

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	40MHz
Connectivity	CANbus, I ² C, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, HLVD, POR, PWM, WDT
Number of I/O	25
Program Memory Size	32KB (16K x 16)
Program Memory Type	FLASH
EEPROM Size	256 x 8
RAM Size	1.5K x 8
Voltage - Supply (Vcc/Vdd)	4.2V ~ 5.5V
Data Converters	A/D 8x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	28-VQFN Exposed Pad
Supplier Device Package	28-QFN (6x6)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic18f2580t-i-ml

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

File Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Details on Page:	
TOSU	—	0 0000	55, 68								
TOSH	Top-of-Stack H		0000 0000	55, 68							
TOSL	Top-of-Stack L		0000 0000	55, 68							
STKPTR	STKFUL	STKFUL STKUNF — Return Stack Pointer									
PCLATU	—	_	bit 21 ⁽¹⁾	Holding Regi	ister for PC<20	:16>			0 0000	55, 68	
PCLATH	Holding Regis	ter for PC<15:	8>						0000 0000	55, 68	
PCL	PC Low Byte		0000 0000	55, 68							
TBLPTRU	—	S>)	00 0000	55, 109							
TBLPTRH	Program Merr	ory Table Poir	iter High Byte	(TBLPTR<15	:8>)				0000 0000	55, 109	
TBLPTRL	Program Merr	nory Table Poir	ter Low Byte	(TBLPTR<7:0	>)				0000 0000	55, 109	
TABLAT	Program Merr	ory Table Latc	h						0000 0000	55, 109	
PRODH	Product Regis	ter High Byte							XXXX XXXX	55, 117	
PRODL	Product Regis	ter Low Byte							XXXX XXXX	55, 117	
INTCON	GIE/GIEH	PEIE/GIEL	TMR0IE	INT0IE	RBIE	TMR0IF	INTOIF	RBIF	0000 000x	55, 121	
INTCON2	RBPU	INTEDG0	INTEDG1	INTEDG2	_	TMR0IP	—	RBIP	1111 -1-1	55, 122	
INTCON3	INT2IP	INT1IP	—	INT2IE	INT1IE	_	INT2IF	INT1IF	11-0 0-00	55, 123	
INDF0	Uses contents	•	N/A	55, 96							
POSTINC0	Uses contents	of FSR0 to ac	ldress data m	emory – value	of FSR0 post-i	ncremented (not	a physical regi	ster)	N/A	55, 97	
POSTDEC0	Uses contents of FSR0 to address data memory – value of FSR0 post-decremented (not a physical register)									55, 97	
PREINC0	Uses contents of FSR0 to address data memory – value of FSR0 pre-incremented (not a physical register)									55, 97	
PLUSW0	Uses contents FSR0 offset by	s of FSR0 to ac y W	ldress data m	emory – value	of FSR0 pre-ir	cremented (not a	a physical regis	ter), value of	N/A	55, 97	
FSR0H	_		—	_	Indirect Data I	Memory Address	Pointer 0 High		xxxx	55, 96	
FSR0L	Indirect Data I	Memory Addre	ss Pointer 0 L	ow Byte					XXXX XXXX	55, 96	
WREG	Working Regis	ster							XXXX XXXX	55	
INDF1	Uses contents	of FSR1 to ac	ldress data m	emory – value	of FSR1 not ch	nanged (not a ph	ysical register)		N/A	55, 96	
POSTINC1	Uses contents	of FSR1 to ac	ldress data m	emory – value	of FSR1 post-i	ncremented (not	a physical regi	ster)	N/A	55, 97	
POSTDEC1	Uses contents	of FSR1 to ac	ldress data m	emory – value	of FSR1 post-	decremented (no	t a physical reg	ister)	N/A	55, 97	
PREINC1	Uses contents	of FSR1 to ac	ldress data m	emory – value	of FSR1 pre-in	cremented (not a	a physical regis	ter)	N/A	55, 97	
PLUSW1	Uses contents FSR1 offset by	s of FSR1 to ac y W	ldress data m	emory – value	of FSR1 pre-ir	cremented (not a	a physical regis	ter), value of	N/A	55, 97	
FSR1H	—		—	_	Indirect Data I	Memory Address	Pointer 1 High		xxxx	55, 96	
FSR1L	Indirect Data I	Memory Addre	ss Pointer 1 L	ow Byte					XXXX XXXX	55, 96	
BSR	—		—	_	Bank Select R	Register			0000	56, 73	
INDF2	Uses contents	of FSR2 to ac	dress data m	emory – value	of FSR2 not ch	nanged (not a ph	ysical register)		N/A	56, 96	
POSTINC2	Uses contents	of FSR2 to ac	ldress data m	emory – value	of FSR2 post-i	ncremented (not	a physical regi	ster)	N/A	56, 97	
POSTDEC2	Uses contents	of FSR2 to ac	ldress data m	emory – value	of FSR2 post-	decremented (no	t a physical reg	ister)	N/A	56, 97	
PREINC2	Uses contents	of FSR2 to ac	ldress data m	emory – value	of FSR2 pre-in	cremented (not a	a physical regis	ter)	N/A	56, 97	
PLUSW2	Uses contents FSR2 offset by	of FSR2 to ac y W	ldress data m	emory – value	of FSR2 pre-ir	cremented (not a	a physical regis	ter), value of	N/A	56, 97	

TABLE 6-2:	REGISTER FILE SUMMARY	(PIC18F2480/2580/4480/4580)
------------	-----------------------	-----------------------------

Legend: x = unknown, u = unchanged, – = unimplemented, q = value depends on condition

Note 1: Bit 21 of the PC is only available in Test mode and Serial Programming modes.

2: The SBOREN bit is only available when CONFIG2L<1:0> = 01; otherwise, it is disabled and reads as '0'. See Section 5.4 "Brown-out Reset (BOR)".

3: These registers and/or bits are not implemented on PIC18F2X80 devices and are read as '0'. Reset values are shown for PIC18F4X80 devices; individual unimplemented bits should be interpreted as '--'.

4: The PLLEN bit is only available in specific oscillator configuration; otherwise, it is disabled and reads as '0'. See Section 3.6.4 "PLL in INTOSC Modes".

5: The RE3 bit is only available when Master Clear Reset is disabled (CONFIG3H<7> = 0); otherwise, RE3 reads as '0'. This bit is read-only.

6: RA6/RA7 and their associated latch and direction bits are individually configured as port pins based on various primary oscillator modes. When disabled, these bits read as '0'.

7: CAN bits have multiple functions depending on the selected mode of the CAN module.

8: This register reads all '0's until the ECAN™ technology is set up in Mode 1 or Mode 2.

9: These registers are available on PIC18F4X80 devices only.

6.6.3 MAPPING THE ACCESS BANK IN INDEXED LITERAL OFFSET MODE

The use of Indexed Literal Offset Addressing mode effectively changes how the lower half of Access RAM (00h to 7Fh) is mapped. Rather than containing just the contents of the bottom half of Bank 0, this mode maps the contents from Bank 0 and a user-defined "window" that can be located anywhere in the data memory space. The value of FSR2 establishes the lower boundary of the addresses mapped into the window, while the upper boundary is defined by FSR2 plus 95 (5Fh). Addresses in the Access RAM above 5Fh are mapped as previously described (see **Section 6.3.2 "Access Bank**"). An example of Access Bank remapping in this addressing mode is shown in Figure 6-10.

Remapping of the Access Bank applies *only* to operations using the Indexed Literal Offset mode. Operations that use the BSR (Access RAM bit is '1') will continue to use Direct Addressing as before. Any indirect or indexed operation that explicitly uses any of the indirect file operands (including FSR2) will continue to operate as standard Indirect Addressing. Any instruction that uses the Access Bank, but includes a register address of greater than 05Fh, will use Direct Addressing and the normal Access Bank map.

6.6.4 BSR IN INDEXED LITERAL OFFSET MODE

Although the Access Bank is remapped when the extended instruction set is enabled, the operation of the BSR remains unchanged. Direct Addressing using the BSR to select the data memory bank operates in the same manner as previously described.

FIGURE 6-10: REMAPPING THE ACCESS BANK WITH INDEXED LITERAL OFFSET ADDRESSING

NOTES:

8.3 Reading the Data EEPROM Memory

To read a data memory location, the user must write the address to the EEADR register, clear the EEPGD control bit (EECON1<7>) and then set control bit, RD (EECON1<0>). The data is available on the very next instruction cycle; therefore, the EEDATA register can be read by the next instruction. EEDATA will hold this value until another read operation, or until it is written to by the user (during a write operation).

The basic process is shown in Example 8-1.

8.4 Writing to the Data EEPROM Memory

To write an EEPROM data location, the address must first be written to the EEADR register and the data written to the EEDATA register. The sequence in Example 8-2 must be followed to initiate the write cycle.

The write will not begin if this sequence is not exactly followed (write 55h to EECON2, write 0AAh to EECON2, then set WR bit) for each byte. It is strongly recommended that interrupts be disabled during this code segment.

Additionally, the WREN bit in EECON1 must be set to enable writes. This mechanism prevents accidental writes to data EEPROM due to unexpected code execution (i.e., runaway programs). The WREN bit should be kept clear at all times, except when updating the EEPROM. The WREN bit is not cleared by hardware.

After a write sequence has been initiated, EECON1, EEADR and EEDATA cannot be modified. The WR bit will be inhibited from being set unless the WREN bit is set. The WREN bit must be set on a previous instruction. Both WR and WREN cannot be set with the same instruction.

At the completion of the write cycle, the WR bit is cleared in hardware and the EEPROM Interrupt Flag bit (EEIF) is set. The user may either enable this interrupt, or poll this bit. EEIF must be cleared by software.

8.5 Write Verify

Depending on the application, good programming practice may dictate that the value written to the memory should be verified against the original value. This should be used in applications where excessive writes can stress bits near the specification limit.

EXAMPLE 8-1:	DATA EEPROM READ

MOVLW	DATA_EE_	ADDR	;	
MOVWF	EEADR		;	Data Memory Address to read
BCF	EECON1,	EEPGD	;	Point to DATA memory
BCF	EECON1,	CFGS	;	Access EEPROM
BSF	EECON1,	RD	;	EEPROM Read
MOVF	EEDATA,	W	;	W = EEDATA

EXAMPLE 8-2: DATA EEPROM WRITE

	MOVLW	DATA_EE	ADDR	;	
	MOVWF	EEADR		;	Data Memory Address to write
	MOVLW	DATA_EE	DATA	;	
	MOVWF	EEDATA		;	Data Memory Value to write
	BCF	EECON1,	EEPGD	;	Point to DATA memory
	BCF	EECON1,	CFGS	;	Access EEPROM
	BSF	EECON1,	WREN	;	Enable writes
	BCF	INTCON,	GIE	;	Disable Interrupts
	MOVLW	55h		;	
Required	MOVWF	EECON2		;	Write 55h
Sequence	MOVLW	0AAh		;	
	MOVWF	EECON2		;	Write OAAh
	BSF	EECON1,	WR	;	Set WR bit to begin write
	BTFSC	EECON1,	WR	;	Wait for write to complete
	BRA	\$-2			
	BSF	INTCON,	GIE	;	Enable Interrupts
				;	User code execution
	BCF	EECON1,	WREN	;	Disable writes on write complete (EEIF set)

10.4 IPR Registers

The IPR registers contain the individual priority bits for the peripheral interrupts. Due to the number of peripheral interrupt sources, there are two Peripheral Interrupt Priority registers (IPR1, IPR2). Using the priority bits requires that the Interrupt Priority Enable (IPEN) bit be set.

REGISTER 10-10: IPR1: PERIPHERAL INTERRUPT PRIORITY REGISTER 1

R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
PSPIP ⁽¹⁾	ADIP	RCIP	TXIP	SSPIP	CCP1IP	TMR2IP	TMR1IP
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimplei	mented bit, rea	d as '0'	
-n = Value at I	POR	'1' = Bit is set		'0' = Bit is cle	eared	x = Bit is unkr	nown
bit 7	PSPIP : Para	illel Slave Port I	Read/Write Int	errupt Priority	hit(1)		
~	1 = High prid0 = Low prid	ority prity					
bit 6	ADIP: A/D C	onverter Interru	pt Priority bit				
	1 = High prid 0 = Low prid	ority prity					
bit 5	RCIP: EUSA	RT Receive Int	errupt Priority	bit			
	1 = High prid 0 = Low prid	ority ority					
bit 4	TXIP: EUSA	RT Transmit Inf	errupt Priority	bit			
	1 = High prid0 = Low prid	ority ority					
bit 3	SSPIP: Masi	ter Synchronou	s Serial Port I	nterrupt Priority	/ bit		
	1 = High prid 0 = Low prid	ority ority					
bit 2	CCP1IP: CC	P1 Interrupt Pri	ority bit				
	1 = High prid0 = Low prid	ority ority					
bit 1	TMR2IP: TM	IR2 to PR2 Mat	ch Interrupt P	riority bit			
	1 = High prid0 = Low prid	ority prity					
bit 0	TMR1IP: TM	, IR1 Overflow In	terrupt Priority	/ bit			
	1 = High pridon 0 = Low pridon	ority ority	. ,				

Note 1: This bit is reserved on PIC18F2X80 devices; always maintain this bit set.

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Reset Values on Page:	
PORTD ⁽¹⁾	RD7	RD6	RD5	RD4	RD3	RD2	RD1	RD0	58	
LATD ⁽¹⁾	LATD Output Latch Register									
TRISD ⁽¹⁾	PORTD Data Direction Register									
TRISE ⁽¹⁾	IBF	OBF	IBOV	PSPMODE	_	TRISE2	TRISE1	TRISE0	58	
ECCP1CON ⁽¹⁾	EPWM1M1	EPWM1M0	EDC1B1	EDC1B0	ECCP1M3	ECCP1M2	ECCP1M1	ECCP1M0	57	

Legend: — = unimplemented, read as '0'. Shaded cells are not used by PORTD.

Note 1: These registers are available on PIC18F4X80 devices only.

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Reset Values on Page:		
INTCON	GIE/GIEH	PEIE/GIEL	TMR0IE	INT0IE	RBIE	TMR0IF	INT0IF	RBIF	55		
RCON	IPEN	SBOREN ⁽³⁾	_	RI	TO	PD	POR	BOR	56		
IPR1	PSPIP	ADIP	RCIP	TXIP	SSPIP	CCP1IP	TMR2IP	TMR1IP	58		
PIR1	PSPIF	ADIF	RCIF	TXIF	SSPIF	CCP1IF	TMR2IF	TMR1IF	58		
PIE1	PSPIE	ADIE	RCIE	TXIE	SSPIE	CCP1IE	TMR2IE	TMR1IE	58		
IPR2	OSCFIP	CMIP ⁽²⁾	-	EEIP	BCLIP	HLVDIP	TMR3IP	ECCP1IP ⁽²⁾	58		
PIR2	OSCFIF	CMIF ⁽²⁾	_	EEIF	BCLIF	HLVDIF	TMR3IF	ECCP1IF ⁽²⁾	58		
PIE2	OSCFIE	CMIE ⁽²⁾	_	EEIE	BCLIE	HLVDIE	TMR3IE	ECCP1IE ⁽²⁾	57		
TRISB	PORTB Dat	ta Direction R	egister						58		
TRISC	PORTC Da	PORTC Data Direction Register									
TMR1L	Timer1 Reg	ister Low Byt	е						56		
TMR1H	Timer1 Reg	ister High By	te						56		
T1CON	RD16	T1RUN	T1CKPS1	T1CKPS0	T1OSCEN	T1SYNC	TMR1CS	TMR10N	56		
TMR3H	Timer3 Reg	ister High By	te						57		
TMR3L	Timer3 Reg	ister Low Byt	е						57		
T3CON	RD16	T3ECCP1 ⁽¹⁾	T3CKPS1	T3CKPS0	T3CCP1 ⁽¹⁾	T3SYNC	TMR3CS	TMR3ON	57		
CCPR1L	Capture/Co	mpare/PWM	Register 1 L	ow Byte					57		
CCPR1H	Capture/Co	mpare/PWM	Register 1 F	ligh Byte					57		
CCP1CON		_	DC1B1	DC1B0	CCP1M3	CCP1M2	CCP1M1	CCP1M0	57		
ECCPR1L ⁽¹⁾	Enhanced 0	Capture/Comp	oare/PWM F	Register 1 Lo	ow Byte				57		
ECCPR1H ⁽¹⁾	Enhanced (Capture/Comp	bare/PWM F	Register 1 H	igh Byte				57		
ECCP1CON ⁽¹⁾	EPWM1M1	EPWM1M0	EDC1B1	EDC1B0	ECCP1M3	ECCP1M2	ECCP1M1	ECCP1M0	57		

TABLE 16-3: REGISTERS ASSOCIATED WITH CAPTURE, COMPARE, TIMER1 AND TIMER3

Legend: — = unimplemented, read as '0'. Shaded cells are not used by capture, compare, Timer1 or Timer3.

Note 1: These bits or registers are available on PIC18F4X80 devices only.

2: These bits are available on PIC18F4X80 devices and reserved on PIC18F2X80 devices.

3: The SBOREN bit is only available when CONFIG2L<1:0> = 01; otherwise, it is disabled and reads as '0'. See Section 5.4 "Brown-out Reset (BOR)".

PIC18F2X80/4X80 QC FET QA FET Driver Driver P1A Load P1B FET FET Driver Driver P1C ΩD OF V-P1D

FIGURE 17-7: EXAMPLE OF FULL-BRIDGE OUTPUT APPLICATION

17.4.5.1 Direction Change in Full-Bridge Output Mode

In the Full-Bridge Output mode, the EPWM1M1 bit in the CCP1CON register allows the user to control the forward/reverse direction. When the application firmware changes this direction control bit, the module will assume the new direction on the next PWM cycle.

Just before the end of the current PWM period, the modulated outputs (P1B and P1D) are placed in their inactive state, while the unmodulated outputs (P1A and P1C) are switched to drive in the opposite direction. This occurs in a time interval of (4 Tosc * (Timer2 Prescale Value) before the next PWM period begins. The Timer2 prescaler will be either 1, 4 or 16, depending on the value of the T2CKPS bits (T2CON<1:0>). During the interval from the switch of the unmodulated outputs to the beginning of the next period, the modulated outputs (P1B and P1D) remain inactive. This relationship is shown in Figure 17-8.

Note that in the Full-Bridge Output mode, the CCP1 module does not provide any dead-band delay. In general, since only one output is modulated at all times, dead-band delay is not required. However, there is a situation where a dead-band delay might be required. This situation occurs when both of the following conditions are true:

- 1. The direction of the PWM output changes when the duty cycle of the output is at or near 100%.
- 2. The turn-off time of the power switch, including the power device and driver circuit, is greater than the turn-on time.

Figure 17-9 shows an example where the PWM direction changes from forward to reverse at a near 100% duty cycle. At time t1, the outputs, P1A and P1D, become inactive, while output, P1C, becomes active. In this example, since the turn-off time of the power devices is longer than the turn-on time, a shoot-through current may flow through power devices, QC and QD (see Figure 17-7), for the duration of 't'. The same phenomenon will occur to power devices, QA and QB, for PWM direction change from reverse to forward.

If changing PWM direction at high duty cycle is required for an application, one of the following requirements must be met:

- 1. Reduce PWM for a PWM period before changing directions.
- 2. Use switch drivers that can drive the switches off faster than they can drive them on.

Other options to prevent shoot-through current may exist.

18.3.5 MASTER MODE

The master can initiate the data transfer at any time because it controls the SCK. The master determines when the slave (Processor 2, Figure 18-2) is to broadcast data by the software protocol.

In Master mode, the data is transmitted/received as soon as the SSPBUF register is written to. If the SPI is only going to receive, the SDO output could be disabled (programmed as an input). The SSPSR register will continue to shift in the signal present on the SDI pin at the programmed clock rate. As each byte is received, it will be loaded into the SSPBUF register as if a normal received byte (interrupts and status bits appropriately set). This could be useful in receiver applications as a "Line Activity Monitor" mode. The clock polarity is selected by appropriately programming the CKP bit (SSPCON1<4>). This then, would give waveforms for SPI communication as shown in Figure 18-3, Figure 18-5 and Figure 18-6, where the MSB is transmitted first. In Master mode, the SPI clock rate (bit rate) is user-programmable to be one of the following:

- · Fosc/4 (or Tcy)
- Fosc/16 (or 4 Tcy)
- Fosc/64 (or 16 Tcy)
- Timer2 output/2

This allows a maximum data rate (at 40 MHz) of 10.00 Mbps.

Figure 18-3 shows the waveforms for Master mode. When the CKE bit is set, the SDO data is valid before there is a clock edge on SCK. The change of the input sample is shown based on the state of the SMP bit. The time when the SSPBUF is loaded with the received data is shown.

FIGURE 18-3: SPI MODE WAVEFORM (MASTER MODE)

SSPSTAT: MSSP STATUS REGISTER (I²C[™] MODE) REGISTER 18-3: R/W-0 R/W-0 R-0 R-0 R-0 R-0 R-0 R-0 $P^{(1)}$ S(1) R/W(2,3) SMP CKE D/A UA BF bit 7 bit 0 Legend: R = Readable bit U = Unimplemented bit, read as '0' W = Writable bit -n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown bit 7 SMP: Slew Rate Control bit In Master or Slave mode: 1 = Slew rate control disabled for Standard Speed mode (100 kHz and 1 MHz) 0 = Slew rate control enabled for High-Speed mode (400 kHz) bit 6 CKE: SMBus Select bit In Master or Slave mode: 1 = Enable SMBus specific inputs 0 = Disable SMBus specific inputs D/A: Data/Address bit bit 5 In Master mode: Reserved. In Slave mode: 1 = Indicates that the last byte received or transmitted was data 0 = Indicates that the last byte received or transmitted was address P: Stop bit⁽¹⁾ bit 4 1 = Indicates that a Stop bit has been detected last 0 = Stop bit was not detected last S: Start bit⁽¹⁾ bit 3 1 = Indicates that a Start bit has been detected last 0 = Start bit was not detected last R/W: Read/Write Information bit (I²C mode only)^(2,3) bit 2 In Slave mode: 1 = Read 0 = Write In Master mode: 1 = Transmit is in progress 0 = Transmit is not in progress bit 1 UA: Update Address bit (10-Bit Slave mode only) 1 = Indicates that the user needs to update the address in the SSPADD register 0 = Address does not need to be updated BF: Buffer Full Status bit bit 0 In Receive mode: 1 = Receive complete, SSPBUF is full 0 = Receive is not complete, SSPBUF is empty In Transmit mode: 1 = Data transmit in progress (does not include the ACK and Stop bits), SSPBUF is full 0 = Data transmit complete (does not include the ACK and Stop bits), SSPBUF is empty Note 1: This bit is cleared on Reset and when SSPEN is cleared. 2: This bit holds the R/W bit information following the last address match. This bit is only valid from the address match to the next Start bit, Stop bit or not ACK bit.

3: ORing this bit with SEN, RSEN, PEN, RCEN or ACKEN will indicate if the MSSP is in Idle mode.

The analog reference voltage is software-selectable to either the device's positive and negative supply voltage (AVDD and AVSS), or the voltage level on the RA3/AN3/VREF+ and RA2/AN2/VREF-/CVREF pins.

The A/D Converter has a unique feature of being able to operate while the device is in Sleep mode. To operate in Sleep, the A/D conversion clock must be derived from the A/D's internal RC oscillator.

The output of the sample and hold is the input into the converter, which generates the result via successive approximation.

A device Reset forces all registers to their Reset state. This forces the A/D module to be turned off and any conversion in progress is aborted.

Each port pin associated with the A/D Converter can be configured as an analog input, or as a digital I/O. The ADRESH and ADRESL registers contain the result of the A/D conversion. When the A/D conversion is complete, the result is loaded into the ADRESH/ADRESL registers, the GO/DONE bit (ADCON0 register) is cleared and A/D Interrupt Flag bit, ADIF, is set. The block diagram of the A/D module is shown in Figure 20-1.

21.9 Analog Input Connection Considerations

A simplified circuit for an analog input is shown in Figure 21-4. Since the analog pins are connected to a digital output, they have reverse biased diodes to VDD and Vss. The analog input, therefore, must be between Vss and VDD. If the input voltage deviates from this

range by more than 0.6V in either direction, one of the diodes is forward biased and a latch-up condition may occur. A maximum source impedance of $10 \text{ k}\Omega$ is recommended for the analog sources. Any external component connected to an analog input pin, such as a capacitor or a Zener diode, should have very little leakage current.

TABLE 21-1:	REGISTERS ASSOCIATED WITH COMPARATOR MODULE
-------------	--

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Reset Values on Page:		
CMCON ⁽³⁾	C2OUT	C1OUT	C2INV	C1INV	CIS	CM2	CM1	CM0	57		
CVRCON ⁽³⁾	CVREN	CVROE	CVRR	CVRSS	CVR3	CVR2	CVR1	CVR0	57		
INTCON	GIE/GIEH	PEIE/GIEL	TMR0IE	INT0IE	RBIE	TMR0IF	INT0IF	RBIF	58		
IPR2	OSCFIP	CMIP ⁽²⁾	—	EEIP	BCLIP	HLVDIP	TMR3IP	ECCP1IP	57		
PIR2	OSCFIF	CMIF ⁽²⁾	_	EEIF	BCLIF	HLVDIF	TMR3IF	ECCP1IF	58		
PIE2	OSCFIE	CMIE ⁽²⁾	—	EEIE	BCLIE	HLVDIE	TMR3IE	ECCP1IE	58		
PORTA	RA7 ⁽¹⁾	RA6 ⁽¹⁾	RA5	RA4	RA3	RA2	RA1	RA0	58		
LATA	LATA7 ⁽¹⁾	LATA6 ⁽¹⁾	LATA Data	ATA Data Output Register							
TRISA	TRISA7 ⁽¹⁾	TRISA6 ⁽¹⁾	PORTA Da	ata Directio	n Register				58		

Legend: — = unimplemented, read as '0'. Shaded cells are unused by the comparator module.

Note 1: PORTA pins are enabled based on oscillator configuration.

2: These bits are available in PIC18F4X80 devices and reserved in PIC18F2X80 devices.

3: These registers are unimplemented on PIC18F2X80 devices.

R/W-0	R/W-0	R/W-0	R/W-1	R/W-0	R/W-0	R/W-0	R/W-0
MDSEL1 ⁽¹⁾	MDSEL0 ⁽¹⁾	FIFOWM ⁽²⁾	EWIN4	EWIN3	EWIN2	EWIN1	EWIN0
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable I	bit	U = Unimple	mented bit, read	l as '0'	
-n = Value at P	POR	'1' = Bit is set		'0' = Bit is cle	eared	x = Bit is unk	nown
			(1)				
bit 7-6	MDSEL<1:0>	: Mode Select	bits ⁽¹⁾				
	00 = Legacy	node (Mode 0, ed I egacy mod	e (Mode 1)				
	10 = Enhance	ed FIFO mode ((Mode 2)				
	11 = Reserve	d					
bit 5	FIFOWM: FIF	O High Water I	Mark bit ⁽²⁾				
	1 = Will cause	e FIFO interrupt	t when one re	eceive buffer re	emains		
bit 4.0			t when lour re	bite	remainer		
DIL 4-0	These bits m	an the group of	10w Address 16 banked (CAN SERs into	o Access Bank :	addresses OFA	0-0F6Dh The
	exact group o	f registers to m	ap is determ	ined by the bin	ary value of the	se bits.	
	Mode 0:						
	Unimplemen	ted: Read as ')'				
	<u>Mode 1, 2:</u>	ntanan Filtara	0 1 2 and D				
	00000 - Acce	eptance Filters	3. 4. 5 and B	RGCON2, 3 RGCON1, CIC	CON		
	00010 = Acce	eptance Filter M	lasks, Error a	and Interrupt C	ontrol		
	00011 = Tran	ismit Buffer 0					
	00100 = Iran	ISMIT Buffer 1					
	00101 – Han	eptance Filters	6, 7, 8				
	00111 = Acce	eptance Filters	9, 10, 11				
	01000 = Acce	eptance Filters	12, 13, 14				
	01001 = Acce		15				
	01111 = RXI	NT0, RXINT1					
	10000 = Rec	eive Buffer 0					
	10001 = Rec	eive Buffer 1					
	10010 = IX/F 10011 = TX/F	KX Buffer 0 RX Buffer 1					
	10100 = TX/F	RX Buffer 2					
	10101 = TX/F	RX Buffer 3					
	10110 = TX/F	RX Buffer 4					
	11000-11111	TA Buller 5					

REGISTER 24-3: ECANCON: ENHANCED CAN CONTROL REGISTER

- Note 1: These bits can only be changed in Configuration mode. See Register 24-1 to change to Configuration mode.
 - 2: This bit is used in Mode 2 only.
 - 3: If FIFO is configured to contain four or less buffers, then the FIFO interrupt will trigger.

REGISTER 24-21: RXERRCNT: RECEIVE ERROR COUNT REGISTER

R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0
REC7	REC6	REC5	REC4	REC3	REC2	REC1	REC0
bit 7							bit 0
l agand.							

Legena.			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 7-0 **REC<7:0>:** Receive Error Counter bits

This register contains the receive error value as defined by the CAN specifications. When RXERRCNT > 127, the module will go into an error-passive state. RXERRCNT does not have the ability to put the module in "bus-off" state.

EXAMPLE 24-5: READING A CAN MESSAGE

; Need to read a pending message from RXB0 buffer. ; To receive any message, filter, mask and RXM1:RXM0 bits in RXB0CON registers must be ; programmed correctly. ; Make sure that there is a message pending in RXBO. BTFSS RXBOCON, RXFUL ; Does RXB0 contain a message? BRA NoMessage ; No. Handle this situation... ; We have verified that a message is pending in RXBO buffer. ; If this buffer can receive both Standard or Extended Identifier messages, ; identify type of message received. ; Is this Extended Identifier? BTFSS RXBOSIDL, EXID BRA StandardMessage ; No. This is Standard Identifier message. ; Yes. This is Extended Identifier message. ; Read all 29-bits of Extended Identifier message. . . . ; Now read all data bytes MOVFF RXB0DO, MY DATA BYTE1 . . . ; Once entire message is read, mark the RXBO that it is read and no longer FULL. BCF RXB0CON, RXFUL ; This will allow CAN Module to load new messages ; into this buffer. . . .

24.2.4 CAN BAUD RATE REGISTERS

This section describes the CAN Baud Rate registers.

Note:	These	registers	are	writable	in
	only.				

REGISTER 24-52: BRGCON1: BAUD RATE CONTROL REGISTER 1

| R/W-0 |
|-------|-------|-------|-------|-------|-------|-------|-------|
| SJW1 | SJW0 | BRP5 | BRP4 | BRP3 | BRP2 | BRP1 | BRP0 |
| bit 7 | | | | | | | bit 0 |

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	l as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 7-6	SJW<1:0>: Synchronized Jump Width bits						
	11 = Synchronization jump width time = $4 \times TQ$						
	10 = Synchronization jump width time = 3 x TQ						
	01 = Synchronization jump width time = 2 x TQ						
	00 = Synchronization jump width time = 1 x TQ						
bit 5-0	BRP<5:0>: Baud Rate Prescaler bits						
	111111 = Tq = (2 x 64)/Fosc						
	111110 = TQ = (2 x 63)/Fosc						
	:						
	:						
	000001 = Tq = (2 x 2)/Fosc						
	000000 = Tq = (2 x 1)/Fosc						

25.4 Fail-Safe Clock Monitor

The Fail-Safe Clock Monitor (FSCM) allows the microcontroller to continue operation in the event of an external oscillator failure by automatically switching the device clock to the internal oscillator block. The FSCM function is enabled by setting the FCMEN Configuration bit.

When FSCM is enabled, the INTRC oscillator runs at all times to monitor clocks to peripherals and provide a backup clock in the event of a clock failure. Clock monitoring (shown in Figure 25-3) is accomplished by creating a sample clock signal, which is the INTRC output divided by 64. This allows ample time between FSCM sample clocks for a peripheral clock edge to occur. The peripheral device clock and the sample clock are presented as inputs to the Clock Monitor (CM) latch. The CM is set on the falling edge of the device clock source, but cleared on the rising edge of the sample clock.

Clock failure is tested for on the falling edge of the sample clock. If a sample clock falling edge occurs while CM is still set, a clock failure has been detected (Figure 25-4). This causes the following:

- the FSCM generates an oscillator fail interrupt by setting bit, OSCFIF (PIR2<7>);
- the device clock source is switched to the internal oscillator block (OSCCON is not updated to show the current clock source – this is the Fail-Safe condition); and
- the WDT is reset.

During switchover, the postscaler frequency from the internal oscillator block may not be sufficiently stable for timing-sensitive applications. In these cases, it may be desirable to select another clock configuration and enter an alternate power-managed mode. This can be done to attempt a partial recovery or execute a controlled shutdown. See Section 4.1.4 "Multiple Sleep Commands" and Section 25.3.1 "Special Considerations for Using Two-Speed Start-up" for more details.

To use a higher clock speed on wake-up, the INTOSC or postscaler clock sources can be selected to provide a higher clock speed by setting bits, IRCF<2:0>, immediately after Reset. For wake-ups from Sleep, the INTOSC or postscaler clock sources can be selected by setting the IRCF<2:0> bits prior to entering Sleep mode.

The FSCM will detect failures of the primary or secondary clock sources only. If the internal oscillator block fails, no failure would be detected, nor would any action be possible.

25.4.1 FSCM AND THE WATCHDOG TIMER

Both the FSCM and the WDT are clocked by the INTRC oscillator. Since the WDT operates with a separate divider and counter, disabling the WDT has no effect on the operation of the INTRC oscillator when the FSCM is enabled.

As already noted, the clock source is switched to the INTOSC clock when a clock failure is detected. Depending on the frequency selected by the IRCF<2:0> bits, this may mean a substantial change in the speed of code execution. If the WDT is enabled with a small prescale value, a decrease in clock speed allows a WDT time-out to occur and a subsequent device Reset. For this reason, Fail-Safe Clock events also reset the WDT and postscaler, allowing it to start timing from when execution speed was changed and decreasing the likelihood of an erroneous time-out.

25.4.2 EXITING FAIL-SAFE OPERATION

The Fail-Safe condition is terminated by either a device Reset or by entering a power-managed mode. On Reset, the controller starts the primary clock source specified in Configuration Register 1H (with any required start-up delays that are required for the oscillator mode, such as OST or PLL timer). The INTOSC multiplexer provides the device clock until the primary clock source becomes ready (similar to a Two-Speed Start-up). The clock source is then switched to the primary clock (indicated by the OSTS bit in the OSCCON register becoming set). The Fail-Safe Clock Monitor then resumes monitoring the peripheral clock.

The primary clock source may never become ready during start-up. In this case, operation is clocked by the INTOSC multiplexer. The OSCCON register will remain in its Reset state until a power-managed mode is entered.

BNC	;	Branch if	Not Carry		BNN		Branch if	Not Negativ	/e
Synta	ax:	BNC n	_		Syntax	:	BNN n		
Oper	ands:	-128 ≤ n ≤ 1	127		Operar	nds:	-128 ≤ n ≤ 1	127	
Oper	ation:	if Carry bit i (PC) + 2 + 2	s '0', 2n → PC		Operat	Operation: if Negative bit is '0', (PC) + 2 + 2n \rightarrow PC		bit is '0', 2n \rightarrow PC	
Statu	is Affected:	None			Status	Affected:	None		
Enco	oding:	1110	0011 nni	nn nnnn	Encodi	ng:	1110	0111 nn:	nn nnnn
Desc	cription:	If the Carry will branch.	bit is '0', then	the program	Descrip	otion:	If the Negat program wi	tive bit is '0', th Il branch.	nen the
		The 2's con added to th have incren instruction, PC + 2 + 2r two-cycle in	nplement num e PC. Since the nented to fetch the new addree n. This instruct instruction.	ber '2n' is ne PC will n the next ess will be tion is then a			The 2's con added to the incrementer instruction, PC + 2 + 2r two-cycle in	nplement num e PC. Since th d to fetch the r the new addre n. This instruct istruction.	ber '2n' is e PC will have next ess will be tion is then a
Word	ds:	1			Words:		1		
Cycle	es:	1(2)			Cycles:	:	1(2)		
Q C If Ju	ycle Activity:				Q Cyc lf Jum	le Activity:			
	Q1	Q2	Q3	Q4		Q1	Q2	Q3	Q4
	Decode	Read literal 'n'	Process Data	Write to PC		Decode	Read literal 'n'	Process Data	Write to PC
	No	No	No	No		No	No	No	No
	operation	operation	operation	operation		operation	operation	operation	operation
lf No	o Jump:				lf No J	lump:			
	Q1	Q2	Q3	Q4	· –	Q1	Q2	Q3	Q4
	Decode	Read literal 'n'	Process Data	No operation		Decode	Read literal 'n'	Process Data	No operation
<u>Exan</u>	nple:	HERE	BNC Jump		Examp	le:	HERE	BNN Jump	
	Before Instruct PC After Instruction If Carry PC If Carry PC	tion = ad on = 0; = ad = 1; = ad	dress (HERE) dress (Jump) dress (HERE)) + 2)	Be	efore Instruc PC ter Instructio If Negativ PC If Negativ PC	tion = ad on = 0; ve = 0; ve = 1; = ad	dress (HERE dress (Jump dress (HERE)) + 2)

SUBWFB Subtract W from f with Borrow						orrow
Synt	ax:	S	UBWFB	f {,d {,a}]	}	
Ope	rands:	0 d a	≤ f ≤ 255 ∈ [0,1] ∈ [0,1]			
Оре	ration:	(f)	- (W) - ($\overline{C}) \rightarrow dest$		
Statu	us Affected:	N	, OV, C, D	C, Z		
Enco	oding:		0101	10da	ffff	ffff
		from in in If If G If So Bi	when the second	r 'f' (2's cc d' is '0', th '1', the re '. ne Access ne BSR is nd the exte ed, this ins ever $f \le 95$ 2.3 "Byte d Instruct d Instruct	Bank is Bank is Bank is used to ended ir struction et Addr 5 (5Fh). -Orient :ions in for def	is stored ored back selected. select the astruction operates essing See ed and Indexed
Wor	ds:	1		et moue		
Cvcl	es:	1				
QC	cycle Activity:					
	Q1		Q2	Q3		Q4
	Decode	re	Read gister 'f'	Proces Data	s ' de	Write to estination
Exar	<u>mple 1:</u>		SUBWFB	REG, 1,	0	
	Before Instruc	tion				
	REG W C	= = =	19h 0Dh 1	(0001 (0000	1001) 1101)	
	After Instructio	on _	0Ch	(0000	1011)	
	W	=	0Dh	(0000	11011)	
	Z	=	1 0			
_	N	=	0	; result	is positi	ve
Exar	<u>nple 2:</u> Roforo Instruc	tion	SUBWFB	REG, 0,	0	
	REG	=	1Bh	(0001	1011)	
	W C	=	1Ah 0	(0001	1010)	
	After Instruction	on =	1Bh	(0001	1011)	
	C Z N	=	1 1 0	; result	is zero	
Ехаг	mple 3:	-	SUBWFB	REG. 1.	0	
	Before Instruc	tion			-	
	REG W C	= = =	03h 0Eh 1	(0000 (0000	0011) 1101)	
	After Instruction	n				
	REG	=	F5h	(1111 :[2 's co	0100) mpl	
	W C Z	= = =	0Eh 0 0	(0000	1101)	
	Ň	=	ĭ	; result	is nega	tive

SWAPF	Swap f						
Syntax:	SWAPF f	SWAPF f {,d {,a}}					
Operands:	$\begin{array}{l} 0 \leq f \leq 255 \\ d \in [0,1] \\ a \in [0,1] \end{array}$						
Operation:	$(f<3:0>) \rightarrow$ $(f<7:4>) \rightarrow$	dest<7:4>, dest<3:0>					
Status Affected:	None						
Encoding:	0011	10da :	ffff	ffff			
Description:	ription: The upper and lower nibbles of re 'f' are exchanged. If 'd' is '0', the r is placed in W. If 'd' is '1', the resu placed in register 'f'.						
	lf 'a' is '0', t lf 'a' is '1', t GPR bank.	he Access I he BSR is ι	Bank is ised to :	selected. select the			
	If 'a' is '0' and the extended instruction set is enabled, this instruction operat in Indexed Literal Offset Addressing mode whenever f ≤ 95 (5Fh). See Section 26.2.3 "Byte-Oriented and Bit-Oriented Instructions in Indexe						
Words:	1						
Cycles:	1						
Q Cycle Activity:							
Q1	Q2	Q3		Q4			
Decode	Read register 'f'	Process Data	V des	/rite to stination			
Example: Before Instruc REG After Instructio REG	SWAPF F tion = 53h n = 35h	REG, 1, 0					

28.2 DC Characteristics:

Power-Down and Supply Current PIC18F2480/2580/4480/4580 (Industrial, Extended) PIC18LF2480/2580/4480/4580 (Industrial) (Continued)

PIC18LF2 (Indus	2480/2580/4480/4580 strial)	Standard Operating Conditions (unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for industrial					
PIC18F24 (Indus	180/2580/4480/4580 strial, Extended)	$\begin{array}{ll} \mbox{Standard Operating Conditions (unless otherwise stated)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for industrial} \\ -40^{\circ}C \leq TA \leq +125^{\circ}C \mbox{ for extended} \end{array}$					
Param No.	Device	Тур	Max	Units	Conditions		
D026	A/D Converter	1.0	2.0	μA	-40°C to +85°C	VDD = 2.0V	
(ΔIAD)		1.0	2.0	μA	-40°C to +85°C	VDD = 3.0V	A/D on not converting
		1.0	2.0	μA	-40°C to +85°C		Arb on, not converting
		2.0	8.0	μA	-40°C to +125°C	VDD - 5.0V	

Legend: Shading of rows is to assist in readability of the table.

Note 1: The power-down current in Sleep mode does not depend on the oscillator type. Power-down current is measured with the part in Sleep mode, with all I/O pins in high-impedance state and tied to VDD or VSs and all features that add delta current disabled (such as WDT, Timer1 Oscillator, BOR, etc.).

2: The supply current is mainly a function of operating voltage, frequency and mode. Other factors, such as I/O pin loading and switching rate, oscillator type and circuit, internal code execution pattern and temperature, also have an impact on the current consumption. The test conditions for all IDD measurements in active operation mode are:

OSC1 = external square wave, from rail-to-rail; all I/O pins tri-stated, pulled to VDD;

MCLR = VDD; WDT enabled/disabled as specified.

3: For RC oscillator configurations, current through REXT is not included. The current through the resistor can be estimated by the formula, Ir = VDD/2REXT (mA), with REXT in kΩ.

4: Standard low-cost 32 kHz crystals have an operating temperature range of -10°C to +70°C. Extended temperature crystals are available at a much higher cost.