
Microchip Technology - PIC18F2580-I/SP Datasheet

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated
circuits designed to perform specific tasks within larger
systems. These microcontrollers are essentially compact
computers on a single chip, containing a processor core,
memory, and programmable input/output peripherals.
They are called "embedded" because they are embedded
within electronic devices to control various functions,
rather than serving as standalone computers.
Microcontrollers are crucial in modern electronics,
providing the intelligence and control needed for a wide
range of applications.

Applications of "Embedded -
Microcontrollers"

Embedded microcontrollers are used in virtually every
sector of electronics, providing the necessary control and
processing power for a multitude of applications. In
consumer electronics, they manage the operations of
smartphones, home appliances, and wearable devices. In
automotive systems, microcontrollers control engine
functions, safety features, and infotainment systems.
Industrial applications rely on microcontrollers for
automation, robotics, and process control. Additionally,
microcontrollers are integral in medical devices, handling
functions such as monitoring, diagnostics, and control of
therapeutic equipment. Their versatility and
programmability make them essential components in
creating efficient, responsive, and intelligent electronic
systems.

Common Subcategories of "Embedded -
Microcontrollers"

Embedded microcontrollers can be categorized based on
their architecture, performance, and application focus.
Common subcategories include 8-bit, 16-bit, and 32-bit
microcontrollers, differentiated by their processing power
and memory capacity. 8-bit microcontrollers are typically
used in simple applications like basic control systems and
small devices. 16-bit microcontrollers offer a balance
between performance and complexity, suitable for
medium-scale applications like industrial automation. 32-
bit microcontrollers provide high performance and are
used in complex applications requiring advanced
processing, such as automotive systems and sophisticated
consumer electronics. Each subcategory serves a specific
range of applications, providing tailored solutions for
different performance and complexity needs.

Types of "Embedded - Microcontrollers"

There are various types of embedded microcontrollers,
each designed to meet specific application requirements.
General-purpose microcontrollers are versatile and used in
a wide range of applications, offering a balance of
performance, memory, and peripheral options. Special-
purpose microcontrollers are tailored for specific tasks,
such as automotive controllers, which include features like
built-in motor control peripherals and automotive-grade

Details

Product Status Active

Core Processor PIC

Core Size 8-Bit

Speed 40MHz

Connectivity CANbus, I²C, SPI, UART/USART

Peripherals Brown-out Detect/Reset, HLVD, POR, PWM, WDT

Number of I/O 25

Program Memory Size 32KB (16K x 16)

Program Memory Type FLASH

EEPROM Size 256 x 8

RAM Size 1.5K x 8

Voltage - Supply (Vcc/Vdd) 4.2V ~ 5.5V

Data Converters A/D 8x10b

Oscillator Type Internal

Operating Temperature -40°C ~ 85°C (TA)

Mounting Type Through Hole

Package / Case 28-DIP (0.300", 7.62mm)

Supplier Device Package 28-SPDIP

Purchase URL https://www.e-xfl.com/product-detail/microchip-technology/pic18f2580-i-sp

Email: info@E-XFL.COM Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

https://www.e-xfl.com/product/pdf/pic18f2580-i-sp-4388595
https://www.e-xfl.com
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers

PIC18F2480/2580/4480/4580
1.0 DEVICE OVERVIEW
This document contains device specific information for
the following devices:

• PIC18F2480
• PIC18F2580
• PIC18F4480
• PIC18F4580

This family of devices offers the advantages of all
PIC18 microcontrollers – namely, high computational
performance at an economical price – with the addition
of high-endurance, Enhanced Flash program
memory. In addition to these features, the
PIC18F2480/2580/4480/4580 family introduces design
enhancements that make these microcontrollers a
logical choice for many high-performance,
power-sensitive applications.

1.1 New Core Features

1.1.1 nanoWatt TECHNOLOGY
All of the devices in the PIC18F2480/2580/4480/4580
family incorporate a range of features that can signifi-
cantly reduce power consumption during operation.
Key items include:

• Alternate Run Modes: By clocking the controller
from the Timer1 source or the internal oscillator
block, power consumption during code execution
can be reduced by as much as 90%.

• Multiple Idle Modes: The controller can also run
with its CPU core disabled but the peripherals still
active. In these states, power consumption can be
reduced even further, to as little as 4% of normal
operation requirements.

• On-the-Fly Mode Switching: The
power-managed modes are invoked by user code
during operation, allowing the user to incorporate
power-saving ideas into their application’s
software design.

• Lower Consumption in Key Modules: The
power requirements for both Timer1 and the
Watchdog Timer have been reduced by up to
80%, with typical values of 1.1 and 2.1 μA,
respectively.

• Extended Instruction Set: In addition to the
standard 75 instructions of the PIC18 instruction
set, PIC18F2480/2580/4480/4580 devices also
provide an optional extension to the core CPU
functionality. The added features include eight
additional instructions that augment indirect and
indexed addressing operations and the
implementation of Indexed Literal Offset
Addressing mode for many of the standard PIC18
instructions.

1.1.2 MULTIPLE OSCILLATOR OPTIONS
AND FEATURES

All of the devices in the PIC18F2480/2580/4480/4580
family offer ten different oscillator options, allowing
users a wide range of choices in developing application
hardware. These include:

• Four Crystal modes, using crystals or ceramic
resonators

• Two External Clock modes, offering the option of
using two pins (oscillator input and a divide-by-4
clock output) or one pin (oscillator input, with the
second pin reassigned as general I/O)

• Two External RC Oscillator modes with the same
pin options as the External Clock modes

• An internal oscillator block which provides an
8 MHz clock (±2% accuracy) and an INTRC
source (approximately 31 kHz, stable over
temperature and VDD), as well as a range of
6 user-selectable clock frequencies, between
125 kHz to 4 MHz, for a total of 8 clock
frequencies. This option frees the two oscillator
pins for use as additional general purpose I/O.

• A Phase Lock Loop (PLL) frequency multiplier,
available to both the high-speed crystal and
internal oscillator modes, which allows clock
speeds of up to 40 MHz. Used with the internal
oscillator, the PLL gives users a complete
selection of clock speeds, from 31 kHz to
32 MHz – all without using an external crystal or
clock circuit.

Besides its availability as a clock source, the internal
oscillator block provides a stable reference source that
gives the family additional features for robust
operation:

• Fail-Safe Clock Monitor: This option constantly
monitors the main clock source against a refer-
ence signal provided by the internal oscillator. If a
clock failure occurs, the controller is switched to
the internal oscillator block, allowing for continued
low-speed operation or a safe application
shutdown.

• Two-Speed Start-up: This option allows the
internal oscillator to serve as the clock source
from Power-on Reset, or wake-up from Sleep
mode, until the primary clock source is available.
© 2009 Microchip Technology Inc. DS39637D-page 9

PIC18F2480/2580/4480/4580
PORTE is a bidirectional I/O port.

RE0/RD/AN5
RE0
RD

AN5

8 25 25
I/O
I

I

ST
TTL

Analog

Digital I/O.
Read control for Parallel Slave Port (see also WR
and CS pins).
Analog Input 5.

RE1/WR/AN6/C1OUT
RE1
WR

AN6
C1OUT

9 26 26
I/O
I

I
O

ST
TTL

Analog
TTL

Digital I/O.
Write control for Parallel Slave Port (see CS
and RD pins).
Analog Input 6.
Comparator 1 output.

RE2/CS/AN7/C2OUT
RE2
CS

AN7
C2OUT

10 27 27
I/O
I

I
O

ST
TTL

Analog
TTL

Digital I/O.
Chip select control for Parallel Slave Port (see
related RD and WR).
Analog Input 7.
Comparator 2 output.

RE3 — — — — — See MCLR/VPP/RE3 pin.
VSS 12,

31
6, 30,

31
6, 29 P — Ground reference for logic and I/O pins.

VDD 11,
32

7, 8,
28, 29

7, 28 P — Positive supply for logic and I/O pins.

NC — 13 12, 13,
33, 34

— — No connect.

TABLE 1-3: PIC18F4480/4580 PINOUT I/O DESCRIPTIONS (CONTINUED)

Pin Name
Pin Number Pin

Type
Buffer
Type Description

PDIP QFN TQFP

Legend: TTL = TTL compatible input CMOS = CMOS compatible input or output
ST = Schmitt Trigger input with CMOS levels I = Input
O = Output P = Power
I2C = I2C™/SMBus input buffer
© 2009 Microchip Technology Inc. DS39637D-page 23

PIC18F2480/2580/4480/4580
B0EIDL(6) 2480 2580 4480 4580 xxxx xxxx uuuu uuuu uuuu uuuu

B0EIDH(6) 2480 2580 4480 4580 xxxx xxxx uuuu uuuu uuuu uuuu

B0SIDL(6) 2480 2580 4480 4580 xxxx x-xx uuuu u-uu uuuu u-uu

B0SIDH(6) 2480 2580 4480 4580 xxxx xxxx uuuu uuuu uuuu uuuu

B0CON(6) 2480 2580 4480 4580 0000 0000 0000 0000 uuuu uuuu

TXBIE(6) 2480 2580 4480 4580 ---0 00-- ---u uu-- ---u uu--

BIE0(6) 2480 2580 4480 4580 0000 0000 0000 0000 uuuu uuuu

BSEL0(6) 2480 2580 4480 4580 0000 00-- 0000 00-- uuuu uu--

MSEL3(6) 2480 2580 4480 4580 0000 0000 0000 0000 uuuu uuuu

MSEL2(6) 2480 2580 4480 4580 0000 0000 0000 0000 uuuu uuuu

MSEL1(6) 2480 2580 4480 4580 0000 0101 0000 0101 uuuu uuuu

MSEL0(6) 2480 2580 4480 4580 0101 0000 0101 0000 uuuu uuuu

SDFLC(6) 2480 2580 4480 4580 ---0 0000 ---0 0000 -u-- uuuu

RXFCON1(6) 2480 2580 4480 4580 0000 0000 0000 0000 uuuu uuuu

RXFCON0(6) 2480 2580 4480 4580 0000 0000 0000 0000 uuuu uuuu

RXFBCON7(6) 2480 2580 4480 4580 0000 0000 0000 0000 uuuu uuuu

RXFBCON6(6) 2480 2580 4480 4580 0000 0000 0000 0000 uuuu uuuu

RXFBCON5(6) 2480 2580 4480 4580 0000 0000 0000 0000 uuuu uuuu

RXFBCON4(6) 2480 2580 4480 4580 0000 0000 0000 0000 uuuu uuuu

RXFBCON3(6) 2480 2580 4480 4580 0000 0000 0000 0000 uuuu uuuu

RXFBCON2(6) 2480 2580 4480 4580 0001 0001 0001 0001 uuuu uuuu

RXFBCON1(6) 2480 2580 4480 4580 0001 0001 0001 0001 uuuu uuuu

RXFBCON0(6) 2480 2580 4480 4580 0000 0000 0000 0000 uuuu uuuu

RXF15EIDL(6) 2480 2580 4480 4580 xxxx xxxx uuuu uuuu uuuu uuuu

RXF15EIDH(6) 2480 2580 4480 4580 xxxx xxxx uuuu uuuu uuuu uuuu

RXF15SIDL(6) 2480 2580 4480 4580 xxx- x-xx uuu- u-uu uuu- u-uu

RXF15SIDH(6) 2480 2580 4480 4580 xxxx xxxx uuuu uuuu uuuu uuuu

RXF14EIDL(6) 2480 2580 4480 4580 xxxx xxxx uuuu uuuu uuuu uuuu

RXF14EIDH(6) 2480 2580 4480 4580 xxxx xxxx uuuu uuuu uuuu uuuu

RXF14SIDL(6) 2480 2580 4480 4580 xxx- x-xx uuu- u-uu uuu- u-uu

RXF14SIDH(6) 2480 2580 4480 4580 xxxx xxxx uuuu uuuu uuuu uuuu

TABLE 5-4: INITIALIZATION CONDITIONS FOR ALL REGISTERS (CONTINUED)

Register Applicable Devices Power-on Reset,
Brown-out Reset

MCLR Resets,
WDT Reset,

RESET Instruction,
Stack Resets

Wake-up via WDT
or Interrupt

Legend: u = unchanged, x = unknown, - = unimplemented bit, read as ‘0’, q = value depends on condition.
Shaded cells indicate conditions do not apply for the designated device.

Note 1: One or more bits in the INTCONx or PIRx registers will be affected (to cause wake-up).
2: When the wake-up is due to an interrupt and the GIEL or GIEH bit is set, the PC is loaded with the interrupt

vector (0008h or 0018h).
3: When the wake-up is due to an interrupt and the GIEL or GIEH bit is set, the TOSU, TOSH and TOSL are

updated with the current value of the PC. The STKPTR is modified to point to the next location in the
hardware stack.

4: See Table 5-3 for Reset value for specific condition.
5: Bits 6 and 7 of PORTA, LATA and TRISA are enabled, depending on the oscillator mode selected. When

not enabled as PORTA pins, they are disabled and read ‘0’.
6: This register reads all ‘0’s until ECAN™ technology is set up in Mode 1 or Mode 2.
© 2009 Microchip Technology Inc. DS39637D-page 65

PIC18F2480/2580/4480/4580

6.4.3.1 FSR Registers and the

INDF Operand
At the core of Indirect Addressing are three sets of
registers: FSR0, FSR1 and FSR2. Each represents a
pair of 8-bit registers, FSRnH and FSRnL. The four
upper bits of the FSRnH register are not used, so each
FSR pair holds a 12-bit value. This represents a value
that can address the entire range of the data memory
in a linear fashion. The FSR register pairs, then, serve
as pointers to data memory locations.

Indirect Addressing is accomplished with a set of
Indirect File Operands, INDF0 through INDF2. These
can be thought of as “virtual” registers: they are

mapped in the SFR space, but are not physically imple-
mented. Reading or writing to a particular INDF register
actually accesses its corresponding FSR register pair.
A read from INDF1, for example, reads the data at the
address indicated by FSR1H:FSR1L. Instructions that
use the INDF registers as operands actually use the
contents of their corresponding FSR as a pointer to the
instruction’s target. The INDF operand is just a
convenient way of using the pointer.

Because Indirect Addressing uses a full 12-bit address,
data RAM banking is not necessary. Thus, the current
contents of the BSR and the Access RAM bit have no
effect on determining the target address.

FIGURE 6-8: INDIRECT ADDRESSING

FSR1H:FSR1L

07

Data Memory

000h

100h

200h

300h

F00h

E00h

FFFh

Bank 0

Bank 1

Bank 2

Bank 14

Bank 15

Bank 3
through
Bank 13

ADDWF, INDF1, 1

07

Using an instruction with one of the
Indirect Addressing registers as the
operand....

...uses the 12-bit address stored in
the FSR pair associated with that
register....

...to determine the data memory
location to be used in that operation.

In this case, the FSR1 pair contains
ECCh. This means the contents of
location ECCh will be added to that
of the W register and stored back in
ECCh.

x x x x 1 1 1 0 1 1 0 0 1 1 0 0

Bank 14
DS39637D-page 96 © 2009 Microchip Technology Inc.

PIC18F2480/2580/4480/4580

REGISTER 10-3: INTCON3: INTERRUPT CONTROL REGISTER 3

R/W-1 R/W-1 U-0 R/W-0 R/W-0 U-0 R/W-0 R/W-0
INT2IP INT1IP — INT2IE INT1IE — INT2IF INT1IF

bit 7 bit 0

Legend:
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’
-n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown

bit 7 INT2IP: INT2 External Interrupt Priority bit
1 = High priority
0 = Low priority

bit 6 INT1IP: INT1 External Interrupt Priority bit
1 = High priority
0 = Low priority

bit 5 Unimplemented: Read as ‘0’
bit 4 INT2IE: INT2 External Interrupt Enable bit

1 = Enables the INT2 external interrupt
0 = Disables the INT2 external interrupt

bit 3 INT1IE: INT1 External Interrupt Enable bit
1 = Enables the INT1 external interrupt
0 = Disables the INT1 external interrupt

bit 2 Unimplemented: Read as ‘0’
bit 1 INT2IF: INT2 External Interrupt Flag bit

1 = The INT2 external interrupt occurred (must be cleared in software)
0 = The INT2 external interrupt did not occur

bit 0 INT1IF: INT1 External Interrupt Flag bit
1 = The INT1 external interrupt occurred (must be cleared in software)
0 = The INT1 external interrupt did not occur

Note: Interrupt flag bits are set when an interrupt condition occurs regardless of the state of its corresponding
enable bit or the global interrupt enable bit. User software should ensure the appropriate interrupt flag bits
are clear prior to enabling an interrupt. This feature allows for software polling.
© 2009 Microchip Technology Inc. DS39637D-page 123

PIC18F2480/2580/4480/4580

TABLE 11-5: PORTC I/O SUMMARY

TABLE 11-6: SUMMARY OF REGISTERS ASSOCIATED WITH PORTC

Pin Name Function I/O TRIS Buffer Description

RC0/T1OSO/
T13CKI

RC0 OUT 0 DIG LATC<0> data output.
IN 1 ST PORTC<0> data input.

T1OSO OUT x ANA Timer1 oscillator output – overrides the TRIS<0> control when enabled.
T13CKI IN 1 ST Timer1/Timer3 clock input.

RC1/T1OSI RC1 OUT 0 DIG LATC<1> data output.
IN 1 ST PORTC<1> data input.

T1OSI IN x ANA Timer1 oscillator input – overrides the TRIS<1> control when enabled.
RC2/CCP1 RC2 OUT 0 DIG LATC<2> data output.

IN 1 ST PORTC<2> data input.
CCP1 OUT 0 DIG CCP1 compare output.

IN 1 ST CCP1 capture input.
RC3/SCK/SCL RC3 OUT 0 DIG LATC<3> data output.

IN 1 ST PORTC<3> data input.
SCK OUT 0 DIG SPI clock output (MSSP module) – must have TRIS set to ‘1’ to allow

MSSP module to control the bidirectional communication.
IN 1 ST SPI clock input (MSSP module).

SCL OUT 0 DIG I2C™/SM bus clock output (MSSP module) – must have TRIS set to ‘1’ to
allow MSSP module to control the bidirectional communication.

IN 1 I2C™/SMB I2C/SM bus clock input.
RC4/SDI/SDA RC4 OUT 0 DIG LATC<4> data output.

IN 1 ST PORTC<4> data input.
SDI IN 1 ST SPI data input (MSSP module).
SDA OUT 1 DIG I2C/SM bus data output (MSSP module) – must have TRIS set to ‘1’ to

allow MSSP module to control the bidirectional communication.
IN 1 I2C/SMB I2C/SM bus data input (MSSP module) – must have TRIS set to ‘1’ to

allow MSSP module to control the bidirectional communication.
RC5/SDO RC5 OUT 0 DIG LATC<5> data output.

IN 1 ST PORTC<5> data input.
SDO OUT 0 DIG SPI data output (MSSP module).

RC6/TX/CK RC6 OUT 0 DIG LATC<6> data output.
IN 1 ST PORTC<6> data input.

TX OUT 0 DIG EUSART data output.
CK OUT 1 DIG EUSART synchronous clock output – must have TRIS set to ‘1’ to enable

EUSART to control the bidirectional communication.
IN 1 ST EUSART synchronous clock input.

RC7/RX/DT RC7 OUT 0 DIG LATC<7> data output.
IN 1 ST PORTC<7> data input.

RX IN 1 ST EUSART asynchronous data input.
DT OUT 1 DIG EUSART synchronous data output – must have TRIS set to ‘1’ to enable

EUSART to control the bidirectional communication.
IN 1 ST EUSART synchronous data input.

Legend: OUT = Output, IN = Input, ANA = Analog Signal, DIG = Digital Output, ST = Schmitt Buffer Input, TTL = TTL Buffer Input

Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
Reset
Values

on Page:

PORTC RC7 RC6 RC5 RC4 RC3 RC2 RC1 RC0 58
LATC LATC Output Latch Register 58
TRISC PORTC Data Direction Register 58
DS39637D-page 142 © 2009 Microchip Technology Inc.

PIC18F2480/2580/4480/4580

REGISTER 11-1: TRISE REGISTER (PIC18F4X80 DEVICES ONLY)

R-0 R-0 R/W-0 R/W-0 U-0 R/W-1 R/W-1 R/W-1
IBF OBF IBOV PSPMODE — TRISE2 TRISE1 TRISE0

bit 7 bit 0

Legend:
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’
-n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown

bit 7 IBF: Input Buffer Full Status bit
1 = A word has been received and waiting to be read by the CPU
0 = No word has been received

bit 6 OBF: Output Buffer Full Status bit
1 = The output buffer still holds a previously written word
0 = The output buffer has been read

bit 5 IBOV: Input Buffer Overflow Detect bit (in Microprocessor mode)
1 = A write occurred when a previously input word has not been read (must be cleared in software)
0 = No overflow occurred

bit 4 PSPMODE: Parallel Slave Port Mode Select bit
1 = Parallel Slave Port mode
0 = General purpose I/O mode

bit 3 Unimplemented: Read as ‘0’
bit 2 TRISE2: RE2 Direction Control bit

1 = Input
0 = Output

bit 1 TRISE1: RE1 Direction Control bit
1 = Input
0 = Output

bit 0 TRISE0: RE0 Direction Control bit
1 = Input
0 = Output
© 2009 Microchip Technology Inc. DS39637D-page 147

PIC18F2480/2580/4480/4580
13.0 TIMER1 MODULE
The Timer1 timer/counter module incorporates these
features:

• Software-selectable operation as a 16-bit timer or
counter

• Readable and writable 8-bit registers (TMR1H
and TMR1L)

• Selectable clock source (internal or external) with
device clock or Timer1 oscillator internal options

• Interrupt-on-overflow
• Module Reset on CCP Special Event Trigger
• Device clock status flag (T1RUN)

A simplified block diagram of the Timer1 module is
shown in Figure 13-1. A block diagram of the module’s
operation in Read/Write mode is shown in Figure 13-2.

The module incorporates its own low-power oscillator
to provide an additional clocking option. The Timer1
oscillator can also be used as a low-power clock source
for the microcontroller in power-managed operation.

Timer1 can also be used to provide Real-Time Clock
(RTC) functionality to applications with only a minimal
addition of external components and code overhead.

Timer1 is controlled through the T1CON Control
register (Register 13-1). It also contains the Timer1
Oscillator Enable bit (T1OSCEN). Timer1 can be
enabled or disabled by setting or clearing control bit,
TMR1ON (T1CON<0>).

REGISTER 13-1: T1CON: TIMER1 CONTROL REGISTER

R/W-0 R-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0

RD16 T1RUN T1CKPS1 T1CKPS0 T1OSCEN T1SYNC TMR1CS TMR1ON
bit 7 bit 0

Legend:
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’
-n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown

bit 7 RD16: 16-Bit Read/Write Mode Enable bit
1 = Enables register read/write of Timer1 in one 16-bit operation
0 = Enables register read/write of Timer1 in two 8-bit operations

bit 6 T1RUN: Timer1 System Clock Status bit
1 = Device clock is derived from Timer1 oscillator
0 = Device clock is derived from another source

bit 5-4 T1CKPS<1:0>: Timer1 Input Clock Prescale Select bits
11 = 1:8 Prescale value
10 = 1:4 Prescale value
01 = 1:2 Prescale value
00 = 1:1 Prescale value

bit 3 T1OSCEN: Timer1 Oscillator Enable bit
1 = Timer1 oscillator is enabled
0 = Timer1 oscillator is shut off
The oscillator inverter and feedback resistor are turned off to eliminate power drain.

bit 2 T1SYNC: Timer1 External Clock Input Synchronization Select bit
When TMR1CS = 1:
1 = Do not synchronize external clock input
0 = Synchronize external clock input
When TMR1CS = 0:
This bit is ignored. Timer1 uses the internal clock when TMR1CS = 0.

bit 1 TMR1CS: Timer1 Clock Source Select bit
1 = External clock from pin RC0/T1OSO/T13CKI (on the rising edge)
0 = Internal clock (FOSC/4)

bit 0 TMR1ON: Timer1 On bit
1 = Enables Timer1
0 = Stops Timer1
© 2009 Microchip Technology Inc. DS39637D-page 155

PIC18F2480/2580/4480/4580

NOTES:
DS39637D-page 176 © 2009 Microchip Technology Inc.

PIC18F2480/2580/4480/4580
24.0 ECAN MODULE
PIC18F2480/2580/4480/4580 devices contain an
Enhanced Controller Area Network (ECAN) module.
The ECAN module is fully backward compatible with
the CAN module available in PIC18CXX8 and
PIC18FXX8 devices.

The Controller Area Network (CAN) module is a serial
interface which is useful for communicating with other
peripherals or microcontroller devices. This interface,
or protocol, was designed to allow communications
within noisy environments.

The ECAN module is a communication controller, imple-
menting the CAN 2.0A or B protocol as defined in the
BOSCH specification. The module will support CAN 1.2,
CAN 2.0A, CAN 2.0B Passive and CAN 2.0B Active
versions of the protocol. The module implementation is
a full CAN system; however, the CAN specification is not
covered within this data sheet. Refer to the BOSCH CAN
specification for further details.

The module features are as follows:

• Implementation of the CAN protocol, CAN 1.2,
CAN 2.0A and CAN 2.0B

• DeviceNetTM data bytes filter support
• Standard and extended data frames
• 0-8 bytes data length
• Programmable bit rate up to 1 Mbit/sec
• Fully backward compatible with the PIC18XXX8

CAN module
• Three modes of operation:

- Mode 0 – Legacy mode
- Mode 1 – Enhanced Legacy mode with

DeviceNet support
- Mode 2 – FIFO mode with DeviceNet support

• Support for remote frames with automated handling
• Double-buffered receiver with two prioritized

received message storage buffers
• Six buffers programmable as RX and TX

message buffers
• 16 full (standard/extended identifier) acceptance

filters that can be linked to one of four masks
• Two full acceptance filter masks that can be

assigned to any filter
• One full acceptance filter that can be used as either

an acceptance filter or acceptance filter mask
• Three dedicated transmit buffers with application

specified prioritization and abort capability
• Programmable wake-up functionality with

integrated low-pass filter
• Programmable Loopback mode supports self-test

operation
• Signaling via interrupt capabilities for all CAN

receiver and transmitter error states
• Programmable clock source
• Programmable link to timer module for

time-stamping and network synchronization
• Low-power Sleep mode

24.1 Module Overview
The CAN bus module consists of a protocol engine and
message buffering and control. The CAN protocol
engine automatically handles all functions for receiving
and transmitting messages on the CAN bus. Messages
are transmitted by first loading the appropriate data
registers. Status and errors can be checked by reading
the appropriate registers. Any message detected on
the CAN bus is checked for errors and then matched
against filters to see if it should be received and stored
in one of the two receive registers.

The CAN module supports the following frame types:

• Standard Data Frame
• Extended Data Frame
• Remote Frame
• Error Frame
• Overload Frame Reception

The CAN module uses the RB2/CANTX and RB3/
CANRX pins to interface with the CAN bus. In normal
mode, the CAN module automatically overrides
TRISB<2>. The user must ensure that TRISB<3> is
set.

24.1.1 MODULE FUNCTIONALITY
The CAN bus module consists of a protocol engine,
message buffering and control (see Figure 24-1). The
protocol engine can best be understood by defining the
types of data frames to be transmitted and received by
the module.

The following sequence illustrates the necessary initial-
ization steps before the ECAN module can be used to
transmit or receive a message. Steps can be added or
removed depending on the requirements of the
application.

1. Initial LAT and TRIS bits for RX and TX CAN.
2. Ensure that the ECAN module is in Configuration

mode.
3. Select ECAN Operational mode.
4. Set up the Baud Rate registers.
5. Set up the Filter and Mask registers.
6. Set the ECAN module to normal mode or any

other mode required by the application logic.
© 2009 Microchip Technology Inc. DS39637D-page 279

PIC18F2480/2580/4480/4580
EFFh —(4) EDFh —(4) EBFh —(4) E9Fh —(4)

EFEh —(4) EDEh —(4) EBEh —(4) E9Eh —(4)

EFDh —(4) EDDh —(4) EBDh —(4) E9Dh —(4)

EFCh —(4) EDCh —(4) EBCh —(4) E9Ch —(4)

EFBh —(4) EDBh —(4) EBBh —(4) E9Bh —(4)

EFAh —(4) EDAh —(4) EBAh —(4) E9Ah —(4)

EF9h —(4) ED9h —(4) EB9h —(4) E99h —(4)

EF8h —(4) ED8h —(4) EB8h —(4) E98h —(4)

EF7h —(4) ED7h —(4) EB7h —(4) E97h —(4)

EF6h —(4) ED6h —(4) EB6h —(4) E96h —(4)

EF5h —(4) ED5h —(4) EB5h —(4) E95h —(4)

EF4h —(4) ED4h —(4) EB4h —(4) E94h —(4)

EF3h —(4) ED3h —(4) EB3h —(4) E93h —(4)

EF2h —(4) ED2h —(4) EB2h —(4) E92h —(4)

EF1h —(4) ED1h —(4) EB1h —(4) E91h —(4)

EF0h —(4) ED0h —(4) EB0h —(4) E90h —(4)

EEFh —(4) ECFh —(4) EAFh —(4) E8Fh —(4)

EEEh —(4) ECEh —(4) EAEh —(4) E8Eh —(4)

EEDh —(4) ECDh —(4) EADh —(4) E8Dh —(4)

EECh —(4) ECCh —(4) EACh —(4) E8Ch —(4)

EEBh —(4) ECBh —(4) EABh —(4) E8Bh —(4)

EEAh —(4) ECAh —(4) EAAh —(4) E8Ah —(4)

EE9h —(4) EC9h —(4) EA9h —(4) E89h —(4)

EE8h —(4) EC8h —(4) EA8h —(4) E88h —(4)

EE7h —(4) EC7h —(4) EA7h —(4) E87h —(4)

EE6h —(4) EC6h —(4) EA6h —(4) E86h —(4)

EE5h —(4) EC5h —(4) EA5h —(4) E85h —(4)

EE4h —(4) EC4h —(4) EA4h —(4) E84h —(4)

EE3h —(4) EC3h —(4) EA3h —(4) E83h —(4)

EE2h —(4) EC2h —(4) EA2h —(4) E82h —(4)

EE1h —(4) EC1h —(4) EA1h —(4) E81h —(4)

EE0h —(4) EC0h —(4) EA0h —(4) E80h —(4)

TABLE 24-1: CAN CONTROLLER REGISTER MAP (CONTINUED)

Address(1) Name Address Name Address Name Address Name

Note 1: Shaded registers are available in Access Bank low area, while the rest are available in Bank 15.
2: CANSTAT register is repeated in these locations to simplify application firmware. Unique names are given

for each instance of the controller register due to the Microchip header file requirement.
3: These registers are not CAN registers.
4: Unimplemented registers are read as ‘0’.
DS39637D-page 326 © 2009 Microchip Technology Inc.

PIC18F2480/2580/4480/4580

CLRF Clear f

Syntax: CLRF f {,a}

Operands: 0 ≤ f ≤ 255
a ∈ [0,1]

Operation: 000h → f,
1 → Z

Status Affected: Z

Encoding: 0110 101a ffff ffff

Description: Clears the contents of the specified
register.
If ‘a’ is ‘0’, the Access Bank is selected.
If ‘a’ is ‘1’, the BSR is used to select the
GPR bank.
If ‘a’ is ‘0’ and the extended instruction
set is enabled, this instruction operates
in Indexed Literal Offset Addressing
mode whenever f ≤ 95 (5Fh). See
Section 26.2.3 “Byte-Oriented and
Bit-Oriented Instructions in Indexed
Literal Offset Mode” for details.

Words: 1

Cycles: 1

Q Cycle Activity:
Q1 Q2 Q3 Q4

Decode Read
register ‘f’

Process
Data

Write
register ‘f’

Example: CLRF FLAG_REG,1

Before Instruction
FLAG_REG = 5Ah

After Instruction
FLAG_REG = 00h

CLRWDT Clear Watchdog Timer

Syntax: CLRWDT

Operands: None

Operation: 000h → WDT,
000h → WDT postscaler,
1 → TO,
1 → PD

Status Affected: TO, PD

Encoding: 0000 0000 0000 0100

Description: CLRWDT instruction resets the
Watchdog Timer. It also resets the post-
scaler of the WDT. Status bits TO and
PD are set.

Words: 1

Cycles: 1

Q Cycle Activity:
Q1 Q2 Q3 Q4

Decode No
operation

Process
Data

No
operation

Example: CLRWDT

Before Instruction
WDT Counter = ?

After Instruction
WDT Counter = 00h
WDT Postscaler = 0
TO = 1
PD = 1
© 2009 Microchip Technology Inc. DS39637D-page 383

PIC18F2480/2580/4480/4580

INCFSZ Increment f, Skip if 0

Syntax: INCFSZ f {,d {,a}}

Operands: 0 ≤ f ≤ 255
d ∈ [0,1]
a ∈ [0,1]

Operation: (f) + 1 → dest,
skip if result = 0

Status Affected: None

Encoding: 0011 11da ffff ffff

Description: The contents of register ‘f’ are
incremented. If ‘d’ is ‘0’, the result is
placed in W. If ‘d’ is ‘1’, the result is
placed back in register ‘f’.
If the result is ‘0’, the next instruction
which is already fetched is discarded
and a NOP is executed instead, making
it a two-cycle instruction.
If ‘a’ is ‘0’, the Access Bank is selected.
If ‘a’ is ‘1’, the BSR is used to select the
GPR bank.
If ‘a’ is ‘0’ and the extended instruction
set is enabled, this instruction operates
in Indexed Literal Offset Addressing
mode whenever f ≤ 95 (5Fh). See
Section 26.2.3 “Byte-Oriented and
Bit-Oriented Instructions in Indexed
Literal Offset Mode” for details.

Words: 1

Cycles: 1(2)
Note: 3 cycles if skip and followed

by a 2-word instruction.

Q Cycle Activity:
Q1 Q2 Q3 Q4

Decode Read
register ‘f’

Process
Data

Write to
destination

If skip:
Q1 Q2 Q3 Q4
No

operation
No

operation
No

operation
No

operation
If skip and followed by 2-word instruction:

Q1 Q2 Q3 Q4
No

operation
No

operation
No

operation
No

operation
No

operation
No

operation
No

operation
No

operation

Example: HERE INCFSZ CNT, 1, 0
NZERO :
ZERO :

Before Instruction
PC = Address (HERE)

After Instruction
CNT = CNT + 1
If CNT = 0;
PC = Address (ZERO)
If CNT ≠ 0;
PC = Address (NZERO)

INFSNZ Increment f, Skip if not 0
Syntax: INFSNZ f {,d {,a}}
Operands: 0 ≤ f ≤ 255

d ∈ [0,1]
a ∈ [0,1]

Operation: (f) + 1 → dest,
skip if result ≠ 0

Status Affected: None
Encoding: 0100 10da ffff ffff

Description: The contents of register ‘f’ are
incremented. If ‘d’ is ‘0’, the result is
placed in W. If ‘d’ is ‘1’, the result is
placed back in register ‘f’.
If the result is not ‘0’, the next
instruction which is already fetched is
discarded and a NOP is executed
instead, making it a two-cycle
instruction.
If ‘a’ is ‘0’, the Access Bank is selected.
If ‘a’ is ‘1’, the BSR is used to select the
GPR bank.
If ‘a’ is ‘0’ and the extended instruction
set is enabled, this instruction operates
in Indexed Literal Offset Addressing
mode whenever f ≤ 95 (5Fh). See
Section 26.2.3 “Byte-Oriented and
Bit-Oriented Instructions in Indexed
Literal Offset Mode” for details.

Words: 1
Cycles: 1(2)

Note: 3 cycles if skip and followed
by a 2-word instruction.

Q Cycle Activity:
Q1 Q2 Q3 Q4

Decode Read
register ‘f’

Process
Data

Write to
destination

If skip:
Q1 Q2 Q3 Q4
No

operation
No

operation
No

operation
No

operation
If skip and followed by 2-word instruction:

Q1 Q2 Q3 Q4
No

operation
No

operation
No

operation
No

operation
No

operation
No

operation
No

operation
No

operation

Example: HERE INFSNZ REG, 1, 0
ZERO
NZERO

Before Instruction
PC = Address (HERE)

After Instruction
REG = REG + 1
If REG ≠ 0;
PC = Address (NZERO)
If REG = 0;
PC = Address (ZERO)
© 2009 Microchip Technology Inc. DS39637D-page 389

PIC18F2480/2580/4480/4580

POP Pop Top of Return Stack

Syntax: POP

Operands: None

Operation: (TOS) → bit bucket

Status Affected: None

Encoding: 0000 0000 0000 0110

Description: The TOS value is pulled off the return
stack and is discarded. The TOS value
then becomes the previous value that
was pushed onto the return stack.
This instruction is provided to enable
the user to properly manage the return
stack to incorporate a software stack.

Words: 1

Cycles: 1

Q Cycle Activity:
Q1 Q2 Q3 Q4

Decode No
operation

POP TOS
value

No
operation

Example: POP
GOTO NEW

Before Instruction
TOS = 0031A2h
Stack (1 level down) = 014332h

After Instruction
TOS = 014332h
PC = NEW

PUSH Push Top of Return Stack

Syntax: PUSH

Operands: None

Operation: (PC + 2) → TOS

Status Affected: None

Encoding: 0000 0000 0000 0101

Description: The PC + 2 is pushed onto the top of
the return stack. The previous TOS
value is pushed down on the stack.
This instruction allows implementing a
software stack by modifying TOS and
then pushing it onto the return stack.

Words: 1

Cycles: 1

Q Cycle Activity:
Q1 Q2 Q3 Q4

Decode PUSH
PC + 2 onto
return stack

No
operation

No
operation

Example: PUSH

Before Instruction
TOS = 345Ah
PC = 0124h

After Instruction
PC = 0126h
TOS = 0126h
Stack (1 level down) = 345Ah
DS39637D-page 396 © 2009 Microchip Technology Inc.

PIC18F2480/2580/4480/4580

SUBWFB Subtract W from f with Borrow

Syntax: SUBWFB f {,d {,a}}
Operands: 0 ≤ f ≤ 255

d ∈ [0,1]
a ∈ [0,1]

Operation: (f) – (W) – (C) → dest
Status Affected: N, OV, C, DC, Z
Encoding: 0101 10da ffff ffff

Description: Subtract W and the Carry flag (borrow)
from register ‘f’ (2’s complement
method). If ‘d’ is ‘0’, the result is stored
in W. If ‘d’ is ‘1’, the result is stored back
in register ‘f’.
If ‘a’ is ‘0’, the Access Bank is selected.
If ‘a’ is ‘1’, the BSR is used to select the
GPR bank.
If ‘a’ is ‘0’ and the extended instruction
set is enabled, this instruction operates
in Indexed Literal Offset Addressing
mode whenever f ≤ 95 (5Fh). See
Section 26.2.3 “Byte-Oriented and
Bit-Oriented Instructions in Indexed
Literal Offset Mode” for details.

Words: 1
Cycles: 1
Q Cycle Activity:

Q1 Q2 Q3 Q4
Decode Read

register ‘f’
Process

Data
Write to

destination

Example 1: SUBWFB REG, 1, 0

Before Instruction
REG = 19h (0001 1001)
W = 0Dh (0000 1101)
C = 1

After Instruction
REG = 0Ch (0000 1011)
W = 0Dh (0000 1101)
C = 1
Z = 0
N = 0 ; result is positive

Example 2: SUBWFB REG, 0, 0

Before Instruction
REG = 1Bh (0001 1011)
W = 1Ah (0001 1010)
C = 0

After Instruction
REG = 1Bh (0001 1011)
W = 00h
C = 1
Z = 1 ; result is zero
N = 0

Example 3: SUBWFB REG, 1, 0

Before Instruction
REG = 03h (0000 0011)
W = 0Eh (0000 1101)
C = 1

After Instruction
REG = F5h (1111 0100)

; [2’s comp]
W = 0Eh (0000 1101)
C = 0
Z = 0
N = 1 ; result is negative

SWAPF Swap f

Syntax: SWAPF f {,d {,a}}

Operands: 0 ≤ f ≤ 255
d ∈ [0,1]
a ∈ [0,1]

Operation: (f<3:0>) → dest<7:4>,
(f<7:4>) → dest<3:0>

Status Affected: None

Encoding: 0011 10da ffff ffff

Description: The upper and lower nibbles of register
‘f’ are exchanged. If ‘d’ is ‘0’, the result
is placed in W. If ‘d’ is ‘1’, the result is
placed in register ‘f’.
If ‘a’ is ‘0’, the Access Bank is selected.
If ‘a’ is ‘1’, the BSR is used to select the
GPR bank.
If ‘a’ is ‘0’ and the extended instruction
set is enabled, this instruction operates
in Indexed Literal Offset Addressing
mode whenever f ≤ 95 (5Fh). See
Section 26.2.3 “Byte-Oriented and
Bit-Oriented Instructions in Indexed
Literal Offset Mode” for details.

Words: 1

Cycles: 1

Q Cycle Activity:
Q1 Q2 Q3 Q4

Decode Read
register ‘f’

Process
Data

Write to
destination

Example: SWAPF REG, 1, 0

Before Instruction
REG = 53h

After Instruction
REG = 35h
DS39637D-page 404 © 2009 Microchip Technology Inc.

PIC18F2480/2580/4480/4580

26.2 Extended Instruction Set
In addition to the standard 75 instructions of the PIC18
instruction set, PIC18F2480/2580/4480/4580 devices
also provide an optional extension to the core CPU
functionality. The added features include eight addi-
tional instructions that augment indirect and indexed
addressing operations and the implementation of
Indexed Literal Offset Addressing mode for many of the
standard PIC18 instructions.

The additional features are disabled by default. To
enable them, users must set the XINST Configuration
bit.

The instructions in the extended set can all be
classified as literal operations, which either manipulate
the File Select Registers or use them for indexed
addressing. Two of the instructions, ADDFSR and
SUBFSR, each have an additional special instantiation
for using FSR2. These versions (ADDULNK and
SUBULNK) allow for automatic return after execution.

The extended instructions are specifically implemented
to optimize re-entrant program code (that is, code that
is recursive or that uses a software stack) written in
high-level languages, particularly C. Among other
things, they allow users working in high-level
languages to perform certain operations on data
structures more efficiently. These include:

• dynamic allocation and de-allocation of software
stack space when entering and leaving
subroutines

• function pointer invocation
• software Stack Pointer manipulation
• manipulation of variables located in a software

stack

A summary of the instructions in the extended instruc-
tion set is provided in Table 26-3. Detailed descriptions
are provided in Section 26.2.2 “Extended Instruction
Set”. The opcode field descriptions in Table 26-1 apply
to both the standard and extended PIC18 instruction
sets.

26.2.1 EXTENDED INSTRUCTION SYNTAX
Most of the extended instructions use indexed argu-
ments, using one of the File Select Registers and some
offset to specify a source or destination register. When
an argument for an instruction serves as part of
indexed addressing, it is enclosed in square brackets
(“[]”). This is done to indicate that the argument is used
as an index or offset. MPASM™ Assembler will flag an
error if it determines that an index or offset value is not
bracketed.

When the extended instruction set is enabled, brackets
are also used to indicate index arguments in byte-
oriented and bit-oriented instructions. This is in addition
to other changes in their syntax. For more details, see
Section 26.2.3.1 “Extended Instruction Syntax with
Standard PIC18 Commands”.

TABLE 26-3: EXTENSIONS TO THE PIC18 INSTRUCTION SET

Note: The instruction set extension and the
Indexed Literal Offset Addressing mode
were designed for optimizing applications
written in C; the user may likely never use
these instructions directly in assembler.
The syntax for these commands is pro-
vided as a reference for users who may be
reviewing code that has been generated
by a compiler.

Note: In the past, square brackets have been
used to denote optional arguments in the
PIC18 and earlier instruction sets. In this
text and going forward, optional arguments
are denoted by braces (“{ }”).

Mnemonic,
Operands Description Cycles

16-Bit Instruction Word Status
AffectedMSb LSb

ADDFSR
ADDULNK
CALLW
MOVSF

MOVSS

PUSHL

SUBFSR
SUBULNK

f, k
k

zs, fd

zs, zd

k

f, k
k

Add Literal to FSR
Add Literal to FSR2 and Return
Call Subroutine using WREG
Move zs (source) to 1st word

fd (destination) 2nd word
Move zs (source) to 1st word

zd (destination) 2nd word
Store Literal at FSR2,
 Decrement FSR2
Subtract Literal from FSR
Subtract Literal from FSR2 and
 Return

1
2
2
2

2

1

1
2

1110
1110
0000
1110
1111
1110
1111
1110

1110
1110

1000
1000
0000
1011
ffff
1011
xxxx
1010

1001
1001

 ffkk
 11kk
 0001
0zzz
ffff
1zzz
xzzz
kkkk

ffkk
11kk

kkkk
kkkk
0100
zzzz
ffff
zzzz
zzzz
kkkk

kkkk
kkkk

None
None
None
None

None

None

None
None
© 2009 Microchip Technology Inc. DS39637D-page 409

PIC18F2480/2580/4480/4580

26.2.3 BYTE-ORIENTED AND

BIT-ORIENTED INSTRUCTIONS IN
INDEXED LITERAL OFFSET MODE

In addition to eight new commands in the extended set,
enabling the extended instruction set also enables
Indexed Literal Offset Addressing mode (Section 6.6.1
“Indexed Addressing with Literal Offset”). This has
a significant impact on the way that many commands of
the standard PIC18 instruction set are interpreted.

When the extended set is disabled, addresses embed-
ded in opcodes are treated as literal memory locations:
either as a location in the Access Bank (a = 0), or in a
GPR bank designated by the BSR (a = 1). When the
extended instruction set is enabled and a = 0, however,
a file register argument of 5Fh or less is interpreted as
an offset from the pointer value in FSR2 and not as a
literal address. For practical purposes, this means that
all instructions that use the Access RAM bit as an
argument – that is, all byte-oriented and bit-oriented
instructions, or almost half of the core PIC18 instructions
– may behave differently when the extended instruction
set is enabled.

When the content of FSR2 is 00h, the boundaries of the
Access RAM are essentially remapped to their original
values. This may be useful in creating backward
compatible code. If this technique is used, it may be
necessary to save the value of FSR2 and restore it
when moving back and forth between ‘C’ and assembly
routines in order to preserve the Stack Pointer. Users
must also keep in mind the syntax requirements of the
extended instruction set (see Section 26.2.3.1
“Extended Instruction Syntax with Standard PIC18
Commands”).

Although the Indexed Literal Offset Addressing mode
can be very useful for dynamic stack and pointer
manipulation, it can also be very annoying if a simple
arithmetic operation is carried out on the wrong
register. Users who are accustomed to the PIC18
programming must keep in mind that, when the
extended instruction set is enabled, register addresses
of 5Fh or less are used for Indexed Literal Offset
Addressing.

Representative examples of typical byte-oriented and
bit-oriented instructions in the Indexed Literal Offset
Addressing mode are provided on the following page to
show how execution is affected. The operand
conditions shown in the examples are applicable to all
instructions of these types.

26.2.3.1 Extended Instruction Syntax with
Standard PIC18 Commands

When the extended instruction set is enabled, the file
register argument, ‘f’, in the standard byte-oriented and
bit-oriented commands is replaced with the literal offset
value, ‘k’. As already noted, this occurs only when ‘f’ is
less than or equal to 5Fh. When an offset value is used,
it must be indicated by square brackets (“[]”). As with
the extended instructions, the use of brackets indicates
to the compiler that the value is to be interpreted as an
index or an offset. Omitting the brackets, or using a
value greater than 5Fh within brackets, will generate an
error in the MPASM™ Assembler.

If the index argument is properly bracketed for Indexed
Literal Offset Addressing, the Access RAM argument is
never specified; it will automatically be assumed to be
‘0’. This is in contrast to standard operation (extended
instruction set disabled) when ‘a’ is set on the basis of
the target address. Declaring the Access RAM bit in
this mode will also generate an error in the MPASM
Assembler.

The destination argument, ‘d’, functions as before.

In the latest versions of the MPASM assembler,
language support for the extended instruction set must
be explicitly invoked. This is done with either the
command line option, /y, or the PE directive in the
source listing.

26.2.4 CONSIDERATIONS WHEN
ENABLING THE EXTENDED
INSTRUCTION SET

It is important to note that the extensions to the instruc-
tion set may not be beneficial to all users. In particular,
users who are not writing code that uses a software
stack may not benefit from using the extensions to the
instruction set.

Additionally, the Indexed Literal Offset Addressing
mode may create issues with legacy applications
written to the PIC18 assembler. This is because
instructions in the legacy code may attempt to address
registers in the Access Bank below 5Fh. Since these
addresses are interpreted as literal offsets to FSR2
when the instruction set extension is enabled, the
application may read or write to the wrong data
addresses.

When porting an application to the PIC18F2480/2580/
4480/4580, it is very important to consider the type of
code. A large, re-entrant application that is written in ‘C’
and would benefit from efficient compilation will do well
when using the instruction set extensions. Legacy
applications that heavily use the Access Bank will most
likely not benefit from using the extended instruction
set.

Note: Enabling the PIC18 instruction set
extension may cause legacy applications
to behave erratically or fail entirely.
DS39637D-page 414 © 2009 Microchip Technology Inc.

PIC18F2480/2580/4480/4580

FIGURE 28-3: HIGH/LOW-VOLTAGE DETECT CHARACTERISTICS

TABLE 28-4: HIGH/LOW-VOLTAGE DETECT CHARACTERISTICS
Standard Operating Conditions (unless otherwise stated)
Operating temperature -40°C ≤ TA ≤ +85°C for industrial

-40°C < TA < +125°C for extended

Param
No. Symbol Characteristic Min Typ Max Units Conditions

D420 HLVD Voltage on VDD
Transition High-to-Low

LVV = 0000 2.12 2.17 2.22 V
LVV = 0001 2.18 2.23 2.28 V
LVV = 0010 2.31 2.36 2.42 V
LVV = 0011 2.38 2.44 2.49 V
LVV = 0100 2.54 2.60 2.66 V
LVV = 0101 2.72 2.79 2.85 V
LVV = 0110 2.82 2.89 2.95 V
LVV = 0111 3.05 3.12 3.19 V
LVV = 1000 3.31 3.39 3.47 V
LVV = 1001 3.46 3.55 3.63 V
LVV = 1010 3.63 3.71 3.80 V
LVV = 1011 3.81 3.90 3.99 V
LVV = 1100 4.01 4.11 4.20 V
LVV = 1101 4.23 4.33 4.43 V
LVV = 1110 4.48 4.59 4.69 V
LVV = 1111 1.14 1.2 1.26 V

VLVD

HLVDIF

VDD

(HLVDIF set by hardware)

(HLVDIF can be
cleared in software)
© 2009 Microchip Technology Inc. DS39637D-page 437

PIC18F2480/2580/4480/4580

22�����	�������	31�	*���	+���4���	��3�	�	5�/5�/5	��	����%	�'��	��	�3*+�

!���" 3
	�&���'
!&��"		��&����4����#	�*���!(�����!��!���&������	
��������4�����������%���&�
���
��&�#��&�
�&&�255***�'��	
������
'5���4�����
© 2009 Microchip Technology Inc. DS39637D-page 467

PIC18F2480/2580/4480/4580

NOTES:
DS39637D-page 486 © 2009 Microchip Technology Inc.

