrupt Sources	19	19	20	20
I/O Ports	Ports A, B, C, (E)	Ports A, B, C, (E)	Ports A, B, C, D, E	Ports A, B, C, D, E
Timers	4	4	4	4
Capture/Compare/PWM Modules	1	1	1	1
Enhanced Capture/ Compare/PWM Modules	0	0	1	1
ECAN Module	1	1	1	1
Serial Communications	MSSP, Enhanced USART	MSSP, Enhanced USART	MSSP, Enhanced USART	MSSP, Enhanced USART
Parallel Communications (PSP)	No	No	Yes	Yes
10-Bit Analog-to-Digital Module	8 Input Channels	8 Input Channels	11 Input Channels	11 Input Channels
Comparators	0	0	2	2
Resets (and Delays)	POR, BOR, RESET Instruction, Stack Full, Stack Underflow (PWRT, OST), MCLR (optional), WDT			
Programmable High/ Low-Voltage Detect	Yes	Yes	Yes	Yes
Programmable Brown-out Reset	Yes	Yes	Yes	Yes
Instruction Set	75 Instructions; 83 with Extended Instruction Set Enabled			
Packages	28-pin SPDIP 28-pin SOIC 28-pin QFN	28-pin SPDIP 28-pin SOIC 28-pin QFN	40-pin PDIP 44-pin QFN 44-pin TQFP	40-pin PDIP 44-pin QFN 44-pin TQFP

TABLE 1-1: DEVICE FEATURES

Din Nome	Pin Number			Pin	Buffer	Description	
	PDIP	QFN	TQFP	Туре	Туре	Description	
						PORTE is a bidirectional I/O port.	
RE0/RD/AN5	8	25	25				
RE0				I/O	ST	Digital I/O.	
RD				I	TTL	Read control for Parallel Slave Port (see also \overline{WR} and \overline{CS} pins).	
AN5				I	Analog	Analog Input 5.	
RE1/WR/AN6/C1OUT	9	26	26				
RE1				I/O	ST	Digital I/O.	
WR				I	TTL	Write control for Parallel Slave Port (see CS and RD pins).	
AN6				I	Analog	Analog Input 6.	
C1OUT				0	TTL	Comparator 1 output.	
RE2/CS/AN7/C2OUT	10	27	27				
RE2				I/O	ST	Digital I/O.	
CS				I	TTL	Chip select control for Parallel Slave Port (see related \overline{RD} and \overline{WR}).	
AN7				I	Analog	Analog Input 7.	
C2OUT				0	TTL	Comparator 2 output.	
RE3	—	—	—	—	_	See MCLR/VPP/RE3 pin.	
Vss	12, 31	6, 30, 31	6, 29	Р	—	Ground reference for logic and I/O pins.	
Vdd	11, 32	7, 8, 28, 29	7, 28	Р	—	Positive supply for logic and I/O pins.	
NC		13	12, 13, 33, 34			No connect.	
Legend: TTL = TTL compatible input CMOS = CMOS compatible input or output							

TABLE 1-3: PIC18F4480/4580 PINOUT I/O DESCRIPTIONS (CONTINUED)

ST = Schmitt Trigger input with CMOS levels I

O = Output I^2C = I^2C^{TM} /SMBus input buffer

= Input = Power

Ρ

6.1.2.4 Stack Full and Underflow Resets

Device Resets on stack overflow and stack underflow conditions are enabled by setting the STVREN bit in Configuration Register 4L. When STVREN is set, a full or underflow will set the appropriate STKFUL or STKUNF bit and then cause a device Reset. When STVREN is cleared, a full or underflow condition will set the appropriate STKFUL or STKUNF bit but not cause a device Reset. The STKFUL or STKUNF bits are cleared by the user software or a Power-on Reset.

6.1.3 FAST REGISTER STACK

A Fast Register Stack is provided for the STATUS, WREG and BSR registers, to provide a "fast return" option for interrupts. Each stack is only one level deep and is neither readable nor writable. It is loaded with the current value of the corresponding register when the processor vectors for an interrupt. All interrupt sources will push values into the stack registers. The values in the registers are then loaded back into their associated registers, if the RETFIE, FAST instruction is used to return from the interrupt.

If both low and high-priority interrupts are enabled, the stack registers cannot be used reliably to return from low-priority interrupts. If a high-priority interrupt occurs while servicing a low-priority interrupt, the stack register values stored by the low-priority interrupt will be overwritten. In these cases, users must save the key registers in software during a low-priority interrupt.

If interrupt priority is not used, all interrupts may use the Fast Register Stack for returns from interrupt. If no interrupts are used, the Fast Register Stack can be used to restore the STATUS, WREG and BSR registers at the end of a subroutine call. To use the Fast Register Stack for a subroutine call, a CALL label, FAST instruction must be executed to save the STATUS, WREG and BSR registers to the Fast Register Stack. A RETURN, FAST instruction is then executed to restore these registers from the Fast Register Stack.

Example 6-1 shows a source code example that uses the Fast Register Stack during a subroutine call and return.

EXAMPLE 6-1: FAST REGISTER STACK CODE EXAMPLE

CALL	SUB1, FAST • •	;STATUS, WREG, BSR ;SAVED IN FAST REGISTER ;STACK
SUB1	• RETURN, FAST	;RESTORE VALUES SAVED ;IN FAST REGISTER STACK

6.1.4 LOOK-UP TABLES IN PROGRAM MEMORY

There may be programming situations that require the creation of data structures, or look-up tables, in program memory. For PIC18 devices, look-up tables can be implemented in two ways:

- Computed GOTO
- Table Reads

6.1.4.1 Computed GOTO

A computed GOTO is accomplished by adding an offset to the program counter. An example is shown in Example 6-2.

A look-up table can be formed with an ADDWF PCL instruction and a group of RETLW nn instructions. The W register is loaded with an offset into the table before executing a call to that table. The first instruction of the called routine is the ADDWF PCL instruction. The next instruction executed will be one of the RETLW nn instructions, that returns the value 'nn' to the calling function.

The offset value (in WREG) specifies the number of bytes that the program counter should advance and should be multiples of 2 (LSb = 0).

In this method, only one data byte may be stored in each instruction location and room on the return address stack is required.

EXAMPLE 6-2: COMPUTED GOTO USING AN OFFSET VALUE

	MOVF CALL	OFFSET, TABLE	Ψ
ORG	nn00h		
TABLE	ADDWF	PCL	
	RETLW	nnh	
	RETLW	nnh	
	RETLW	nnh	

6.1.4.2 Table Reads and Table Writes

A better method of storing data in program memory allows two bytes of data to be stored in each instruction location.

Look-up table data may be stored two bytes per program word by using table reads and writes. The Table Pointer (TBLPTR) register specifies the byte address and the Table Latch (TABLAT) register contains the data that is read from or written to program memory. Data is transferred to or from program memory one byte at a time.

Table read and table write operations are discussed further in Section 7.1 "Table Reads and Table Writes".

File Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Details on Page:
B2D4 ⁽⁸⁾	B2D47	B2D46	B2D45	B2D44	B2D43	B2D42	B2D41	B2D40	XXXX XXXX	63, 305
B2D3 ⁽⁸⁾	B2D37	B2D36	B2D35	B2D34	B2D33	B2D32	B2D31	B2D30	XXXX XXXX	63, 305
B2D2 ⁽⁸⁾	B2D27	B2D26	B2D25	B2D24	B2D23	B2D22	B2D21	B2D20	xxxx xxxx	63, 305
B2D1 ⁽⁸⁾	B2D17	B2D16	B2D15	B2D14	B2D13	B2D12	B2D11	B2D10	XXXX XXXX	64, 305
B2D0 ⁽⁸⁾	B2D07	B2D06	B2D05	B2D04	B2D03	B2D02	B2D01	B2D00	xxxx xxxx	64, 305
B2DLC ⁽⁸⁾ Receive mode	-	RXRTR	RB1	RB0	DLC3	DLC2	DLC1	DLC0	-xxx xxxx	64, 307
B2DLC ⁽⁸⁾ Transmit mode		TXRTR	_	—	DLC3	DLC2	DLC1	DLC0	-x xxxx	64, 307
B2EIDL ⁽⁸⁾	EID7	EID6	EID5	EID4	EID3	EID2	EID1	EID0	XXXX XXXX	64, 305
B2EIDH ⁽⁸⁾	EID15	EID14	EID13	EID12	EID11	EID10	EID9	EID8	XXXX XXXX	64, 304
B2SIDL ⁽⁸⁾ Receive mode	SID2	SID1	SID0	SRR	EXID	_	EID17	EID16	XXXX X-XX	64, 303
B2SIDL ⁽⁸⁾ Transmit mode	SID2	SID1	SID0	_	EXIDE	_	EID17	EID16	xxx- x-xx	64, 303
B2SIDH ⁽⁸⁾	SID10	SID9	SID8	SID7	SID6	SID5	SID4	SID3	xxxx xxxx	64, 302
B2CON ⁽⁸⁾ Receive mode	RXFUL	RXM1	RXRTRRO	FILHIT4	FILHIT3	FILHIT2	FILHIT1	FILHIT0	0000 0000	64, 301
B2CON ⁽⁸⁾ Transmit mode	TXBIF	RXM1	TXLARB	TXERR	TXREQ	RTREN	TXPRI1	TXPRI0	0000 0000	64, 301
B1D7 ⁽⁸⁾	B1D77	B1D76	B1D75	B1D74	B1D73	B1D72	B1D71	B1D70	XXXX XXXX	64, 305
B1D6 ⁽⁸⁾	B1D67	B1D66	B1D65	B1D64	B1D63	B1D62	B1D61	B1D60	XXXX XXXX	64, 305
B1D5 ⁽⁸⁾	B1D57	B1D56	B1D55	B1D54	B1D53	B1D52	B1D51	B1D50	XXXX XXXX	64, 305
B1D4 ⁽⁸⁾	B1D47	B1D46	B1D45	B1D44	B1D43	B1D42	B1D41	B1D40	XXXX XXXX	64, 305
B1D3 ⁽⁸⁾	B1D37	B1D36	B1D35	B1D34	B1D33	B1D32	B1D31	B1D30	XXXX XXXX	64, 305
B1D2 ⁽⁸⁾	B1D27	B1D26	B1D25	B1D24	B1D23	B1D22	B1D21	B1D20	XXXX XXXX	64, 305
B1D1 ⁽⁸⁾	B1D17	B1D16	B1D15	B1D14	B1D13	B1D12	B1D11	B1D10	xxxx xxxx	64, 305
B1D0 ⁽⁸⁾	B1D07	B1D06	B1D05	B1D04	B1D03	B1D02	B1D01	B1D00	xxxx xxxx	64, 305
B1DLC ⁽⁸⁾ Receive mode	_	RXRTR	RB1	RB0	DLC3	DLC2	DLC1	DLC0	-xxx xxxx	64, 307
B1DLC ⁽⁸⁾ Transmit mode	-	TXRTR	-	_	DLC3	DLC2	DLC1	DLC0	-x xxxx	64, 307
B1EIDL ⁽⁸⁾	EID7	EID6	EID5	EID4	EID3	EID2	EID1	EID0	XXXX XXXX	64, 305
B1EIDH ⁽⁸⁾	EID15	EID14	EID13	EID12	EID11	EID10	EID9	EID8	XXXX XXXX	64, 304
B1SIDL ⁽⁸⁾ Receive mode	SID2	SID1	SID0	SRR	EXID	—	EID17	EID16	хххх х-хх	64, 303
B1SIDL ⁽⁸⁾ Transmit mode	SID2	SID1	SID0	_	EXIDE	_	EID17	EID16	xxx- x-xx	64, 303
B1SIDH ⁽⁸⁾	SID10	SID9	SID8	SID7	SID6	SID5	SID4	SID3	XXXX XXXX	64, 302
B1CON ⁽⁸⁾ Receive mode	RXFUL	RXM1	RXRTRRO	FILHIT4	FILHIT3	FILHIT2	FILHIT1	FILHIT0	0000 0000	64, 301
B1CON ⁽⁸⁾ Transmit mode	TXBIF	TXABT	TXLARB	TXERR	TXREQ	RTREN	TXPRI1	TXPRI0	0000 0000	64, 301

TABLE 6-2:REGISTER FILE SUMMARY (PIC18F2480/2580/4480/4580) (CONTINUED)

Legend: x = unknown, u = unchanged, – = unimplemented, q = value depends on condition

Note 1: Bit 21 of the PC is only available in Test mode and Serial Programming modes.

2: The SBOREN bit is only available when CONFIG2L<1:0> = 01; otherwise, it is disabled and reads as '0'. See Section 5.4 "Brown-out Reset (BOR)".

3: These registers and/or bits are not implemented on PIC18F2X80 devices and are read as '0'. Reset values are shown for PIC18F4X80 devices; individual unimplemented bits should be interpreted as '--'.

4: The PLLEN bit is only available in specific oscillator configuration; otherwise, it is disabled and reads as '0'. See Section 3.6.4 "PLL in INTOSC Modes".

5: The RE3 bit is only available when Master Clear Reset is disabled (CONFIG3H<7> = 0); otherwise, RE3 reads as '0'. This bit is read-only.

6: RA6/RA7 and their associated latch and direction bits are individually configured as port pins based on various primary oscillator modes. When disabled, these bits read as '0'.

7: CAN bits have multiple functions depending on the selected mode of the CAN module.

8: This register reads all '0's until the ECAN[™] technology is set up in Mode 1 or Mode 2.

9: These registers are available on PIC18F4X80 devices only.

7.4 Erasing Flash Program Memory

The minimum erase block is 32 words or 64 bytes. Only through the use of an external programmer, or through ICSP control, can larger blocks of program memory be bulk erased. Word erase in the Flash array is not supported.

When initiating an erase sequence from the microcontroller itself, a block of 64 bytes of program memory is erased. The Most Significant 16 bits of the TBLPTR<21:5> point to the block being erased. TBLPTR<4:0> are ignored.

The EECON1 register commands the erase operation. The EEPGD bit must be set to point to the Flash program memory. The WREN bit must be set to enable write operations. The FREE bit is set to select an erase operation.

For protection, the write initiate sequence for EECON2 must be used.

A long write is necessary for erasing the internal Flash. Instruction execution is halted while in a long write cycle. The long write will be terminated by the internal programming timer.

7.4.1 FLASH PROGRAM MEMORY ERASE SEQUENCE

The sequence of events for erasing a block of internal program memory location is:

- 1. Load Table Pointer register with address of row being erased.
- 2. Set the EECON1 register for the erase operation:
 - set EEPGD bit to point to program memory;
 - · clear the CFGS bit to access program memory;
 - set WREN bit to enable writes;
 - set FREE bit to enable the erase.
- 3. Disable interrupts.
- 4. Write 55h to EECON2.
- 5. Write 0AAh to EECON2.
- 6. Set the WR bit. This will begin the row erase cycle.
- 7. The CPU will stall for duration of the erase (about 2 ms using internal timer).
- 8. Re-enable interrupts.

EXAMPLE 7-2:	ERASING A FLASH PROGRAM MEMORY ROW

	MOVLW MOVWF MOVWF MOVLW MOVWF	CODE_ADDR_UPPER TBLPTRU CODE_ADDR_HIGH TBLPTRH CODE_ADDR_LOW TBLPTRL	;;	load TBLPTR with the base address of the memory block
ERASE_ROW				
	BSF	EECON1, EEPGD	;	point to Flash program memory
	BCF	EECON1, CFGS	;	access Flash program memory
	BSF	EECON1, WREN	;	enable write to memory
	BSF	EECON1, FREE	;	enable Row Erase operation
	BCF	INTCON, GIE	;	disable interrupts
Required	MOVLW	55h		
Sequence	MOVWF	EECON2	;	write 55h
	MOVLW	0AAh		
	MOVWF	EECON2	;	write OAAh
	BSF	EECON1, WR	;	start erase (CPU stall)
	BSF	INTCON, GIE	;	re-enable interrupts

18.4.9 I²C MASTER MODE REPEATED START CONDITION TIMING

A Repeated Start condition occurs when the RSEN bit (SSPCON2<1>) is programmed high and the I²C logic module is in the Idle state. When the RSEN bit is set, the SCL pin is asserted low. When the SCL pin is sampled low, the Baud Rate Generator is loaded with the contents of SSPADD<5:0> and begins counting. The SDA pin is released (brought high) for one Baud Rate Generator count (TBRG). When the Baud Rate Generator times out, and if SDA is sampled high, the SCL pin will be deasserted (brought high). When SCL is sampled high, the Baud Rate Generator is reloaded with the contents of SSPADD<6:0> and begins counting. SDA and SCL must be sampled high for one TBRG. This action is then followed by assertion of the SDA pin (SDA = 0) for one TBRG while SCL is high. Following this, the RSEN bit (SSPCON2<1>) will be automatically cleared and the Baud Rate Generator will not be reloaded, leaving the SDA pin held low. As soon as a Start condition is detected on the SDA and SCL pins, the S bit (SSPSTAT<3>) will be set. The SSPIF bit will not be set until the Baud Rate Generator has timed out.

- Note 1: If RSEN is programmed while any other event is in progress, it will not take effect.
 - **2:** A bus collision during the Repeated Start condition occurs if:
 - SDA is sampled low when SCL goes from low-to-high.
 - SCL goes low before SDA is asserted low. This may indicate that another master is attempting to transmit a data '1'.

Immediately following the SSPIF bit getting set, the user may write the SSPBUF with the 7-bit address in 7-bit mode, or the default first address in 10-bit mode. After the first eight bits are transmitted and an ACK is received, the user may then transmit an additional eight bits of address (10-bit mode) or eight bits of data (7-bit mode).

18.4.9.1 WCOL Status Flag

If the user writes the SSPBUF when a Repeated Start sequence is in progress, the WCOL is set and the contents of the buffer are unchanged (the write doesn't occur).

Note: Because queueing of events is not allowed, writing of the lower 5 bits of SSPCON2 is disabled until the Repeated Start condition is complete.

FIGURE 18-20: REPEAT START CONDITION WAVEFORM

18.4.17.3 Bus Collision During a Stop Condition

Bus collision occurs during a Stop condition if:

- a) After the SDA pin has been deasserted and allowed to float high, SDA is sampled low after the BRG has timed out.
- b) After the SCL pin is deasserted, SCL is sampled low before SDA goes high.

The Stop condition begins with SDA asserted low. When SDA is sampled low, the SCL pin is allowed to float. When the pin is sampled high (clock arbitration), the Baud Rate Generator is loaded with SSPADD<6:0> and counts down to 0. After the BRG times out, SDA is sampled. If SDA is sampled low, a bus collision has occurred. This is due to another master attempting to drive a data '0' (Figure 18-31). If the SCL pin is sampled low before SDA is allowed to float high, a bus collision occurs. This is another case of another master attempting to drive a data '0' (Figure 18-32).

FIGURE 18-31: BUS COLLISION DURING A STOP CONDITION (CASE 1)

FIGURE 18-32: BUS COLLISION DURING A STOP CONDITION (CASE 2)

EXAMPLE 19-1: CALCULATING BAUD RATE ERROR

For a device with FOSC of 16 MHz, desired baud rate of 9600, Asynchronous mode, 8-bit BRG:							
Desired Baud Rate	=	Fosc/(64 ([SPBRGH:SPBRG] + 1)					
Solving for SPBRGH:SPBRG:							
Х	=	((FOSC/Desired Baud Rate)/64) – 1					
	=	((16000000/9600)/64) – 1					
	=	[25.042] = 25					
Calculated Baud Rate	=	16000000/(64 (25 + 1))					
	=	9615					
Error	=	(Calculated Baud Rate - Desired Baud Rate)/Desired Baud Rate					
	=	(9615 - 9600)/9600 = 0.16%					

TABLE 19-2: REGISTERS ASSOCIATED WITH BAUD RATE GENERATOR

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Reset Values on Page:
TXSTA	CSRC	TX9	TXEN	SYNC	SENDB	BRGH	TRMT	TX9D	57
RCSTA	SPEN	RX9	SREN	CREN	ADDEN	FERR	OERR	RX9D	57
BAUDCON	ABDOVF RCIDL — SCKP BRG16 — WUE ABDEN							57	
SPBRGH	EUSART Baud Rate Generator Register High Byte								57
SPBRG	EUSART E	EUSART Baud Rate Generator Register Low Byte							

Legend: — = unimplemented, read as '0'. Shaded cells are not used by the BRG.

The module is enabled by setting the HLVDEN bit. Each time that the HLVD module is enabled, the circuitry requires some time to stabilize. The IRVST bit is a read-only bit and is used to indicate when the circuit is stable. The module can only generate an interrupt after the circuit is stable and IRVST is set.

The VDIRMAG bit determines the overall operation of the module. When VDIRMAG is cleared, the module monitors for drops in VDD below a predetermined set point. When the bit is set, the module monitors for rises in VDD above the set point.

23.1 Operation

When the HLVD module is enabled, a comparator uses an internally generated reference voltage as the set point. The set point is compared with the trip point where each node in the resistor divider represents a trip point voltage. The "trip point" voltage is the voltage level at which the device detects a high or low-voltage event, depending on the configuration of the module. When the supply voltage is equal to the trip point, the voltage tapped off of the resistor array is equal to the internal reference voltage generated by the voltage reference module. The comparator then generates an interrupt signal by setting the HLVDIF bit.

The trip point voltage is software programmable to any one of 16 values. The trip point is selected by programming the HLVDL<3:0> bits (HLVDCON<3:0>).

The HLVD module has an additional feature that allows the user to supply the trip voltage to the module from an external source. This mode is enabled when bits, HLVDL<3:0>, are set to '1111'. In this state, the comparator input is multiplexed from the external input pin, HLVDIN. This gives users flexibility because it allows them to configure the High/Low-Voltage Detect interrupt to occur at any voltage in the valid operating range.

REGISTER 24-2: CANSTAT: CAN STATUS REGISTER

Mode 0	R-1	R-0	R-0	R-0	R-0	R-0	R-0	U-0
wode u	OPMODE2 ⁽¹⁾	OPMODE1 ⁽¹⁾	OPMODE0 ⁽¹⁾		ICODE3	ICODE2	ICODE1	_
Mode 1 2	R-1	R-0	R-0	R-0	R-0	R-0	R-0	R-0
Mode 1,2	OPMODE2 ⁽¹⁾	OPMODE1 ⁽¹⁾	OPMODE0 ⁽¹⁾	EICODE4	EICODE3	EICODE2	EICODE1	EICODE0
	bit 7							bit 0
Legend:								
R = Readable bit			W = Writable	bit	U = Unimplemented bit, read as '0'			
-n = Value at POR			'1' = Bit is set		'0' = Bit is c	leared	x = Bit is un	known

bit 7-5 **OPMODE<2:0>:** Operation Mode Status bits⁽¹⁾

- 111 = Reserved
- 110 = Reserved
- 101 = Reserved
- 100 = Configuration mode
- 011 = Listen Only mode
- 010 = Loopback mode
- 001 = Disable/Sleep mode
- 000 = Normal mode

bit 4 Mode 0:

Unimplemented: Read as '0'

bit 3-1 ICODE<3:1>: Interrupt Code bits

When an interrupt occurs, a prioritized coded interrupt value will be present in these bits. This code indicates the source of the interrupt. By copying ICODE<3:1> to WIN<3:0> (Mode 0) or EICODE<4:0> to EWIN<4:0> (Mode 1 and 2), it is possible to select the correct buffer to map into the Access Bank area. See Example 24-2 for a code example. To simplify the description, the following table lists all five bits.

	Mode 0	Mode 1	Mode 2
No interrupt	00000	00000	00000
CAN bus error interrupt	00010	00010	00010
TXB2 interrupt	00100	00100	00100
TXB1 interrupt	00110	00110	00110
TXB0 interrupt	01000	01000	01000
RXB1 interrupt	01010	10001	
RXB0 interrupt	01100	10000	10000
Wake-up interrupt	00010	01110	01110
RXB0 interrupt		10000	10000
RXB1 interrupt		10001	10000
RX/TX B0 interrupt		10010	10010 (2)
RX/TX B1 interrupt		10011	10011 (2)
RX/TX B2 interrupt		10100	10100 (2)
RX/TX B3 interrupt		10101	10101 (2)
RX/TX B4 interrupt		10110	10110 (2)
RX/TX B5 interrupt		10111	10111 (2)

bit 0 Unimplemented: Read as '0'

bit 4-0 Mode 1, 2:

EICODE<4:0>: Interrupt Code bits

See ICODE<3:1> above.

- **Note 1:** To achieve maximum power saving and/or able to wake-up on CAN bus activity, switch CAN module in Disable/Sleep mode before putting device to Sleep.
 - 2: If buffer is configured as receiver, EICODE bits will contain '10000' upon interrupt.

$\label{eq:register24-26:BnSIDL: TX/RX BUFFER n STANDARD IDENTIFIER REGISTERS, \\ LOW BYTE IN RECEIVE MODE [0 \le n \le 5, TXnEN (BSEL0<n>) = 0]^{(1)}$

R-x	R-x	R-x	R-x	R-x	U-0	R-x	R-x
SID2	SID1	SID0	SRR	EXID	—	EID17	EID16
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 7-5	SID<2:0>: Standard Identifier bits (if EXID = 0)
	Extended Identifier bits, EID<20:18> (if EXID = 1).
bit 4	SRR: Substitute Remote Transmission Request bit
	This bit is always '1' when EXID = 1 or equal to the value of RXRTRRO (BnCON<5>) when EXID = 0.
bit 3	EXID: Extended Identifier Enable bit
	 1 = Received message is an extended identifier frame (SID<10:0> are EID<28:18>) 0 = Received message is a standard identifier frame
bit 2	Unimplemented: Read as '0'
bit 1-0	EID<17:16>: Extended Identifier bits

Note 1: These registers are available in Mode 1 and 2 only.

$\label{eq:register24-27:BnSiDL: TX/RX BUFFER n STANDARD IDENTIFIER REGISTERS, \\ LOW BYTE IN RECEIVE MODE [0 \le n \le 5, TXnEN (BSEL0<n>) = 1]^{(1)}$

R/W-x	R/W-x	R/W-x	U-0	R/W-x	U-0	R/W-x	R/W-x	
SID2	SID1	SID0	—	EXIDE	—	EID17	EID16	
bit 7 bit 0								

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 7-5	SID<2:0>: Standard Identifier bits (if EXIDE = 0)
	Extended Identifier bits, EID<20:18> (if EXIDE = 1).
bit 4	Unimplemented: Read as '0'
bit 3	EXIDE: Extended Identifier Enable bit
	 1 = Received message is an extended identifier frame (SID<10:0> are EID<28:18>) 0 = Received message is a standard identifier frame
bit 2	Unimplemented: Read as '0'
bit 1-0	EID<17:16>: Extended Identifier bits

Note 1: These registers are available in Mode 1 and 2 only.

24.7.3 ENHANCED FIFO MODE

When configured for Mode 2, two of the dedicated receive buffers in combination with one or more programmable transmit/receive buffers, are used to create a maximum of an 8 buffer deep FIFO buffer. In this mode, there is no direct correlation between filters and receive buffer registers. Any filter that has been enabled can generate an acceptance. When a message has been accepted, it is stored in the next available receive buffer register and an internal Write Pointer is incremented. The FIFO can be a maximum of 8 buffers deep. The entire FIFO must consist of contiguous receive buffers. The FIFO head begins at RXB0 buffer and its tail spans toward B5. The maximum length of the FIFO is limited by the presence or absence of the first transmit buffer starting from B0. If a buffer is configured as a transmit buffer, the FIFO length is reduced accordingly. For instance, if B3 is configured as a transmit buffer, the actual FIFO will consist of RXB0, RXB1, B0, B1 and B2, a total of 5 buffers. If B0 is configured as a transmit buffer, the FIFO length will be 2. If none of the programmable buffers are configured as a transmit buffer, the FIFO will be 8 buffers deep. A system that requires more transmit buffers should try to locate transmit buffers at the very end of B0-B5 buffers to maximize available FIFO length.

When a message is received in FIFO mode, the interrupt flag code bits (EICODE<4:0>) in the CANSTAT register will have a value of '10000', indicating the FIFO has received a message. FIFO Pointer bits, FP<3:0> in the CANCON register, point to the buffer that contains data not yet read. The FIFO Pointer bits, in this sense, serve as the FIFO Read Pointer. The user should use FP bits and read corresponding buffer data. When receive data is no longer needed, the RXFUL bit in the current buffer must be cleared, causing FP<3:0> to be updated by the module.

To determine whether FIFO is empty or not, the user may use the FP<3:0> bits to access the RXFUL bit in the current buffer. If RXFUL is cleared, the FIFO is considered to be empty. If it is set, the FIFO may contain one or more messages. In Mode 2, the module also provides a bit called FIFO High Water Mark (FIFOWM) in the ECANCON register. This bit can be used to cause an interrupt whenever the FIFO contains only one or four empty buffers. The FIFO high water mark interrupt can serve as an early warning to a full FIFO condition.

24.7.4 TIME-STAMPING

The CAN module can be programmed to generate a time-stamp for every message that is received. When enabled, the module generates a capture signal for CCP1, which in turn captures the value of either Timer1 or Timer3. This value can be used as the message time-stamp.

To use the time-stamp capability, the CANCAP bit (CIOCON<4>) must be set. This replaces the capture input for CCP1 with the signal generated from the CAN module. In addition, CCP1CON<3:0> must be set to '0011' to enable the CCP Special Event Trigger for CAN events.

24.8 Message Acceptance Filters and Masks

The message acceptance filters and masks are used to determine if a message in the Message Assembly Buffer should be loaded into any of the receive buffers. Once a valid message has been received into the MAB, the identifier fields of the message are compared to the filter values. If there is a match, that message will be loaded into the appropriate receive buffer. The filter masks are used to determine which bits in the identifier are examined with the filters. A truth table is shown below in Table 24-2 that indicates how each bit in the identifier is compared to the masks and filters to determine if a message should be loaded into a receive buffer. The mask essentially determines which bits to apply the acceptance filters to. If any mask bit is set to a zero, then that bit will automatically be accepted regardless of the filter bit.

TABLE 24-2:	FILTER/MASK TRUTH TABLE
-------------	-------------------------

Mask bit n	Filter Message bit n bit n001		Accept or Reject bit n
0	Х	х	Accept
1	0	0	Accept
1	0	1	Reject
1	1	0	Reject
1	1	1	Accept

Legend: x = don't care

In Mode 0, acceptance filters, RXF0 and RXF1, and filter mask, RXM0, are associated with RXB0. Filters, RXF2, RXF3, RXF4 and RXF5, and mask, RXM1, are associated with RXB1.

Table 24-3 shows the relation between the clock generated by the PLL and the frequency error from jitter (measured jitter-induced error of 2%, Gaussian distribution, within 3 standard deviations), as a percentage of the nominal clock frequency.

This is clearly smaller than the expected drift of a crystal oscillator, typically specified at 100 ppm or 0.01%. If we add jitter to oscillator drift, we have a total frequency drift of 0.0132%. The total oscillator frequency errors for common clock frequencies and bit rates, including both drift and jitter, are shown in Table 24-4.

TABLE 24-3:	FREQUENCY ERROR FROM JITTER AT VARIOUS PLL-GENERATED CLOCK SPEEDS

DLI		T _{jitter}	Frequency Error at Various Nominal Bit Times (Bit Rates)					
Output	P _{jitter}		8 μs (125 Kb/s)	4 μs (250 Kb/s)	2 μs (500 Kb/s)	1 μs (1 Mb/s)		
40 MHz	0.5 ns	1 ns	0.00125%	0.00250%	0.005%	0.01%		
24 MHz	0.83 ns	1.67 ns	0.00209%	0.00418%	0.008%	0.017%		
16 MHz	1.25 ns	2.5 ns	0.00313%	0.00625%	0.013%	0.025%		

TABLE 24-4:TOTAL FREQUENCY ERROR AT VARIOUS PLL-GENERATED CLOCK SPEEDS
(100 PPM OSCILLATOR DRIFT, INCLUDING ERROR FROM JITTER)

	Frequency Error at Various Nominal Bit Times (Bit Rates)						
Nominal PLL Output	8 μs (125 Kb/s)	4 μs (250 Kb/s)	2 μs (500 Kb/s)	1 μs (1 Mb/s)			
40 MHz	0.01125%	0.01250%	0.015%	0.02%			
24 MHz	0.01209%	0.01418%	0.018%	0.027%			
16 MHz	0.01313%	0.01625%	0.023%	0.035%			

24.11 Programming Time Segments

Some requirements for programming of the time segments:

- Prop_Seg + Phase_Seg 1 \geq Phase_Seg 2
- Phase_Seg $2 \ge$ Sync Jump Width.

For example, assume that a 125 kHz CAN baud rate is desired, using 20 MHz for Fosc. With a Tosc of 50 ns, a baud rate prescaler value of 04h gives a TQ of 500 ns. To obtain a Nominal Bit Rate of 125 kHz, the Nominal Bit Time must be 8 μ s or 16 TQ.

Using 1 TQ for the Sync_Seg, 2 TQ for the Prop_Seg and 7 TQ for Phase Segment 1 would place the sample point at 10 TQ after the transition. This leaves 6 TQ for Phase Segment 2. By the rules above, the Sync Jump Width could be the maximum of 4 Tq. However, normally a large SJW is only necessary when the clock generation of the different nodes is inaccurate or unstable, such as using ceramic resonators. Typically, an SJW of 1 is enough.

24.12 Oscillator Tolerance

As a rule of thumb, the bit timing requirements allow ceramic resonators to be used in applications with transmission rates of up to 125 Kbit/sec. For the full bus speed range of the CAN protocol, a quartz oscillator is required. Refer to ISO11898-1 for oscillator tolerance requirements.

25.2 Watchdog Timer (WDT)

For PIC18F2480/2580/4480/4580 devices, the WDT is driven by the INTRC source. When the WDT is enabled, the clock source is also enabled. The nominal WDT period is 4 ms and has the same stability as the INTRC oscillator.

The 4 ms period of the WDT is multiplied by a 16-bit postscaler. Any output of the WDT postscaler is selected by a multiplexer, controlled by bits in Configuration Register 2H. Available periods range from 4 ms to 131.072 seconds (2.18 minutes). The WDT and postscaler are cleared when any of the following events occur: a SLEEP or CLRWDT instruction is executed, the IRCF bits (OSCCON<6:4>) are changed or a clock failure has occurred.

- Note 1: The CLRWDT and SLEEP instructions clear the WDT and postscaler counts when executed.
 - 2: Changing the setting of the IRCF bits (OSCCON<6:4>) clears the WDT and postscaler counts.
 - **3:** When a CLRWDT instruction is executed, the postscaler count will be cleared.

25.2.1 CONTROL REGISTER

Register 25-14 shows the WDTCON register. This is a readable and writable register which contains a control bit that allows software to override the WDT enable Configuration bit, but only if the Configuration bit has disabled the WDT.

FIGURE 25-1: WDT BLOCK DIAGRAM

GO	го	Uncondit	ional Branc	h		INCF	Incremen	tf	
Synt	ax:	GOTO k			•	Syntax:	INCF f{,c	1 {,a}}	
Oper	ands:	$0 \le k \le 104$	8575			Operands:	$0 \le f \le 255$		
Oper	ation:	$k \rightarrow PC<20$):1>				d ∈ [0,1] a ∈ [0,1]		
Statu	Status Affected: None			Operation:	$a \in [0, 1]$				
Enco	oding:]	Statua Affectado	$(1) + 1 \rightarrow 00$		
1st w	/ord (k<7:0>)	1110	1111 k ₇ k	kk kkkk ₀			C, DC, N,	00, 2	
2nd v	word(k<19:8>)	1111	k ₁₉ kkk kk	kk kkkk ₈		Encoding:	0010	10da ff	ff ffff
Desc	Description: GOTO allows an unconditional branch anywhere within entire 2-Mbyte memory range. The 20-bit value 'k' is loaded into PC<20:1>. GOTO is always a two-cycle instruction.			Description:	The content incremente placed in W placed bac If 'a' is '0', t If 'a' is '1', t	ts of register 'f d. If 'd' is '0', t /. If 'd' is '1', tr k in register 'f' he Access Ba he BSR is use	f' are he result is he result is he result is he result is he result is he result is he result i		
Word	Words: 2				OF IN Datik. If 'a' is '0' and the extended inst				
Cycle	es:	2					set is enab	led, this instru	ction operates
QC	ycle Activity:						in Indexed	Addressing	
	Q1	Q2	Q3	Q4			mode whenever $f \le 95$ (5Fh). See		
	Decode	Read literal 'k'<7:0>,	No operation	Read literal 'k'<19:8>, Write to PC			Bit-Oriente	ed Instruction set Mode" for	is in Indexed details.
	No	No	No	No	-	Words:	1		
	operation	operation	operation	operation		Cycles:	1		
						Q Cycle Activity:			
Exar	nple:	GOTO THE	RE			Q1	Q2	Q3	Q4
After Instruction PC = Address (THERE)			Decode	Read register 'f'	Process Data	Write to destination			
						Example: Before Instruc CNT	INCF tion = FFh	CNT, 1, 0	
						Z C DC	= 0 = ? = ?		

After Instruction

CNT Z C DC

= = =

MULLW	Multiply	Multiply Literal with W			
Syntax:	MULLW	k			
Operands:	$0 \le k \le 255$				
Operation:	(W) x k \rightarrow	PRODH:	PRODL		
Status Affected:	None				
Encoding:	0000	1101	kkkk	kkkk	
Description:	An unsigned multiplication is carried out between the contents of W and the 8-bit literal 'k'. The 16-bit result is placed in the PRODH:PRODL register pair. PRODH contains the high byte. W is unchanged. None of the Status flags are affected. Note that neither overflow nor carry is possible in this operation. A zero result is possible but not detected				
Words:	1				
Cycles:	1				
Q Cycle Activity:					
Q1	Q2	Q3		Q4	
Decode	Read literal 'k'	Proce Data	ss a re P	Write egisters RODH:	

Example:	MULLW	0C4h
Before Instruction	า	
W	=	E2h
PRODH	=	?
PRODL	=	?
After Instruction		
W	=	E2h
PRODH	=	ADh
PRODL	=	08h

MULWF	Multiply	W with f		
Syntax:	MULWF	f {,a}		
Operands:	0 ≤ f ≤ 255 a ∈ [0,1]	5		
Operation:	(W) x (f) –	> PRODH:F	RODL	
Status Affected:	None			
Encoding:	0000	001a	ffff	ffff
Description:	An unsign out betwee register fill result is st register pa high byte. unchange None of th Note that if possible in result is pa If 'a' is '0', selected. If to select till If 'a' is '0' instruction Offset Add $f \le 95$ (5FI "Byte-Ori Instruction Mode" for	ed multiplic en the conte e location 'f ored in the l air. PRODH Both W and d. e Status fla neither over n this operation the Access f 'a' is '1', the GPR bar and the extr set is enable operates in dressing mon 1). See Sec ented and I ns in Index details.	ation is ents of N '. The 1 PRODE contain d 'f' are gs are flow not tion. A not dete Bank i ne BSR hk. ended bled, this n Index de whe tion 26 Bit-Oric ed Lite	carried W and th 6-bit 1:PROD hs the affected or carry is zero ected. is ected. is et s used s ed Litera enever 2.3 ented ral Offse
Words:	1			
Cycles:	1			
Q Cycle Activity:				
Q1	Q2	Q3		Q4
Decode	Read register 'f'	Process Data	re Pl P	Write gisters RODH: RODL
Example:	MULWF	REG, 1		
Before Instruc	tion			
W REG PRODH PRODL	= C4 = B5 = ? = ?	lh ih		

=	C4h
=	B5h
=	8Ah
=	94h
	= = =

Param No.	Symbol	Characteristic		Min	Max	Units	Conditions
70	TssL2scH	$\overline{SS} \downarrow$ to SCK \downarrow or SCK \uparrow Input		3 Тсү	-	ns	
	, TssL2scL						
71	TscH	SCK Input High Time	Continuous	1.25 Tcy + 30		ns	
71A			Single Byte	40		ns	(Note 1)
72	TscL	SCK Input Low Time	Continuous	1.25 Tcy + 30		ns	
72A			Single Byte	40	—	ns	(Note 1)
73	TDIV2scH, TDIV2scL	Setup Time of SDI Data Input to SCK Edge		20		ns	
73A	Тв2в	Last Clock Edge of Byte1 to the First Clock Edge of Byte 2		1.5 Tcy + 40	—	ns	(Note 2)
74	TscH2DIL, TscL2DIL	Hold Time of SDI Data Input to SCK Edge		40		ns	
75	TDOR	SDO Data Output Rise Time	PIC18FXXXX	_	25	ns	
			PIC18LFXXXX		45	ns	VDD = 2.0V
76	TdoF	SDO Data Output Fall Time		—	25	ns	
77	TssH2doZ	SS ↑ to SDO Output High-Impedance		10	50	ns	
80	TscH2doV	SDO Data Output Valid after SCK	PIC18FXXXX		50	ns	
	, TscL2doV	Edge	PIC18LFXXXX		100	ns	VDD = 2.0V
83	TscH2ssH , TscL2ssH	SS ↑ after SCK Edge		1.5 Tcy + 40		ns	

TABLE 28-16: EXAMPLE SPI MODE REQUIREMENTS (SLAVE MODE TIMING, CKE = 0)

Note 1: Requires the use of Parameter #73A.

2: Only if Parameter #71A and #72A are used.

STATUS	
TXBnEIDH (Transmit Buffer n Extended	
Identifier, High Byte)289	
TXBnEIDL (Transmit Buffer n Extended	
Identifier, Low Byte)	
IXBnSIDH (Transmit Buffer n Standard	
Identifier, High Byte)	
IABIISIDE (TRAISINIL BUILET II Standard	
TYERRONT (Transmit Error Count) 201	
TXSTA (Transmit Status and Control) 232	
WDTCON (Watchdog Timer Control) 359	
RESET 397	
Resets	
Brown-out Reset (BOR)	
Oscillator Start-up Timer (OST)	
Power-on Reset (POR)	
Power-up Timer (PWRT)	
RETFIE	
RETLW	
RETURN	
Return Address Stack	
and Associated Registers	
Return Stack Pointer (STKPTR)	
Revision History	
RINCE 400	
RRCF 400	
RRNCF 401	
5	

SCK	191
SDI	191
SDO	191
SEC_IDLE Mode	44
SEC_RUN Mode	40
Serial Clock, SCK	191
Serial Data In (SDI)	191
Serial Data Out (SDO)	191
Serial Peripheral Interface. See SPI Mode.	
SETF	401
Slave Select (SS)	191
SLEEP	402
Sleep	
OSC1 and OSC2 Pin States	37
Software Simulator (MPLAB SIM)	419
Special Event Trigger. See Compare (ECCP Mode).	
Special Event Trigger. See Compare (ECCP Module).	
Special Features of the CPU	349
Special Function Registers	77
Мар	. 77–82
SPI Mode (MSSP)	
Associated Registers	199
Bus Mode Compatibility	199
Effects of a Reset	199

Enabling SPI I/O	195
Master Mode	196
Master/Slave Connection	195
Operation	194
Operation in Power-Managed Modes	199
Serial Clock	191
Serial Data In	191
Serial Data Out	191
Slave Mode	197
Slave Select	191
Slave Select Synchronization	197
SPI Clock	196
Typical Connection	195
SS	191
SSPOV	221
SSPOV Status Flag	221
SSPSTAT Register	
R/W Bit	204, 205
Stack Full/Underflow Resets	
STATUS Register	
SUBFSR	413
SUBFWB	402
SUBLW	403
SUBULNK	413
SUBWF	403
SUBWFB	404
SWAPF	404

Т

T0CON Register	
PSA Bit	153
TOCS Bit	152
T0PS2:T0PS0 Bits	153
T0SE Bit	152
Table Pointer Operations (table)	104
Table Reads/Table Writes	70
TBLRD	405
TBLWT	406
Time-out in Various Situations (table)	51
Timer0	151
16-Bit Mode Reads and Writes	152
Associated Registers	153
Clock Source Edge Select (T0SE Bit)	152
Clock Source Select (T0CS Bit)	152
Operation	152
Overflow Interrupt	153
Prescaler. See Prescaler, Timer0.	
Timer1	155
16-Bit Read/Write Mode	157
Associated Registers	159
Interrupt	158
Operation	156
Oscillator	155, 157
Oscillator Layout Considerations	158
Overflow Interrupt	155
Resetting, Using a Special Event Trigger	
Output (CCP)	158
Special Event Trigger (ECCP)	178
TMR1H Register	155
TMR1L Register	155
Use as a Real-Time Clock	158
Timer2	161
Associated Registers	162
Interrupt	162
Operation	161
Output	162