

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	25MHz
Connectivity	CANbus, I ² C, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, HLVD, POR, PWM, WDT
Number of I/O	36
Program Memory Size	16KB (8K x 16)
Program Memory Type	FLASH
EEPROM Size	256 x 8
RAM Size	768 x 8
Voltage - Supply (Vcc/Vdd)	4.2V ~ 5.5V
Data Converters	A/D 11x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Through Hole
Package / Case	40-DIP (0.600", 15.24mm)
Supplier Device Package	40-PDIP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic18f4480-e-p

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

NOTES:

5.2 Master Clear Reset (MCLR)

The MCLR pin provides a method for triggering an external Reset of the device. A Reset is generated by holding the pin low. These devices have a noise filter in the MCLR Reset path which detects and ignores small pulses.

The MCLR pin is not driven low by any internal Resets, including the WDT.

In PIC18F2480/2580/4480/4580 devices, the MCLR input can be disabled with the MCLRE Configuration bit. When MCLR is disabled, the pin becomes a digital input. See **Section 11.5 "PORTE, TRISE and LATE Registers"** for more information.

5.3 Power-on Reset (POR)

A Power-on Reset pulse is generated on-chip whenever VDD rises above a certain threshold. This allows the device to start in the initialized state when VDD is adequate for operation.

To take advantage of the POR circuitry, tie the $\overline{\text{MCLR}}$ pin through a resistor (1 k Ω to 10 k Ω) to VDD. This will eliminate external RC components usually needed to create a Power-on Reset delay. A minimum rise rate for VDD is specified (parameter D004). For a slow rise time, see Figure 5-2.

When the device starts normal operation (i.e., exits the Reset condition), device operating parameters (voltage, frequency, temperature, etc.) must be met to ensure operation. If these conditions are not met, the device must be held in Reset until the operating conditions are met.

POR events are captured by the POR bit (RCON<1>). The state of the bit is set to '0' whenever a Power-on Reset occurs; it does not change for any other Reset event. POR is not reset to '1' by any hardware event. To capture multiple events, the user manually resets the bit to '1' in software following any Power-on Reset. FIGURE 5-2:

EXTERNAL POWER-ON RESET CIRCUIT (FOR SLOW VDD POWER-UP)

- Note 1: External Power-on Reset circuit is required only if the VDD power-up slope is too slow. The diode D helps discharge the capacitor quickly when VDD powers down.
 - 2: $R < 40 \text{ k}\Omega$ is recommended to make sure that the voltage drop across R does not violate the device's electrical specification.

		1	1						Í	
File Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Details on Page:
B0D7 ⁽⁸⁾	B0D77	B0D76	B0D75	B0D74	B0D73	B0D72	B0D71	B0D70	XXXX XXXX	64, 305
B0D6 ⁽⁸⁾	B0D67	B0D66	B0D65	B0D64	B0D63	B0D62	B0D61	B0D60	XXXX XXXX	64, 305
B0D5 ⁽⁸⁾	B0D57	B0D56	B0D55	B0D54	B0D53	B0D52	B0D51	B0D50	xxxx xxxx	64, 305
B0D4 ⁽⁸⁾	B0D47	B0D46	B0D45	B0D44	B0D43	B0D42	B0D41	B0D40	xxxx xxxx	64, 305
B0D3 ⁽⁸⁾	B0D37	B0D36	B0D35	B0D34	B0D33	B0D32	B0D31	B0D30	XXXX XXXX	64, 305
B0D2 ⁽⁸⁾	B0D27	B0D26	B0D25	B0D24	B0D23	B0D22	B0D21	B0D20	XXXX XXXX	64, 305
B0D1 ⁽⁸⁾	B0D17	B0D16	B0D15	B0D14	B0D13	B0D12	B0D11	B0D10	XXXX XXXX	64, 305
B0D0 ⁽⁸⁾	B0D07	B0D06	B0D05	B0D04	B0D03	B0D02	B0D01	B0D00	XXXX XXXX	64, 305
B0DLC ⁽⁸⁾ Receive mode	_	RXRTR	RB1	RB0	DLC3	DLC2	DLC1	DLC0	-xxx xxxx	64, 307
B0DLC ⁽⁸⁾ Transmit mode	-	TXRTR	-	-	DLC3	DLC2	DLC1	DLC0	-x xxxx	64, 307
B0EIDL ⁽⁸⁾	EID7	EID6	EID5	EID4	EID3	EID2	EID1	EID0	XXXX XXXX	65, 305
B0EIDH ⁽⁸⁾	EID15	EID14	EID13	EID12	EID11	EID10	EID9	EID8	XXXX XXXX	65, 304
B0SIDL ⁽⁸⁾ Receive mode	SID2	SID1	SID0	SRR	EXID	—	EID17	EID16	XXXX X-XX	65, 303
B0SIDL ⁽⁸⁾ Transmit mode	SID2	SID1	SID0	_	EXIDE	_	EID17	EID16	xxx- x-xx	65, 303
B0SIDH ⁽⁸⁾	SID10	SID9	SID8	SID7	SID6	SID5	SID4	SID3	XXXX XXXX	65, 302
B0CON ⁽⁸⁾ Receive mode	RXFUL	RXM1	RXRTRRO	FILHIT4	FILHIT3	FILHIT2	FILHIT1	FILHIT0	0000 0000	64, 301
B0CON ⁽⁸⁾ Transmit mode	TXBIF	TXABT	TXLARB	TXERR	TXREQ	RTREN	TXPRI1	TXPRI0	0000 0000	64, 301
TXBIE	_	_	_	TXB2IE	TXB1IE	TXB0IE	—	_	0 00	65, 324
BIE0	B5IE	B4IE	B3IE	B2IE	B1IE	B0IE	RXB1IE	RXB0IE	0000 0000	65, 324
BSEL0	B5TXEN	B4TXEN	B3TXEN	B2TXEN	B1TXEN	B0TXEN	_	_	0000 00	65, 307
MSEL3	FIL15_1	FIL15_0	FIL14_1	FIL14_0	FIL13_1	FIL13_0	FIL12_1	FIL12_0	0000 0000	65, 316
MSEL2	FIL11_1	FIL11_0	FIL10_1	FIL10_0	FIL9_1	FIL9_0	FIL8_1	FIL8_0	0000 0000	65, 315
MSEL1	FIL7_1	FIL7_0	FIL6_1	FIL6_0	FIL5_1	FIL5_0	FIL4_1	FIL4_0	0000 0101	65, 314
MSEL0	FIL3_1	FIL3_0	FIL2_1	FIL2_0	FIL1_1	FIL1_0	FIL0_1	FIL0_0	0101 0000	65, 313
RXFBCON7	F15BP_3	F15BP_2	F15BP_1	F15BP_0	F14BP_3	F14BP_2	F14BP_1	F14BP_0	0000 0000	65, 312
RXFBCON6	F13BP_3	F13BP_2	F13BP_1	F13BP_0	F12BP_3	F12BP_2	F12BP_1	F12BP_0	0000 0000	65, 312
RXFBCON5	F11BP_3	F11BP_2	F11BP_1	F11BP_0	F10BP_3	F10BP_2	F10BP_1	F10BP_0	0000 0000	65, 312
RXFBCON4	F9BP_3	F9BP_2	F9BP_1	F9BP_0	F8BP_3	F8BP_2	F8BP_1	F8BP_0	0000 0000	65, 312
RXFBCON3	F7BP_3	F7BP_2	F7BP_1	F7BP_0	F6BP_3	F6BP_2	F6BP_1	F6BP_0	0000 0000	65, 312
RXFBCON2	F5BP_3	F5BP_2	F5BP_1	F5BP_0	F4BP_3	F4BP_2	F4BP_1	F4BP_0	0001 0001	65, 312
RXFBCON1	F3BP_3	F3BP_2	F3BP_1	F3BP_0	F2BP_3	F2BP_2	F2BP_1	F2BP_0	0001 0001	65, 312
RXFBCON0	F1BP_3	F1BP_2	F1BP_1	F1BP_0	F0BP_3	F0BP_2	F0BP_1	F0BP_0	0000 0000	65, 312
SDFLC	_	—	_	FLC4	FLC3	FLC2	FLC1	FLC0	0 0000	65, 312
RXFCON1	RXF15EN	RXF14EN	RXF13EN	RXF12EN	RXF11EN	RXF10EN	RXF9EN	RXF8EN	0000 0000	65, 311
RXFCON0	RXF7EN	RXF6EN	RXF5EN	RXF4EN	RXF3EN	RXF2EN	RXF1EN	RXF0EN	0000 0000	65, 311
RXF15EIDL	EID7	EID6	EID5	EID4	EID3	EID2	EID1	EID0	XXXX XXXX	65, 309

TABLE 6-2:REGISTER FILE SUMMARY (PIC18F2480/2580/4480/4580) (CONTINUED)

Legend: x = unknown, u = unchanged, – = unimplemented, q = value depends on condition

Note 1: Bit 21 of the PC is only available in Test mode and Serial Programming modes.

2: The SBOREN bit is only available when CONFIG2L<1:0> = 01; otherwise, it is disabled and reads as '0'. See Section 5.4 "Brown-out Reset (BOR)".

3: These registers and/or bits are not implemented on PIC18F2X80 devices and are read as '0'. Reset values are shown for PIC18F4X80 devices; individual unimplemented bits should be interpreted as '---'.

4: The PLLEN bit is only available in specific oscillator configuration; otherwise, it is disabled and reads as '0'. See Section 3.6.4 "PLL in INTOSC Modes".

5: The RE3 bit is only available when Master Clear Reset is disabled (CONFIG3H<7> = 0); otherwise, RE3 reads as '0'. This bit is read-only.

6: RA6/RA7 and their associated latch and direction bits are individually configured as port pins based on various primary oscillator modes. When disabled, these bits read as '0'.

7: CAN bits have multiple functions depending on the selected mode of the CAN module.

8: This register reads all '0's until the ECAN™ technology is set up in Mode 1 or Mode 2.

9: These registers are available on PIC18F4X80 devices only.

8.0 DATA EEPROM MEMORY

The data EEPROM is a nonvolatile memory array, separate from the data RAM and program memory, that is used for long-term storage of program data. It is not directly mapped in either the register file or program memory space, but is indirectly addressed through the Special Function Registers (SFRs). The EEPROM is readable and writable during normal operation over the entire VDD range.

Four SFRs are used to read and write to the data EEPROM, as well as the program memory. They are:

- EECON1
- EECON2
- EEDATA
- EEADR

The data EEPROM allows byte read and write. When interfacing to the data memory block, EEDATA holds the 8-bit data for read/write and the EEADR register holds the address of the EEPROM location being accessed.

The EEPROM data memory is rated for high erase/write cycle endurance. A byte write automatically erases the location and writes the new data (erase-before-write). The write time is controlled by an on-chip timer; it will vary with voltage and temperature, as well as from chip to chip. Please refer to parameter D122 (Table 28-1 in **Section 28.0 "Electrical Characteristics"**) for exact limits.

8.1 EEADR Register

The EEADR register is used to address the data EEPROM for read and write operations. The 8-bit range of the register can address a memory range of 256 bytes (00h to FFh).

8.2 EECON1 and EECON2 Registers

Access to the data EEPROM is controlled by two registers: EECON1 and EECON2. These are the same registers which control access to the program memory and are used in a similar manner for the data EEPROM.

The EECON1 register (Register 8-1) is the control register for data and program memory access. Control bit, EEPGD, determines if the access will be to program or data EEPROM memory. When clear, operations will access the data EEPROM memory. When set, program memory is accessed.

Control bit, CFGS, determines if the access will be to the Configuration registers or to program memory/data EEPROM memory. When set, subsequent operations access Configuration registers. When CFGS is clear, the EEPGD bit selects either program Flash or data EEPROM memory.

The WREN bit, when set, will allow a write operation. On power-up, the WREN bit is clear. The WRERR bit is set in hardware when the WREN bit is set and cleared when the internal programming timer expires and the write operation is complete.

Note:	During normal operation, the WRERR is									
	read as '1'. This can indicate that a write									
	operation was prematurely terminated by									
	a Reset, or a write operation was									
	attempted improperly.									

The WR control bit initiates write operations. The bit cannot be cleared, only set, in software; it is cleared in hardware at the completion of the write operation.

Note:	The EEIF interrupt flag bit (PIR2<4>) is set								
	when the write is complete. It must be								
	cleared in software.								

Control bits, RD and WR, start read and erase/write operations, respectively. These bits are set by firmware and cleared by hardware at the completion of the operation.

The RD bit cannot be set when accessing program memory (EEPGD = 1). Program memory is read using table read instructions. See **Section 7.1 "Table Reads and Table Writes"** regarding table reads.

The EECON2 register is not a physical register. It is used exclusively in the memory write and erase sequences. Reading EECON2 will read all '0's.

8.6 Operation During Code-Protect

Data EEPROM memory has its own code-protect bits in Configuration Words. External read and write operations are disabled if code protection is enabled.

The microcontroller itself can both read and write to the internal data EEPROM, regardless of the state of the code-protect Configuration bit. Refer to Section 25.0 "Special Features of the CPU" for additional information.

8.7 Protection Against Spurious Write

There are conditions when the device may not want to write to the data EEPROM memory. To protect against spurious EEPROM writes, various mechanisms have been implemented. On power-up, the WREN bit is cleared. In addition, writes to the EEPROM are blocked during the Power-up Timer period (TPWRT, parameter 33).

The write initiate sequence and the WREN bit together help prevent an accidental write during brown-out, power glitch or software malfunction.

8.8 Using the Data EEPROM

The data EEPROM is a high-endurance, byte addressable array that has been optimized for the storage of frequently changing information (e.g., program variables or other data that are updated often). Frequently changing values will typically be updated more often than specification D124. If this is not the case, an array refresh must be performed. For this reason, variables that change infrequently (such as constants, IDs, calibration, etc.) should be stored in Flash program memory.

A simple data EEPROM refresh routine is shown in Example 8-3.

Note: If data EEPROM is only used to store constants and/or data that changes rarely, an array refresh is likely not required. See specification D124.

EXAMPLE 8-3:	DATA EEPROM REFRESH ROUTINE
--------------	-----------------------------

	CLRF	EEADR	;	Start at address 0
	BCF	EECON1, CFGS	;	Set for memory
	BCF	EECON1, EEPGD	;	Set for Data EEPROM
	BCF	INTCON, GIE	;	Disable interrupts
	BSF	EECON1, WREN	;	Enable writes
LOOP			;	Loop to refresh array
	BSF	EECON1, RD	;	Read current address
	MOVLW	55h	;	
	MOVWF	EECON2	;	Write 55h
	MOVLW	0AAh	;	
	MOVWF	EECON2	;	Write OAAh
	BSF	EECON1, WR	;	Set WR bit to begin write
	BTFSC	EECON1, WR	;	Wait for write to complete
	BRA	\$-2		
	INCFSZ	EEADR, F	;	Increment address
	BRA	LOOP	;	Not zero, do it again
	BCF	EECON1, WREN	;	Disable writes
	BSF	INTCON, GIE	;	Enable interrupts

10.5 RCON Register

The RCON register contains flag bits which are used to determine the cause of the last Reset or wake-up from Idle or Sleep modes. RCON also contains the IPEN bit which enables interrupt priorities.

REGISTER 10-13: RCON: RESET CONTROL REGISTER

R/W-0	R/W-1 ⁽¹⁾	U-0	R/W-1	R-1	R-1	R/W-0 ⁽²⁾	R/W-0
IPEN	SBOREN	—	RI	TO	PD	POR	BOR
bit 7							bit 0

Legend:					
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'			
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown		

bit 7	IPEN: Interrupt Priority Enable bit	
	1 = Enable priority levels on interrupts	
	 Disable priority levels on interrupts (PIC16CXXX Compatibility mode) 	
bit 6	SBOREN: BOR Software Enable bit ⁽¹⁾	
	For details of bit operation, see Register 5-1.	
bit 5	Unimplemented: Read as '0'	
bit 4	RI: RESET Instruction Flag bit	
	For details of bit operation, see Register 5-1.	
bit 3	TO: Watchdog Time-out Flag bit	
	For details of bit operation, see Register 5-1.	
bit 2	PD: Power-Down Detection Flag bit	
	For details of bit operation, see Register 5-1.	
bit 1	POR : Power-on Reset Status bit ⁽²⁾	
	For details of bit operation, see Register 5-1.	
bit 0	BOR: Brown-out Reset Status bit	
	For details of bit operation, see Register 5-1.	
Note 4.		

Note 1: If SBOREN is enabled, its Reset state is '1'; otherwise, it is '0'.

2: The actual Reset value of POR is determined by the type of device Reset. See Register 5-1 for additional information.

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Reset Values on Page:
PORTB	RB7	RB6	RB5	RB4	RB3	RB2	RB1	RB0	58
LATB	LATB Output Latch Register								
TRISB	PORTB Dat	a Direction F	Register						58
INTCON	GIE/GIEH	PEIE/GIEL	TMR0IE	INT0IE	RBIE	TMR0IF	INT0IF	RBIF	55
INTCON2	RBPU	INTEDG0	INTEDG1	INTEDG2		TMR0IP	_	RBIP	55
INTCON3	INT2IP	INT1IP	—	INT2IE	INT1IE	—	INT2IF	INT1IF	55
ADCON1			VCFG1	VCFG0	PCFG3	PCFG2	PCFG1	PCFG0	56

TABLE 11-4: SUMMARY OF REGISTERS ASSOCIATED WITH PORTB

Legend: — = unimplemented, read as '0'. Shaded cells are not used by PORTB.

Pin Name	Function	I/O	TRIS	Buffer	Description				
RC0/T1OSO/	RC0	OUT	0	DIG	LATC<0> data output.				
T13CKI		IN	1	ST	PORTC<0> data input.				
	T10S0	OUT	х	ANA	Timer1 oscillator output – overrides the TRIS<0> control when enabled.				
	T13CKI	IN	1	ST	Timer1/Timer3 clock input.				
RC1/T1OSI	RC1	OUT	0	DIG	LATC<1> data output.				
		IN	1	ST	PORTC<1> data input.				
	T10SI	IN	х	ANA	Timer1 oscillator input – overrides the TRIS<1> control when enabled.				
RC2/CCP1	RC2	OUT	0	DIG	LATC<2> data output.				
		IN	1	ST	PORTC<2> data input.				
	CCP1	OUT	0	DIG	CCP1 compare output.				
		IN	1	ST	CCP1 capture input.				
RC3/SCK/SCL	RC3	OUT	0	DIG	LATC<3> data output.				
		IN	1	ST	PORTC<3> data input.				
	SCK	OUT	0	DIG	SPI clock output (MSSP module) – must have TRIS set to '1' to allow MSSP module to control the bidirectional communication.				
		IN	1	ST	SPI clock input (MSSP module).				
	SCL	OUT	0	DIG	I ² C [™] /SM bus clock output (MSSP module) – must have TRIS set to '1' to allow MSSP module to control the bidirectional communication.				
		IN	1	I ² C™/SMB	I ² C/SM bus clock input.				
RC4/SDI/SDA RC4 OUT 0 DIG LATC<4> data d		LATC<4> data output.							
		IN	1	ST	PORTC<4> data input.				
	SDI	IN	1	ST	SPI data input (MSSP module).				
	SDA	OUT	1	DIG	I ² C/SM bus data output (MSSP module) – must have TRIS set to '1' to allow MSSP module to control the bidirectional communication.				
		IN	1	I ² C/SMB	I ² C/SM bus data input (MSSP module) – must have TRIS set to '1' to allow MSSP module to control the bidirectional communication.				
RC5/SDO	RC5	OUT	0	DIG	LATC<5> data output.				
		IN	1	ST	PORTC<5> data input.				
	SDO	OUT	0	DIG	SPI data output (MSSP module).				
RC6/TX/CK	RC6	OUT	0	DIG	LATC<6> data output.				
		IN	1	ST	PORTC<6> data input.				
	TX	OUT	0	DIG	EUSART data output.				
	СК	OUT	1	DIG	EUSART synchronous clock output – must have TRIS set to '1' to enable EUSART to control the bidirectional communication.				
		IN	1	ST	EUSART synchronous clock input.				
RC7/RX/DT	RC7	OUT	0	DIG	LATC<7> data output.				
		IN	1	ST	PORTC<7> data input.				
	RX	IN	1	ST	EUSART asynchronous data input.				
	DT	OUT	1	DIG	EUSART synchronous data output – must have TRIS set to '1' to enable EUSART to control the bidirectional communication.				
		IN	1	ST	EUSART synchronous data input.				

TABLE 11-5: PORTC I/O SUMMARY

Legend: OUT = Output, IN = Input, ANA = Analog Signal, DIG = Digital Output, ST = Schmitt Buffer Input, TTL = TTL Buffer Input

TABLE 11-6: SUMMARY OF REGISTERS ASSOCIATED WITH PORTC

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Reset Values on Page:	
PORTC	RC7	RC6	RC5	RC4	RC3	RC2	RC1	RC0	58	
LATC	LATC Output Latch Register									
TRISC	PORTC Da	PORTC Data Direction Register								

FIGURE 16-1: CAPTURE MODE OPERATION BLOCK DIAGRAM

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Reset Values on Page:
INTCON	GIE/GIEH	PEIE/GIEL	TMR0IE	INT0IE	RBIE	TMR0IF	INT0IF	RBIF	55
RCON	IPEN	SBOREN ⁽³⁾	_	RI	TO	PD	POR	BOR	56
IPR1	PSPIP	ADIP	RCIP	TXIP	SSPIP	CCP1IP	TMR2IP	TMR1IP	58
PIR1	PSPIF	ADIF	RCIF	TXIF	SSPIF	CCP1IF	TMR2IF	TMR1IF	58
PIE1	PSPIE	ADIE	RCIE	TXIE	SSPIE	CCP1IE	TMR2IE	TMR1IE	58
IPR2	OSCFIP	CMIP ⁽²⁾	-	EEIP	BCLIP	HLVDIP	TMR3IP	ECCP1IP ⁽²⁾	58
PIR2	OSCFIF	CMIF ⁽²⁾	_	EEIF	BCLIF	HLVDIF	TMR3IF	ECCP1IF ⁽²⁾	58
PIE2	OSCFIE	CMIE ⁽²⁾	_	EEIE	BCLIE	HLVDIE	TMR3IE	ECCP1IE ⁽²⁾	57
TRISB	PORTB Data Direction Register								58
TRISC	PORTC Data Direction Register								58
TMR1L	Timer1 Reg	ister Low Byt	е						56
TMR1H	Timer1 Reg	ister High By	te						56
T1CON	RD16	T1RUN	T1CKPS1	T1CKPS0	T1OSCEN	T1SYNC	TMR1CS	TMR10N	56
TMR3H	Timer3 Reg	ister High By	te						57
TMR3L	Timer3 Reg	ister Low Byt	е						57
T3CON	RD16	T3ECCP1 ⁽¹⁾	T3CKPS1	T3CKPS0	T3CCP1 ⁽¹⁾	T3SYNC	TMR3CS	TMR3ON	57
CCPR1L	Capture/Co	mpare/PWM	Register 1 L	ow Byte					57
CCPR1H	Capture/Co	mpare/PWM	Register 1 F	ligh Byte					57
CCP1CON		_	DC1B1	DC1B0	CCP1M3	CCP1M2	CCP1M1	CCP1M0	57
ECCPR1L ⁽¹⁾	Enhanced 0	Capture/Comp	oare/PWM F	Register 1 Lo	ow Byte				57
ECCPR1H ⁽¹⁾	Enhanced (Capture/Comp	bare/PWM F	Register 1 H	igh Byte				57
ECCP1CON ⁽¹⁾	EPWM1M1	EPWM1M0	EDC1B1	EDC1B0	ECCP1M3	ECCP1M2	ECCP1M1	ECCP1M0	57

TABLE 16-3: REGISTERS ASSOCIATED WITH CAPTURE, COMPARE, TIMER1 AND TIMER3

Legend: — = unimplemented, read as '0'. Shaded cells are not used by capture, compare, Timer1 or Timer3.

Note 1: These bits or registers are available on PIC18F4X80 devices only.

2: These bits are available on PIC18F4X80 devices and reserved on PIC18F2X80 devices.

3: The SBOREN bit is only available when CONFIG2L<1:0> = 01; otherwise, it is disabled and reads as '0'. See Section 5.4 "Brown-out Reset (BOR)".

18.4.14 SLEEP OPERATION

While in Sleep mode, the I²C module can receive addresses or data and when an address match or complete byte transfer occurs, wake the processor from Sleep (if the MSSP interrupt is enabled).

18.4.15 EFFECT OF A RESET

A Reset disables the MSSP module and terminates the current transfer.

18.4.16 MULTI-MASTER MODE

In Multi-Master mode, the interrupt generation on the detection of the Start and Stop conditions allows the determination of when the bus is free. The Stop (P) and Start (S) bits are cleared from a Reset or when the MSSP module is disabled. Control of the I²C bus may be taken when the P bit (SSPSTAT<4>) is set, or the bus is Idle, with both the S and P bits clear. When the bus is busy, enabling the MSSP interrupt will generate the interrupt when the Stop condition occurs.

In multi-master operation, the SDA line must be monitored for arbitration to see if the signal level is the expected output level. This check is performed in hardware with the result placed in the BCLIF bit.

The states where arbitration can be lost are:

- · Address Transfer
- Data Transfer
- A Start Condition
- A Repeated Start Condition
- An Acknowledge Condition

18.4.17 MULTI-MASTER COMMUNICATION, BUS COLLISION AND BUS ARBITRATION

Multi-Master mode support is achieved by bus arbitration. When the master outputs address/data bits onto the SDA pin, arbitration takes place when the master outputs a '1' on SDA, by letting SDA float high, and another master asserts a '0'. When the SCL pin floats high, data should be stable. If the expected data on SDA is a '1' and the data sampled on the SDA pin = 0, then a bus collision has taken place. The master will set the Bus Collision Interrupt Flag, BCLIF, and reset the I^2C port to its Idle state (Figure 18-25).

If a transmit was in progress when the bus collision occurred, the transmission is halted, the BF flag is cleared, the SDA and SCL lines are deasserted and the SSPBUF can be written to. When the user services the bus collision Interrupt Service Routine and if the I^2C bus is free, the user can resume communication by asserting a Start condition.

If a Start, Repeated Start, Stop or Acknowledge condition was in progress when the bus collision occurred, the condition is aborted, the SDA and SCL lines are deasserted and the respective control bits in the SSPCON2 register are cleared. When the user services the bus collision Interrupt Service Routine, and if the I^2C bus is free, the user can resume communication by asserting a Start condition.

The master will continue to monitor the SDA and SCL pins. If a Stop condition occurs, the SSPIF bit will be set.

A write to the SSPBUF will start the transmission of data at the first data bit, regardless of where the transmitter left off when the bus collision occurred.

In Multi-Master mode, the interrupt generation on the detection of Start and Stop conditions allows the determination of when the bus is free. Control of the I^2C bus can be taken when the P bit is set in the SSPSTAT register, or the bus is Idle and the S and P bits are cleared.

FIGURE 18-25: BUS COLLISION TIMING FOR TRANSMIT AND ACKNOWLEDGE

R/W-0	R/W-0	R/W-0	R/W-1	R/W-0	R/W-0	R/W-0	R/W-0
MDSEL1 ⁽¹⁾	MDSEL0 ⁽¹⁾	FIFOWM ⁽²⁾	EWIN4	EWIN3	EWIN2	EWIN1	EWIN0
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable I	bit	U = Unimplemented bit, read		l as '0'	
-n = Value at P	POR	'1' = Bit is set		'0' = Bit is cle	eared	x = Bit is unk	nown
			(1)				
bit 7-6	MDSEL<1:0>	: Mode Select	bits ⁽¹⁾				
	00 = Legacy	node (Mode 0, ed I egacy mod	e (Mode 1)				
	10 = Enhance	ed FIFO mode ((Mode 2)				
	11 = Reserve	d					
bit 5	FIFOWM: FIF	O High Water I	Mark bit ⁽²⁾				
	1 = Will cause	e FIFO interrupt	t when one re	eceive buffer re	emains		
bit 4.0			t when lour re	bite	remainer		
DIL 4-0	These bits m	an the group of	10w Address 16 banked (CAN SERs into	o Access Bank :	addresses OFA	0-0F6Dh The
	exact group o	f registers to m	ap is determ	ined by the bin	ary value of the	se bits.	
	Mode 0:						
	Unimplemen	ted: Read as ')'				
	<u>Mode 1, 2:</u>	ntanan Filtara	0 1 2 and D				
	00000 - Acce	eptance Filters	3. 4. 5 and B	RGCON2, 3 RGCON1, CIC	CON		
	00010 = Acce	eptance Filter M	lasks, Error a	and Interrupt C	ontrol		
	00011 = Tran	ismit Buffer 0					
	00100 = Iran	ISMIT Buffer 1					
	00101 – Han	eptance Filters	6, 7, 8				
	00111 = Acce	eptance Filters	9, 10, 11				
	01000 = Acce	eptance Filters	12, 13, 14				
	01001 = Acce		15				
	01111 = RXI	NT0, RXINT1					
	10000 = Rec	eive Buffer 0					
	10001 = Rec	eive Buffer 1					
	10010 = IX/F 10011 = TX/F	KX Buffer 0 RX Buffer 1					
	10100 = TX/F	RX Buffer 2					
	10101 = TX/F	RX Buffer 3					
	10110 = TX/F	RX Buffer 4					
	11000-11111	TA Buller 5					

REGISTER 24-3: ECANCON: ENHANCED CAN CONTROL REGISTER

- Note 1: These bits can only be changed in Configuration mode. See Register 24-1 to change to Configuration mode.
 - 2: This bit is used in Mode 2 only.
 - 3: If FIFO is configured to contain four or less buffers, then the FIFO interrupt will trigger.

REGISTER 24-16: RXBnSIDL: RECEIVE BUFFER n STANDARD IDENTIFIER REGISTERS, LOW BYTE [0 \le n \le 1]

R-x	R-x	R-x	R-x	R-x	U-0	R-x	R-x
SID2	SID1	SID0	SRR	EXID	—	EID17	EID16
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	1 as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 7-5	SID<2:0>: Standard Identifier bits (if EXID = 0) Extended Identifier bits, EID<20:18> (if EXID = 1).
bit 4	SRR: Substitute Remote Request bit
	This bit is always '1' when EXID = 1 or equal to the value of RXRTRRO (RBXnCON<3>) when EXID = 0.
bit 3	EXID: Extended Identifier bit
	1 = Received message is an extended data frame, SID<10:0> are EID<28:18 >
	0 = Received message is a standard data frame
bit 2	Unimplemented: Read as '0'
bit 1-0	EID<17:16>: Extended Identifier bits

REGISTER 24-17: RXBnEIDH: RECEIVE BUFFER n EXTENDED IDENTIFIER REGISTERS, HIGH BYTE [0 \leq n \leq 1]

R-x	R-x	R-x	R-x	R-x	R-x	R-x	R-x
EID15	EID14	EID13	EID12	EID11	EID10	EID9	EID8
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	l as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 7-0 EID<15:8>: Extended Identifier bits

REGISTER 24-18: RXBnEIDL: RECEIVE BUFFER n EXTENDED IDENTIFIER REGISTERS, LOW BYTE [0 \leq n \leq 1]

R-x	R-x	R-x	R-x	R-x	R-x	R-x	R-x
EID7	EID6	EID5	EID4	EID3	EID2	EID1	EID0
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	l as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 7-0 EID<7:0>: Extended Identifier bits

REGISTER 24-39: RXFnEIDH: RECEIVE ACCEPTANCE FILTER n EXTENDED IDENTIFIER REGISTERS, HIGH BYTE [0 \leq n \leq 15] $^{(1)}$

| R/W-x |
|-------|-------|-------|-------|-------|-------|-------|-------|
| EID15 | EID14 | EID13 | EID12 | EID11 | EID10 | EID9 | EID8 |
| bit 7 | | | | | | | bit 0 |

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	l as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 7-0 EID<15:8>: Extended Identifier Filter bits

Note 1: Registers, RXF6EIDH:RXF15EIDH, are available in Mode 1 and 2 only.

REGISTER 24-40: RXFnEIDL: RECEIVE ACCEPTANCE FILTER n EXTENDED IDENTIFIER REGISTERS, LOW BYTE [0 \le n \le 15]^{(1)}

| R/W-x |
|-------|-------|-------|-------|-------|-------|-------|-------|
| EID7 | EID6 | EID5 | EID4 | EID3 | EID2 | EID1 | EID0 |
| bit 7 | | | | | | | bit 0 |

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	l as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 7-0 EID<7:0>: Extended Identifier Filter bits

Note 1: Registers, RXF6EIDL:RXF15EIDL, are available in Mode 1 and 2 only.

REGISTER 24-41: RXMnSIDH: RECEIVE ACCEPTANCE MASK n STANDARD IDENTIFIER MASK REGISTERS, HIGH BYTE [0 \leq n \leq 1]

R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x		
SID10	SID9	SID8	SID7	SID6	SID5	SID4	SID3		
bit 7 bit									
Legend:									
R = Readable bit W = Writable bit			U = Unimplemented bit, read as '0'						
-n = Value at POR		'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unknown			

bit 7-0 SID<10:3>: Standard Identifier Mask bits or Extended Identifier Mask bits (EID<28:21>)

REGISTER 24-45:	RXFCONn: RECEIVE FILTER CONTR	OL REGISTER n $[0 \le n \le 1]^{(1)}$	
-----------------	--------------------------------------	---------------------------------------	--

DVECONO	R/W-0	R/W-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
KAFCONU	RXF7EN	RXF6EN	RXF5EN	RXF4EN	RXF3EN	RXF2EN	RXF1EN	RXF0EN
DVECON4	R/W-0	R/W-0	R/W-0	R/W-1	R/W-0	R/W-0	R/W-0	R/W-0
KAFCONT	RXF15EN	RXF14EN	RXF13EN	RXF12EN	RXF11EN	RXF10EN	RXF9EN	RXF8EN
	bit 7							bit 0
Legend:								
R = Readable bit		W = Writable bit		U = Unimplemented bit, read as '0'				
-n = Value at POR			'1' = Bit is set		'0' = Bit is cleared		x = Bit is unknown	

bit 7-0 **RXFnEN:** Receive Filter n Enable bits

0 = Filter is disabled

1 = Filter is enabled

Note 1: This register is available in Mode 1 and 2 only.

Note: Register 24-46 through Register 24-51 are writable in Configuration mode only.

REGISTER 24-46: SDFLC: STANDARD DATA BYTES FILTER LENGTH COUNT REGISTER⁽¹⁾

U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	—	FLC4	FLC3	FLC2	FLC1	FLC0
bit 7							bit 0

Legend:								
R = Readable	bit	W = Writ	able bit	U = Unimplemented bit, read as '0'				
-n = Value at F	POR	'1' = Bit i	s set	'0' = Bit is cleared	x = Bit is unknown			
bit 7-5	Unimplemen	ted: Read	l as '0'					
bit 4-0	FLC<4:0>: Fi	Iter Lengt	n Count bits					
	Mode 0:							
	Not used; for	ced to '00	000'.					
	00000-10010) = 0	18 bits are available for standard data byte filter. Actual number of bits used					
			depends on the DLC<3:0> bits (RXBnDLC<3:0> or BnDLC<3:0> if configured					
			as RX buffer) of the message being received.					
	If DLC<3:0>	= 0000	No bits will be compared with incoming data bits.					
	If DLC<3:0>	= 0001	Up to 8 data bits of RXFnEID<7:0>, as determined by FLC<2:0>, will be com-					
			pared with the corresponding number of data bits of the incoming mes					
	If DLC<3:0>	= 0010	Up to 16 data bits	s of RXFnEID<15:0>, as dete	ermined by FLC<3:0>, will be			
			compared with the	ne corresponding number o	t data bits of the incoming			
			message.					
If DLC < 3:0 > = 0		= 0011	Up to 18 data bits	s of RXFnEID<17:0>, as dete	ermined by FLC<4:0>, will be			
			compared with the	he corresponding number o	f data bits of the incoming			
			message.					

Note 1: This register is available in Mode 1 and 2 only.

TABLE 26-1: OPCODE FIELD DESCRIPTIONS

Field	Description		
a	RAM access bit		
	a = 0: RAM location in Access RAM (BSR register is ignored)		
	a = 1: RAM bank is specified by BSR register		
bbb	Bit address within an 8-bit file register (0 to 7).		
BSR	Bank Select Register. Used to select the current RAM bank.		
C, DC, Z, OV, N	ALU Status bits: Carry, Digit Carry, Zero, Overflow, Negative.		
d	Destination select bit		
	d = 0: store result in WREG		
	d = 1: store result in file register f		
dest	Destination: either the WREG register or the specified register file location.		
f	8-bit Register file address (00h to FFh), or 2-bit FSR designator (0h to 3h).		
fs	12-bit Register file address (000h to FFFh). This is the source address.		
f _d	12-bit Register file address (000h to FFFh). This is the destination address.		
GIE	Global Interrupt Enable bit.		
k	Literal field, constant data or label (may be either an 8-bit, 12-bit or a 20-bit value)		
label	Label name		
mm	The mode of the TBLPTR register for the table read and table write instructions.		
	Only used with table read and table write instructions:		
*	No change to register (such as TBLPTR with table reads and writes)		
*+	Post-Increment register (such as TBLPTR with table reads and writes)		
*-	Post-Decrement register (such as TBLPTR with table reads and writes)		
+*	Pre-Increment register (such as TBLPTR with table reads and writes)		
n	The relative address (2's complement number) for relative branch instructions or the direct address for		
	Call/Branch and Return instructions		
PC	Program Counter.		
PCL	Program Counter Low Byte.		
PCH	Program Counter High Byte.		
PCLATH	Program Counter High Byte Latch.		
PCLATU	Program Counter Upper Byte Latch.		
PD	Power-down bit.		
PRODH	Product of Multiply High Byte.		
PRODI	Product of Multiply Low Byte		
s	East Call/Return mode select bit		
5	s = 0: do not update into/from shadow registers		
	s = 1: certain registers loaded into/from shadow registers (Fast mode)		
TBLPTR	21-bit Table Pointer (points to a program memory location).		
TABLAT	8-bit Table Latch.		
TO	Time-out bit.		
TOS	Top-of-Stack.		
u	Unused or unchanged.		
WDT	Watchdog Timer.		
WREG	Working register (accumulator).		
x	Don't care ('0' or '1'). The assembler will generate code with $x = 0$. It is the recommended form of use for		
	compatibility with all Microchip software tools.		
Zs	7-bit offset value for indirect addressing of register files (source).		
Zd	7-bit offset value for indirect addressing of register files (destination).		
{ }	Optional argument.		
[text]	Indicates an indexed address.		
(text)			
[expr]	Specifies bit n of the register indicated by the pointer even		
	Assigned to		
<pre>/</pre>	Register hit field		
e	In the set of		
italiaa	In the second		
ITALICS			

TABLE 26-2: PIC18FXXXX INSTRUCTION SET

Mnemonic, Operands		Description	Cualas	16-Bit Instruction Word				Status	Notes	
		Description	Cycles	MSb			LSb	Affected	Notes	
BYTE-ORII		OPERATIONS								
ADDWF	f, d, a	Add WREG and f	1	0010	01da	ffff	ffff	C, DC, Z, OV, N	1, 2	
ADDWFC	f, d, a	Add WREG and Carry bit to f	1	0010	00da	ffff	ffff	C, DC, Z, OV, N	1, 2	
ANDWF	f, d, a	AND WREG with f	1	0001	01da	ffff	ffff	Z, N	1,2	
CLRF	f, a	Clear f	1	0110	101a	ffff	ffff	Z	2	
COMF	f, d, a	Complement f	1	0001	11da	ffff	ffff	Z, N	1, 2	
CPFSEQ	f, a	Compare f with WREG, Skip =	1 (2 or 3)	0110	001a	ffff	ffff	None	4	
CPFSGT	f, a	Compare f with WREG, Skip >	1 (2 or 3)	0110	010a	ffff	ffff	None	4	
CPFSLT	f, a	Compare f with WREG, Skip <	1 (2 or 3)	0110	000a	ffff	ffff	None	1, 2	
DECF	f, d, a	Decrement f	1	0000	01da	ffff	ffff	C, DC, Z, OV, N	1, 2, 3, 4	
DECFSZ	f, d, a	Decrement f, Skip if 0	1 (2 or 3)	0010	11da	ffff	ffff	None	1, 2, 3, 4	
DCFSNZ	f, d, a	Decrement f, Skip if Not 0	1 (2 or 3)	0100	11da	ffff	ffff	None	1, 2	
INCF	f, d, a	Increment f	1	0010	10da	ffff	ffff	C, DC, Z, OV, N	1, 2, 3, 4	
INCFSZ	f, d, a	Increment f, Skip if 0	1 (2 or 3)	0011	11da	ffff	ffff	None	4	
INFSNZ	f, d, a	Increment f, Skip if Not 0	1 (2 or 3)	0100	10da	ffff	ffff	None	1, 2	
IORWF	f, d, a	Inclusive OR WREG with f	1	0001	00da	ffff	ffff	Z, N	1, 2	
MOVF	f, d, a	Move f	1	0101	00da	ffff	ffff	Z, N	1	
MOVFF	f _s , f _d	Move f _s (source) to 1st word	2	1100	ffff	ffff	ffff	None		
		f _d (destination)2nd word		1111	ffff	ffff	ffff			
MOVWF	f, a	Move WREG to f	1	0110	111a	ffff	ffff	None		
MULWF	f, a	Multiply WREG with f	1	0000	001a	ffff	ffff	None	1, 2	
NEGF	f, a	Negate f	1	0110	110a	ffff	ffff	C, DC, Z, OV, N		
RLCF	f, d, a	Rotate Left f through Carry	1	0011	01da	ffff	ffff	C, Z, N	1, 2	
RLNCF	f, d, a	Rotate Left f (No Carry)	1	0100	01da	ffff	ffff	Z, N		
RRCF	f, d, a	Rotate Right f through Carry	1	0011	00da	ffff	ffff	C, Z, N		
RRNCF	f, d, a	Rotate Right f (No Carry)	1	0100	00da	ffff	ffff	Z, N		
SETF	f, a	Set f	1	0110	100a	ffff	ffff	None	1, 2	
SUBFWB	f, d, a	Subtract f from WREG with	1	0101	01da	ffff	ffff	C, DC, Z, OV, N		
		Borrow								
SUBWF	f, d, a	Subtract WREG from f	1	0101	11da	ffff	ffff	C, DC, Z, OV, N	1, 2	
SUBWFB	f, d, a	Subtract WREG from f with	1	0101	10da	ffff	ffff	C, DC, Z, OV, N		
		Borrow								
SWAPF	f, d, a	Swap Nibbles in f	1	0011	10da	ffff	ffff	None	4	
TSTFSZ	f, a	Test f, Skip if 0	1 (2 or 3)	0110	011a	ffff	ffff	None	1, 2	
XORWF	f, d, a	Exclusive OR WREG with f	1	0001	10da	ffff	ffff	Z, N		

Note 1: When a PORT register is modified as a function of itself (e.g., MOVF PORTB, 1, 0), the value used will be that value present on the pins themselves. For example, if the data latch is '1' for a pin configured as input and is driven low by an external device, the data will be written back with a '0'.

2: If this instruction is executed on the TMR0 register (and where applicable, 'd' = 1), the prescaler will be cleared if assigned.

3: If the Program Counter (PC) is modified or a conditional test is true, the instruction requires two cycles. The second cycle is executed as a NOP.

4: Some instructions are two-word instructions. The second word of these instructions will be executed as a NOP unless the first word of the instruction retrieves the information embedded in these 16 bits. This ensures that all program memory locations have a valid instruction.

5: If the table write starts the write cycle to internal memory, the write will continue until terminated.

NEGF	Negate f
Syntax:	NEGF f {,a}
Operands:	0 ≤ f ≤ 255 a ∈ [0,1]
Operation:	$(\overline{f}) + 1 \rightarrow f$
Status Affected:	N, OV, C, DC, Z
Encoding:	0110 110a ffff ffff
Description:	Location 'f' is negated using two's complement. The result is placed in the data memory location 'f'. If 'a' is '0', the Access Bank is selected. If 'a' is '1', the BSR is used to select the GPR bank. If 'a' is '0' and the extended instruction set is enabled, this instruction operates in Indexed Literal Offset Addressing mode whenever $f \le 95$ (5Fh). See Section 26.2.3 "Byte-Oriented and Bit-Oriented Instructions in Indexed Literal Offset Mode" for details.
Words:	1
Cycles:	1

NOF)	No Opera	No Operation					
Synta	ax:	NOP						
Oper	ands:	None						
Oper	ation:	No operati	on					
Statu	s Affected:	None						
Encoding:		0000	0000 xxxx	000 xxx	00 xx	0000 xxxx		
Desc	ription:	No operati	No operation.					
Word	ls:	1						
Cycle	es:	1						
Q Cycle Activity:								
	Q1	Q2	Q	3		Q4		
	Decode	No operation	No operat	No operation		No peration		

Example:

None.

Q Cycle Activity:

Q1	Q2	Q3	Q4
Decode	Read	Process	Write
	register 'f'	Data	register 'f'

1

Example:	NEGF	REG

Before Instruct	ion			
REG	=	0011	1010	[3Ah]
After Instructio				
REG	=	1100	0110	[C6h]

SUE	BWFB	S	ubtract \	N from f	with B	orrow
Synt	ax:	S	UBWFB	f {,d {,a}}		
Ope	rands:	0 d a	≤ f ≤ 255 ∈ [0,1] ∈ [0,1]			
Оре	Dperation: $(f) - (W) - (\overline{C}) \rightarrow dest$					
Statu	us Affected:	N	, OV, C, D	C, Z		
Enco	oding:		0101	10da	ffff	ffff
		from in in If If G If So Bi	when the second	r f' (2's co d' is '0', th '1', the res '. ne Access ne BSR is u and the exte ed, this ins Literal Offsi ever $f \le 95$ 2.3 "Byte- d Instruct et Mode "	mpleme e result Bank is used to ended in truction et Addre (5Fh). Oriente ions in	selected. selected. select the struction operates essing See ed and Indexed ils
Wor	ds:	1		et mode		
Cvcl	es:	1				
QC	cycle Activity:					
	Q1		Q2	Q3		Q4
	Decode	re	Read gister 'f'	Process Data	s ۱ de	Write to estination
Exar	mple 1:		SUBWFB	REG, 1,	0	
	Before Instruc	tion				
	REG W C	= = =	19h 0Dh 1	(0001 (0000	1001) 1101)	
	After Instructio	on _	0Ch	(0000	1011)	
	W	=	0Dh	(0000	1011) 1101)	
	Z	=	1 0			
_	N	=	0	; result i	s positiv	ve
Exar	<u>nple 2:</u> Before Instruc	tion	SÜBWFB	REG, 0,	U	
	REG	=	1Bh	(0001	1011)	
	W C	=	1Ah 0	(0001	1010)	
	After Instruction	on =	- 1Bh	(0001	1011)	
	W C	=	00h 1			
	Z N	=	1 0	; result i	s zero	
<u>Exa</u> r	mple <u>3:</u>		SUBWFB	REG, 1,	0	
	Before Instruc	tion				
	REG W C	= = =	03h 0Eh 1	(0000 (0000	0011) 1101)	
	After Instructio	n				
	REG	=	F5h	(1111 · [2 's co	0100)	
	W C	=	0Eh 0	, 2 S CO (0000	1101)	
	N	=	1	; result i	s negat	ive

SWAPF	Swap f					
Syntax:	SWAPF f	SWAPF f {,d {,a}}				
Operands:	$\begin{array}{l} 0 \leq f \leq 255 \\ d \in [0,1] \\ a \in [0,1] \end{array}$	$\begin{array}{l} 0 \leq f \leq 255 \\ d \in [0,1] \\ a \in [0,1] \end{array}$				
Operation:	$(f<3:0>) \rightarrow$ $(f<7:4>) \rightarrow$	$(f<3:0>) \rightarrow dest<7:4>,$ $(f<7:4>) \rightarrow dest<3:0>$				
Status Affected:	None	None				
Encoding:	0011	0011 10da ffff ffff				
Description:	The upper and lower nibbles of register 'f' are exchanged. If 'd' is '0', the result is placed in W. If 'd' is '1', the result is placed in register 'f'. If 'a' is '0', the Access Bank is selected If 'a' is '1', the BSR is used to select th GPR bank.					
	If 'a' is '0' and the extended instruction set is enabled, this instruction operates in Indexed Literal Offset Addressing mode whenever f ≤ 95 (5Fh). See Section 26.2.3 "Byte-Oriented and Bit-Oriented Instructions in Indexed Literal Offset Mode" for details.					
Words:	1					
Cycles:	1					
Q Cycle Activity:						
Q1	Q2	Q3		Q4		
Decode	Read register 'f'	Process Data	V des	/rite to stination		
Example: Before Instruc REG After Instructio REG	SWAPF F tion = 53h n = 35h	REG, 1, 0				

Associated Registers 140
I/O Summary
LATB Register
PORTB Register
TRISB Register 138
PORTC
Associated Registers 142
142
I/O Sulfilling
LATC Register
PORIC Register 141
RC3/SCK/SCL Pin
TRISC Register 141
PORTD
Associated Registers 145
I/O Summary144
LATD Register143
Parallel Slave Port (PSP) Function 143
PORTD Register 143
TRISD Register 143
Associated Pagistore 148
Associated Registers
1/0 Summary
LATE Register
PORIE Register146
PSP Mode Select (PSPMODE Bit)143
TRISE Register 146
Postscaler, WDT
Assignment (PSA Bit)153
Rate Select (T0PS2:T0PS0 Bits)153
Switching Between Timer0 and WDT153
Power-Managed Modes
and A/D Operation
and EUSART Operation
and Multiple Sleep Commands
Clock Transitions and Status Indicators 40
Effects on Clock Sources 37
Entering 39
Eviting Idle and Clean Medea
Eximing fore and Sleep Modes
by Interrupt
Exiting the and Steep Modes 45 by Interrupt 45 by Reset 45 by WDT Time-out 45 Without an Oscillator Start-up Delay 46 Idle Modes 43 PRI_IDLE 44 RC_IDLE 45 SEC_IDLE 44
Exiting the and Steep Modes 45 by Interrupt 45 by Reset 45 by WDT Time-out 45 Without an Oscillator Start-up Delay 46 Idle Modes 43 PRI_IDLE 44 RC_IDLE 45 SEC_IDLE 44 Run Modes 40
Exiting the and Steep Modes 45 by Interrupt 45 by Reset 45 by WDT Time-out 45 Without an Oscillator Start-up Delay 46 Idle Modes 43 PRI_IDLE 44 RC_IDLE 45 SEC_IDLE 44 Run Modes 40 PRI_RUN 40
Exiting the and Steep Modes 45 by Interrupt 45 by Reset 45 by WDT Time-out 45 Without an Oscillator Start-up Delay 46 Idle Modes 43 PRI_IDLE 44 RC_IDLE 45 SEC_IDLE 44 Run Modes 40 PRI_RUN 40 RC_RUN 41
Exiting the and Steep Modes 45 by Interrupt 45 by Reset 45 by WDT Time-out 45 Without an Oscillator Start-up Delay 46 Idle Modes 43 PRI_IDLE 44 RC_IDLE 45 SEC_IDLE 44 Run Modes 40 PRI_RUN 40 RC_RUN 41 SEC_RUN 40
Exiting the and Steep Modes 45 by Interrupt 45 by Reset 45 by WDT Time-out 45 Without an Oscillator Start-up Delay 46 Idle Modes 43 PRI_IDLE 44 RC_IDLE 45 SEC_IDLE 44 Run Modes 40 PRI_RUN 40 RC_RUN 41 SEC_RUN 40 Selecting 39
Exiting the and Steep Modes 45 by Interrupt 45 by Reset 45 by WDT Time-out 45 Without an Oscillator Start-up Delay 46 Idle Modes 43 PRI_IDLE 44 RC_IDLE 45 SEC_IDLE 44 Run Modes 40 PRI_RUN 40 RC_RUN 41 SEC_RUN 40 Selecting 39 Sleep Mode 43
Exiting the and Steep Modes 45 by Interrupt 45 by Reset 45 by WDT Time-out 45 Without an Oscillator Start-up Delay 46 Idle Modes 43 PRI_IDLE 44 RC_IDLE 45 SEC_IDLE 44 Run Modes 40 PRI_RUN 40 RC_RUN 41 SEC_RUN 40 Selecting 39 Sleep Mode 43 Summary (table) 39
Exiting the and Steep Modes 45 by Interrupt 45 by Reset 45 by WDT Time-out 45 Without an Oscillator Start-up Delay 46 Idle Modes 43 PRI_IDLE 44 RC_IDLE 45 SEC_IDLE 44 Run Modes 40 PRI_RUN 40 RC_RUN 41 SEC_RUN 40 Selecting 39 Sleep Mode 43 Summary (table) 39 Power-on Reset (POR) 49
Exiting the and Steep Modes 45 by Interrupt 45 by Reset 45 by WDT Time-out 45 Without an Oscillator Start-up Delay 46 Idle Modes 43 PRI_IDLE 44 RC_IDLE 45 SEC_IDLE 44 Run Modes 40 PRI_RUN 40 SEC_RUN 40 Selecting 39 Sleep Mode 43 Summary (table) 39 Power-on Reset (POR) 49 Oscillator Start-up Timer (OST) 51
Exiting the and Steep Modes 45 by Interrupt 45 by Reset 45 by WDT Time-out 45 Without an Oscillator Start-up Delay 46 Idle Modes 43 PRI_IDLE 44 RC_IDLE 44 Run Modes 40 PRI_RUN 40 RC_RUN 41 SEC_RUN 40 Selecting 39 Sleep Mode 43 Summary (table) 39 Power-on Reset (POR) 49 Oscillator Start-up Timer (OST) 51
Exiting the and Steep Modes 45 by Interrupt 45 by Reset 45 by WDT Time-out 45 Without an Oscillator Start-up Delay 46 Idle Modes 43 PRI_IDLE 44 RC_IDLE 45 SEC_IDLE 44 Run Modes 40 PRI_RUN 40 SEC_RUN 40 Selecting 39 Sleep Mode 43 Summary (table) 39 Power-on Reset (POR) 49 Oscillator Start-up Timer (OST) 51 Power-up Timer (PWRT) 51 Time-out Sequence 51
Exiting the and Steep Modes 45 by Interrupt 45 by Reset 45 by WDT Time-out 45 Without an Oscillator Start-up Delay 46 Idle Modes 43 PRI_IDLE 44 RC_IDLE 45 SEC_IDLE 44 Run Modes 40 PRI_RUN 40 SEC_RUN 41 SEC_RUN 40 Selecting 39 Sleep Mode 43 Summary (table) 39 Power-on Reset (POR) 49 Oscillator Start-up Timer (OST) 51 Time-out Sequence 51 Power-up Delays 37
Exiting title and Steep Modes 45 by Interrupt 45 by Reset 45 by WDT Time-out 45 Without an Oscillator Start-up Delay 46 Idle Modes 43 PRI_IDLE 44 RC_IDLE 45 SEC_IDLE 44 Run Modes 40 PRI_RUN 40 RC_RUN 41 SEC_RUN 40 Selecting 39 Sleep Mode 43 Summary (table) 39 Power-on Reset (POR) 49 Oscillator Start-up Timer (OST) 51 Power-up Delays 37 Power-up Timer (PWRT) 37
Exiting title and Steep Modes 45 by Interrupt 45 by Reset 45 by WDT Time-out 45 Without an Oscillator Start-up Delay 46 Idle Modes 43 PRI_IDLE 44 RC_IDLE 45 SEC_IDLE 44 Run Modes 40 PRI_RUN 40 RC_RUN 41 SEC_RUN 40 Selecting 39 Sleep Mode 43 Summary (table) 39 Power-on Reset (POR) 49 Oscillator Start-up Timer (OST) 51 Power-up Timer (PWRT) 51 Time-out Sequence 51 Power-up Delays 37 Power-up Timer (PWRT) 37, 51
Exiting title and Steep Modes 45 by Interrupt 45 by Reset 45 by WDT Time-out 45 Without an Oscillator Start-up Delay 46 Idle Modes 43 PRI_IDLE 44 RC_IDLE 45 SEC_IDLE 44 Run Modes 40 PRI_RUN 40 RC_RUN 41 SEC_RUN 40 Selecting 39 Sleep Mode 43 Summary (table) 39 Power-on Reset (POR) 49 Oscillator Start-up Timer (OST) 51 Power-up Timer (PWRT) 51 Time-out Sequence 51 Power-up Timer (PWRT) 37, 51 Prescaler 37 Timer2 180
Exiting title and Steep Modes 45 by Interrupt 45 by Reset 45 by WDT Time-out 45 Without an Oscillator Start-up Delay 46 Idle Modes 43 PRI_IDLE 44 RC_IDLE 44 RC_IDLE 44 Run Modes 40 PRI_RUN 40 RC_RUN 41 SEC_RUN 40 Selecting 39 Sleep Mode 43 Summary (table) 39 Power-on Reset (POR) 49 Oscillator Start-up Timer (OST) 51 Power-up Delays 37 Power-up Timer (PWRT) 37, 51 Prescaler 180 Prescaler 180 Prescaler Capture 169

Prescaler, Timer0	153
Assignment (PSA Bit)	153
Rate Select (T0PS2:T0PS0 Bits)	153
Switching Between Timer0 and WDT	153
Prescaler, Timer2	174
PRI_IDLE Mode	44
PRI_RUN Mode	40
Program Counter	68
PCL, PCH and PCU Registers	68
PCLATH and PCLATU Registers	68
Program Memory	
and the Extended Instruction Set	98
Code Protection	364
Instructions	72
Two-Word	72
Interrupt Vector	67
Look-up Tables	70
Map and Stack (diagram)	67
Reset Vector	67
Program Verification and Code Protection	363
Associated Registers	364
Programming, Device Instructions	367
PSP. See Parallel Slave Port.	
Pulse-Width Modulation. See PWM (CCP Module)	
and PWM (ECCP Module).	
PUSH	396
PUSH and POP Instructions	69
PUSHL	412
PWM (CCP Module)	173
Associated Registers	175
Auto-Shutdown	174
CCPR1H:CCPR1L Registers	173
Duty Cycle	173
Example Frequencies/Resolutions	174
Period	173
Setup for PWM Operation	174
TMR2 to PR2 Match	173
PWM (ECCP Module)	179
Associated Registers	190
Direction Change in Full-Bridge Output Mode	184
Duty Cycle	180
ECCPR1H:ECCPR1L Registers	179
Effects of a Reset	189
Enhanced PWM Auto-Shutdown	186
Example Frequencies/Resolutions	180
Full-Bridge Application Example	184
Full-Bridge Mode	183
Half-Bridge Mode	182
Half-Bridge Output Mode Applications Example	182
Output Configurations	180
Output Relationships (Active-High)	181
Output Relationships (Active-Low)	181
Period	179
Programmable Dead-Band Delay	186
Start-up Considerations	188
TMR2 to PR2 Match	179
0	
Q Clock 174	4, 180
R	
• •	