

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	40MHz
Connectivity	CANbus, I ² C, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, HLVD, POR, PWM, WDT
Number of I/O	36
Program Memory Size	16KB (8K x 16)
Program Memory Type	FLASH
EEPROM Size	256 x 8
RAM Size	768 x 8
Voltage - Supply (Vcc/Vdd)	4.2V ~ 5.5V
Data Converters	A/D 11x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Through Hole
Package / Case	40-DIP (0.600", 15.24mm)
Supplier Device Package	40-PDIP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic18f4480-i-p

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Table of Contents

1.0	Device Overview	9
2.0	Guidelines for Getting Started with PIC18F Microcontrollers	
3.0	Oscillator Configurations	
4.0	Power-Managed Modes	
5.0	Reset	
6.0	Memory Organization	
7.0	Flash Program Memory	101
8.0	Data EEPROM Memory	111
9.0	8 x 8 Hardware Multiplier	117
10.0	Interrupts	119
11.0	I/O Ports	135
12.0	Timer0 Module	151
13.0	Timer1 Module	155
14.0	Timer2 Module	
	Timer3 Module	
	Capture/Compare/PWM (CCP) Modules	
17.0	Enhanced Capture/Compare/PWM (ECCP) Module	
18.0	Master Synchronous Serial Port (MSSP) Module	
19.0	Enhanced Universal Synchronous Receiver Transmitter (EUSART)	
20.0	10-Bit Analog-to-Digital Converter (A/D) Module	
21.0	Comparator Module	
22.0	Comparator Voltage Reference Module	
23.0	High/Low-Voltage Detect (HLVD)	
	ECAN Module	
25.0	Special Features of the CPU	
26.0		
27.0	Development Support	
	Electrical Characteristics	
	Packaging Information	
	endix A: Revision History	
	endix B: Device Differences	
•••	endix C: Conversion Considerations	
	endix D: Migration from Baseline to Enhanced Devices	
	endix E: Migration From Mid-Range to Enhanced Devices	
	endix F: Migration From High-End to Enhanced Devices	
	Microchip Web Site	
	omer Change Notification Service	
	omer Support	
	ler Response	
PIC1	8F2480/2580/4480/4580 Product Identification System	

TO OUR VALUED CUSTOMERS

It is our intention to provide our valued customers with the best documentation possible to ensure successful use of your Microchip products. To this end, we will continue to improve our publications to better suit your needs. Our publications will be refined and enhanced as new volumes and updates are introduced.

If you have any questions or comments regarding this publication, please contact the Marketing Communications Department via E-mail at **docerrors@mail.microchip.com** or fax the **Reader Response Form** in the back of this data sheet to (480) 792-4150. We welcome your feedback.

Most Current Data Sheet

To obtain the most up-to-date version of this data sheet, please register at our Worldwide Web site at:

http://www.microchip.com

You can determine the version of a data sheet by examining its literature number found on the bottom outside corner of any page. The last character of the literature number is the version number, (e.g., DS30000A is version A of document DS30000).

Errata

An errata sheet, describing minor operational differences from the data sheet and recommended workarounds, may exist for current devices. As device/documentation issues become known to us, we will publish an errata sheet. The errata will specify the revision of silicon and revision of document to which it applies.

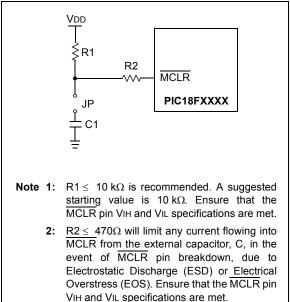
To determine if an errata sheet exists for a particular device, please check with one of the following:

- Microchip's Worldwide Web site; http://www.microchip.com
- Your local Microchip sales office (see last page)
- The Microchip Corporate Literature Center; U.S. FAX: (480) 792-7277

When contacting a sales office or the literature center, please specify which device, revision of silicon and data sheet (include literature number) you are using.

Customer Notification System

Register on our web site at www.microchip.com/cn to receive the most current information on all of our products.


2.3 Master Clear (MCLR) Pin

The MCLR pin provides two specific device functions: Device Reset, and Device Programming and Debugging. If programming and debugging are not required in the end application, a direct connection to VDD may be all that is required. The addition of other components, to help increase the application's resistance to spurious Resets from voltage sags, may be beneficial. A typical configuration is shown in Figure 2-1. Other circuit designs may be implemented, depending on the application's requirements.

During programming and debugging, the resistance and capacitance that can be added to the pin must be considered. Device programmers and debuggers drive the MCLR pin. Consequently, specific voltage levels (VIH and VIL) and fast signal transitions must not be adversely affected. Therefore, specific values of R1 and C1 will need to be adjusted based on the application and PCB requirements. For example, it is recommended that the capacitor, C1, be isolated from the MCLR pin during programming and debugging operations by using a jumper (Figure 2-2). The jumper is replaced for normal run-time operations.

Any components associated with the $\overline{\text{MCLR}}$ pin should be placed within 0.25 inch (6 mm) of the pin.

FIGURE 2-2: EXAMPLE OF MCLR PIN CONNECTIONS

2.4 ICSP Pins

The PGC and PGD pins are used for In-Circuit Serial ProgrammingTM (ICSPTM) and debugging purposes. It is recommended to keep the trace length between the ICSP connector and the ICSP pins on the device as short as possible. If the ICSP connector is expected to experience an ESD event, a series resistor is recommended, with the value in the range of a few tens of ohms, not to exceed 100 Ω .

Pull-up resistors, series diodes, and capacitors on the PGC and PGD pins are not recommended as they will interfere with the programmer/debugger communications to the device. If such discrete components are an application requirement, they should be removed from the circuit during programming and debugging. Alternatively, refer to the AC/DC characteristics and timing requirements information in the respective device Flash programming specification for information on capacitive loading limits and pin input voltage high (VIH) and input low (VIL) requirements.

For device emulation, ensure that the "Communication Channel Select" (i.e., PGCx/PGDx pins) programmed into the device matches the physical connections for the ICSP to the Microchip debugger/emulator tool.

For more information on available Microchip development tools connection requirements, refer to **Section 27.0 "Development Support"**.

3.0 OSCILLATOR CONFIGURATIONS

3.1 Oscillator Types

PIC18F2480/2580/4480/4580 devices can be operated in ten different oscillator modes. The user can program the Configuration bits, FOSC<3:0>, in Configuration Register 1H to select one of these ten modes:

- 1. LP Low-Power Crystal
- 2. XT Crystal/Resonator
- 3. HS High-Speed Crystal/Resonator
- 4. HSPLL High-Speed Crystal/Resonator with PLL Enabled
- 5. RC External Resistor/Capacitor with Fosc/4 Output on RA6
- 6. RCIO External Resistor/Capacitor with I/O on RA6
- 7. INTIO1 Internal Oscillator with Fosc/4 Output on RA6 and I/O on RA7
- 8. INTIO2 Internal Oscillator with I/O on RA6 and RA7
- 9. EC External Clock with Fosc/4 Output
- 10. ECIO External Clock with I/O on RA6

3.2 Crystal Oscillator/Ceramic Resonators

In XT, LP, HS or HSPLL Oscillator modes, a crystal or ceramic resonator is connected to the OSC1 and OSC2 pins to establish oscillation. Figure 3-1 shows the pin connections.

The oscillator design requires the use of a parallel resonant crystal.

Note: Use of a series resonant crystal may give a frequency out of the crystal manufacturer's specifications. FIGURE 3-1:

CRYSTAL/CERAMIC RESONATOR OPERATION (XT, LP, HS OR HSPLL CONFIGURATION)

TABLE 3-1:CAPACITOR SELECTION FOR
CERAMIC RESONATORS

Typical Capacitor Values Used: Mode OSC1 OSC2 Freq XT 56 pF 455 kHz 56 pF 47 pF 47 pF 2.0 MHz 4.0 MHz 33 pF 33 pF HS 8.0 MHz 27 pF 27 pF 16.0 MHz 22 pF 22 pF

Capacitor values are for design guidance only.

These capacitors were tested with the resonators listed below for basic start-up and operation. **These values are not optimized**.

Different capacitor values may be required to produce acceptable oscillator operation. The user should test the performance of the oscillator over the expected VDD and temperature range for the application.

See the notes on page 30 for additional information.

Resonators Used:						
455 kHz	4.0 MHz					
2.0 MHz	8.0 MHz					
16.0 MHz						

Note: When using resonators with frequencies above 3.5 MHz, the use of HS mode, rather than XT mode, is recommended. HS mode may be used at any VDD for which the controller is rated. If HS is selected, it is possible that the gain of the oscillator will overdrive the resonator. Therefore, a series resistor should be placed between the OSC2 pin and the resonator. As a good starting point, the recommended value of Rs is 330Ω.

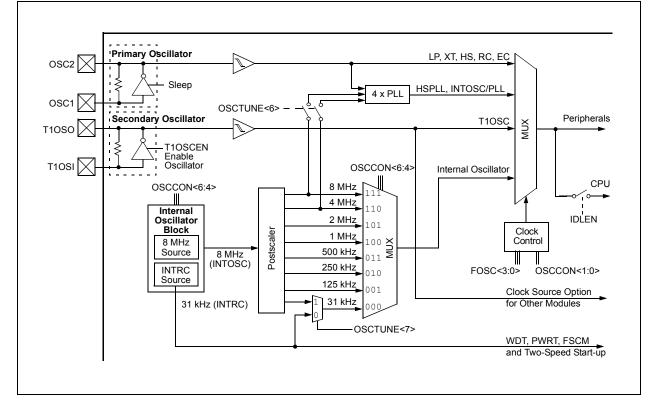
3.7 Clock Sources and Oscillator Switching

Like previous PIC18 devices, the PIC18F2480/2580/4480/4580 family includes a feature that allows the device clock source to be switched from the main oscillator to an alternate low-frequency clock source. PIC18F2480/2580/4480/4580 devices offer two alternate clock sources. When an alternate clock source is enabled, the various power-managed operating modes are available.

Essentially, there are three clock sources for these devices:

- Primary oscillators
- · Secondary oscillators
- · Internal oscillator block

The **primary oscillators** include the external crystal and resonator modes, the external RC modes, the external clock modes and the internal oscillator block. The particular mode is defined by the FOSC<3:0> Configuration bits. The details of these modes are covered earlier in this chapter. The **secondary oscillators** are those external sources not connected to the OSC1 or OSC2 pins. These sources may continue to operate even after the controller is placed in a power-managed mode.


PIC18F2480/2580/4480/4580 devices offer the Timer1 oscillator as a secondary oscillator. This oscillator, in all power-managed modes, is often the time base for functions such as a Real-Time Clock (RTC).

Most often, a 32.768 kHz watch crystal is connected between the RC0/T1OSO/T13CKI and RC1/T1OSI pins. Like the LP Oscillator mode circuit, loading capacitors are also connected from each pin to ground.

The Timer1 oscillator is discussed in greater detail in **Section 13.3 "Timer1 Oscillator"**.

In addition to being a primary clock source, the **internal oscillator block** is available as a power-managed mode clock source. The INTRC source is also used as the clock source for several special features, such as the WDT and Fail-Safe Clock Monitor.

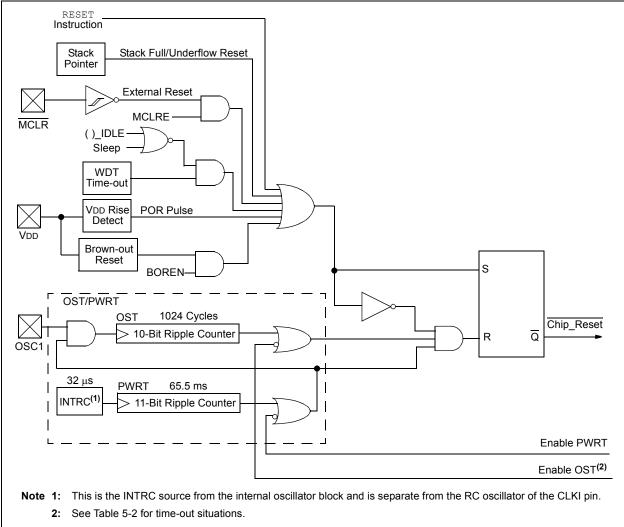
The clock sources for the PIC18F2480/2580/4480/4580 devices are shown in Figure 3-8. See **Section 25.0 "Special Features of the CPU"** for Configuration register details.

FIGURE 3-8: PIC18F2480/2580/4480/4580 CLOCK DIAGRAM

5.0 RESET

The PIC18F2480/2580/4480/4580 devices differentiate between various kinds of Reset:

- a) Power-on Reset (POR)
- b) MCLR Reset during normal operation
- c) MCLR Reset during power-managed modes
- d) Watchdog Timer (WDT) Reset (during execution)
- e) Programmable Brown-out Reset (BOR)
- f) RESET Instruction
- g) Stack Full Reset
- h) Stack Underflow Reset


This section discusses Resets generated by MCLR, POR and BOR, and covers the operation of the various start-up timers. Stack Reset events are covered in Section 6.1.2.4 "Stack Full and Underflow Resets". WDT Resets are covered in Section 25.2 "Watchdog Timer (WDT)". A simplified block diagram of the On-Chip Reset Circuit is shown in Figure 5-1.

5.1 RCON Register

Device Reset events are tracked through the RCON register (Register 5-1). The lower five bits of the register indicate that a specific Reset event has occurred. In most cases, these bits can only be cleared by the event and must be set by the application after the event. The state of these flag bits, taken together, can be read to indicate the type of Reset that just occurred. This is described in more detail in **Section 5.6 "Reset State of Registers"**.

The RCON register also has control bits for setting interrupt priority (IPEN) and software control of the BOR (SBOREN). Interrupt priority is discussed in Section 10.0 "Interrupts". BOR is covered in Section 5.4 "Brown-out Reset (BOR)".

TABLE 5-4:					DITIONS FOR ALL		•	JUED)	
Register	Register Applicable Devices		Power-on Reset, Brown-out Reset	WDT I RESET Ins Stack I	Reset, struction,	Wake-up or Inte	via WDT errupt		
RXF3SIDL	2480	2580	4480	4580	XXX- X-XX	uuu-	u-uu	uuu-	u-uu
RXF3SIDH	2480	2580	4480	4580	XXXX XXXX	սսսս	uuuu	սսսս	uuuu
RXF2EIDL	2480	2580	4480	4580	XXXX XXXX	սսսս	uuuu	սսսս	uuuu
RXF2EIDH	2480	2580	4480	4580	XXXX XXXX	นนนน	นนนน	นนนน	uuuu
RXF2SIDL	2480	2580	4480	4580	XXX- X-XX	uuu-	u-uu	uuu-	u-uu
RXF2SIDH	2480	2580	4480	4580	XXXX XXXX	սսսս	uuuu	սսսս	uuuu
RXF1EIDL	2480	2580	4480	4580	XXXX XXXX	սսսս	uuuu	սսսս	uuuu
RXF1EIDH	2480	2580	4480	4580	XXXX XXXX	นนนน	นนนน	սսսս	uuuu
RXF1SIDL	2480	2580	4480	4580	XXX- X-XX	uuu-	u-uu	uuu-	u-uu
RXF1SIDH	2480	2580	4480	4580	XXXX XXXX	սսսս	uuuu	սսսս	uuuu
RXF0EIDL	2480	2580	4480	4580	XXXX XXXX	սսսս	uuuu	սսսս	uuuu
RXF0EIDH	2480	2580	4480	4580	XXXX XXXX	սսսս	นนนน	սսսս	uuuu
RXF0SIDL	2480	2580	4480	4580	XXX- X-XX	uuu-	u-uu	uuu-	u-uu
RXF0SIDH	2480	2580	4480	4580	XXXX XXXX	uuuu	uuuu	uuuu	uuuu
B5D7 ⁽⁶⁾	2480	2580	4480	4580	XXXX XXXX	սսսս	นนนน	սսսս	uuuu
B5D6 ⁽⁶⁾	2480	2580	4480	4580	XXXX XXXX	սսսս	นนนน	սսսս	uuuu
B5D5 ⁽⁶⁾	2480	2580	4480	4580	XXXX XXXX	uuuu	uuuu	uuuu	uuuu
B5D4 ⁽⁶⁾	2480	2580	4480	4580	XXXX XXXX	սսսս	นนนน	սսսս	uuuu
B5D3 ⁽⁶⁾	2480	2580	4480	4580	XXXX XXXX	սսսս	นนนน	սսսս	uuuu
B5D2 ⁽⁶⁾	2480	2580	4480	4580	XXXX XXXX	uuuu	uuuu	uuuu	uuuu
B5D1 ⁽⁶⁾	2480	2580	4480	4580	XXXX XXXX	սսսս	นนนน	սսսս	uuuu
B5D0 ⁽⁶⁾	2480	2580	4480	4580	XXXX XXXX	սսսս	uuuu	uuuu	uuuu
B5DLC ⁽⁶⁾	2480	2580	4480	4580	-xxx xxxx	-uuu	uuuu	-uuu	uuuu
B5EIDL ⁽⁶⁾	2480	2580	4480	4580	XXXX XXXX	սսսս	uuuu	uuuu	uuuu
B5EIDH ⁽⁶⁾	2480	2580	4480	4580	XXXX XXXX	սսսս	uuuu	uuuu	uuuu
B5SIDL ⁽⁶⁾	2480	2580	4480	4580	XXXX X-XX	սսսս	u-uu	սսսս	u-uu
B5SIDH ⁽⁶⁾	2480	2580	4480	4580	XXXX X-XX	นนนน	u-uu	սսսս	u-uu
B5CON ⁽⁶⁾	2480	2580	4480	4580	0000 0000	0000	0000	սսսս	uuuu
B4D7 ⁽⁶⁾	2480	2580	4480	4580	XXXX XXXX	นนนน	uuuu	นนนน	uuuu
B4D6 ⁽⁶⁾	2480	2580	4480	4580	XXXX XXXX	นนนน	uuuu	นนนน	uuuu
B4D5 ⁽⁶⁾	2480	2580	4480	4580	XXXX XXXX	սսսս	uuuu	սսսս	uuuu

TABLE 5-4: INITIALIZATION CONDITIONS FOR ALL REGISTERS (CONTINUED)

Legend: u = unchanged, x = unknown, - = unimplemented bit, read as '0', q = value depends on condition. Shaded cells indicate conditions do not apply for the designated device.

Note 1: One or more bits in the INTCONx or PIRx registers will be affected (to cause wake-up).

2: When the wake-up is due to an interrupt and the GIEL or GIEH bit is set, the PC is loaded with the interrupt vector (0008h or 0018h).

3: When the wake-up is due to an interrupt and the GIEL or GIEH bit is set, the TOSU, TOSH and TOSL are updated with the current value of the PC. The STKPTR is modified to point to the next location in the hardware stack.

4: See Table 5-3 for Reset value for specific condition.

5: Bits 6 and 7 of PORTA, LATA and TRISA are enabled, depending on the oscillator mode selected. When not enabled as PORTA pins, they are disabled and read '0'.

6: This register reads all '0's until ECAN[™] technology is set up in Mode 1 or Mode 2.

File Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Details on Page:
RXF3SIDH	SID10	SID9	SID8	SID7	SID6	SID5	SID4	SID3	XXXX XXXX	62, 308
RXF2EIDL	EID7	EID6	EID5	EID4	EID3	EID2	EID1	EID0	XXXX XXXX	62, 309
RXF2EIDH	EID15	EID14	EID13	EID12	EID11	EID10	EID9	EID8	XXXX XXXX	62, 309
RXF2SIDL	SID2	SID1	SID0	_	EXIDEN	_	EID17	EID16	xxx- x-xx	62, 308
RXF2SIDH	SID10	SID9	SID8	SID7	SID6	SID5	SID4	SID3	XXXX XXXX	62, 308
RXF1EIDL	EID7	EID6	EID5	EID4	EID3	EID2	EID1	EID0	XXXX XXXX	62, 309
RXF1EIDH	EID15	EID14	EID13	EID12	EID11	EID10	EID9	EID8	XXXX XXXX	62, 309
RXF1SIDL	SID2	SID1	SID0	_	EXIDEN	_	EID17	EID16	xxx- x-xx	62, 308
RXF1SIDH	SID10	SID9	SID8	SID7	SID6	SID5	SID4	SID3	XXXX XXXX	62, 308
RXF0EIDL	EID7	EID6	EID5	EID4	EID3	EID2	EID1	EID0	XXXX XXXX	62, 309
RXF0EIDH	EID15	EID14	EID13	EID12	EID11	EID10	EID9	EID8	XXXX XXXX	62, 309
RXF0SIDL	SID2	SID1	SID0	_	EXIDEN	_	EID17	EID16	xxx- x-xx	62, 308
RXF0SIDH	SID10	SID9	SID8	SID7	SID6	SID5	SID4	SID3	XXXX XXXX	62, 308
B5D7 ⁽⁸⁾	B5D77	B5D76	B5D75	B5D74	B5D73	B5D72	B5D71	B5D70	XXXX XXXX	62, 305
B5D6 ⁽⁸⁾	B5D67	B5D66	B5D65	B5D64	B5D63	B5D62	B5D61	B5D60	XXXX XXXX	62, 305
B5D5 ⁽⁸⁾	B5D57	B5D56	B5D55	B5D54	B5D53	B5D52	B5D51	B5D50	XXXX XXXX	62, 305
B5D4 ⁽⁸⁾	B5D47	B5D46	B5D45	B5D44	B5D43	B5D42	B5D41	B5D40	XXXX XXXX	62, 305
B5D3 ⁽⁸⁾	B5D37	B5D36	B5D35	B5D34	B5D33	B5D32	B5D31	B5D30	XXXX XXXX	62, 305
B5D2 ⁽⁸⁾	B5D27	B5D26	B5D25	B5D24	B5D23	B5D22	B5D21	B5D20	XXXX XXXX	62, 305
B5D1 ⁽⁸⁾	B5D17	B5D16	B5D15	B5D14	B5D13	B5D12	B5D11	B5D10	XXXX XXXX	62, 305
B5D0 ⁽⁸⁾	B5D07	B5D06	B5D05	B5D04	B5D03	B5D02	B5D01	B5D00	XXXX XXXX	62, 305
B5DLC ⁽⁸⁾ Receive mode	_	RXRTR	RB1	RB0	DLC3	DLC2	DLC1	DLC0	-xxx xxxx	62, 307
B5DLC ⁽⁸⁾ Transmit mode	—	TXRTR	—	—	DLC3	DLC2	DLC1	DLC0	-x xxxx	62, 307
B5EIDL ⁽⁸⁾	EID7	EID6	EID5	EID4	EID3	EID2	EID1	EID0	XXXX XXXX	62, 305
B5EIDH ⁽⁸⁾	EID15	EID14	EID13	EID12	EID11	EID10	EID9	EID8	XXXX XXXX	62, 304
B5SIDL ⁽⁸⁾ Receive mode	SID2	SID1	SID0	SRR	EXID	_	EID17	EID16	XXXX X-XX	62, 303
B5SIDL ⁽⁸⁾ Transmit mode	SID2	SID1	SID0	—	EXIDE	_	EID17	EID16	xxx- x-xx	62, 303
B5SIDH ⁽⁸⁾	SID10	SID9	SID8	SID7	SID6	SID5	SID4	SID3	xxxx x-xx	62, 302
B5CON ⁽⁸⁾ Receive mode	RXFUL	RXM1	RXRTRRO	FILHIT4	FILHIT3	FILHIT2	FILHIT1	FILHIT0	0000 0000	62, 301
B5CON ⁽⁸⁾ Transmit mode	TXBIF	TXABT	TXLARB	TXERR	TXREQ	RTREN	TXPRI1	TXPRI0	0000 0000	62, 301
B4D7 ⁽⁸⁾	B4D77	B4D76	B4D75	B4D74	B4D73	B4D72	B4D71	B4D70	XXXX XXXX	62, 305
B4D6 ⁽⁸⁾	B4D67	B4D66	B4D65	B4D64	B4D63	B4D62	B4D61	B4D60	XXXX XXXX	62, 305
B4D5 ⁽⁸⁾	B4D57	B4D56	B4D55	B4D54	B4D53	B4D52	B4D51	B4D50	XXXX XXXX	62, 305
B4D4 ⁽⁸⁾	B4D47	B4D46	B4D45	B4D44	B4D43	B4D42	B4D41	B4D40	XXXX XXXX	63, 305
B4D3 ⁽⁸⁾	B4D37	B4D36	B4D35	B4D34	B4D33	B4D32	B4D31	B4D30	XXXX XXXX	63, 305

TABLE 6-2:	REGISTER FILE SUMMARY (PIC18F2480/2580/4480/4580	(CONTINUED)
------------	-------------------------	---------------------------	-------------

Legend: x = unknown, u = unchanged, - = unimplemented, q = value depends on condition

Note 1: Bit 21 of the PC is only available in Test mode and Serial Programming modes.

The SBOREN bit is only available when CONFIG2L<1:0> = 01; otherwise, it is disabled and reads as '0'. See Section 5.4 "Brown-out Reset (BOR)".
 These registers and/or bits are not implemented on PIC18F2X80 devices and are read as '0'. Reset values are shown for PIC18F4X80 devices; individual unimplemented bits should be interpreted as '-'.

4: The PLLEN bit is only available in specific oscillator configuration; otherwise, it is disabled and reads as '0'. See Section 3.6.4 "PLL in INTOSC Modes".

5: The RE3 bit is only available when Master Clear Reset is disabled (CONFIG3H<7> = 0); otherwise, RE3 reads as '0'. This bit is read-only.

6: RA6/RA7 and their associated latch and direction bits are individually configured as port pins based on various primary oscillator modes. When disabled, these bits read as '0'.

7: CAN bits have multiple functions depending on the selected mode of the CAN module.

8: This register reads all '0's until the ECAN™ technology is set up in Mode 1 or Mode 2.

9: These registers are available on PIC18F4X80 devices only.

7.2.2 TABLAT – TABLE LATCH REGISTER

The Table Latch (TABLAT) is an 8-bit register mapped into the SFR space. The Table Latch register is used to hold 8-bit data during data transfers between program memory and data RAM.

7.2.3 TBLPTR – TABLE POINTER REGISTER

The Table Pointer (TBLPTR) register addresses a byte within the program memory. The TBLPTR is comprised of three SFR registers: Table Pointer Upper Byte, Table Pointer High Byte and Table Pointer Low Byte (TBLPTRU:TBLPTRH:TBLPTRL). These three registers join to form a 22-bit wide pointer. The low-order 21 bits allow the device to address up to 2 Mbytes of program memory space. The 22nd bit allows access to the Device ID, the user ID and the Configuration bits.

The Table Pointer, TBLPTR, is used by the TBLRD and TBLWT instructions. These instructions can update the TBLPTR in one of four ways based on the table operation. These operations are shown in Table 7-1. These operations on the TBLPTR only affect the low-order 21 bits.

7.2.4 TABLE POINTER BOUNDARIES

TBLPTR is used in reads, writes and erases of the Flash program memory.

When a TBLRD is executed, all 22 bits of the TBLPTR determine which byte is read from program memory into TABLAT.

When a TBLWT is executed, the five LSbs of the Table Pointer register (TBLPTR<4:0>) determine which of the 32 program memory holding registers is written to. When the timed write to program memory begins (via the WR bit), the 16 MSbs of the TBLPTR (TBLPTR<21:6>) determine which program memory block of 32 bytes is written to. For more detail, see **Section 7.5 "Writing to Flash Program Memory"**.

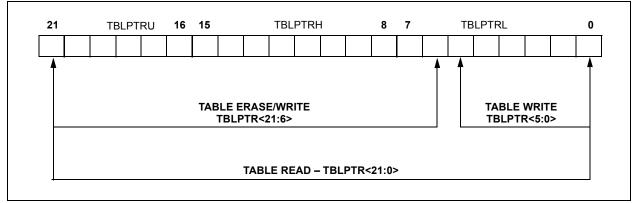
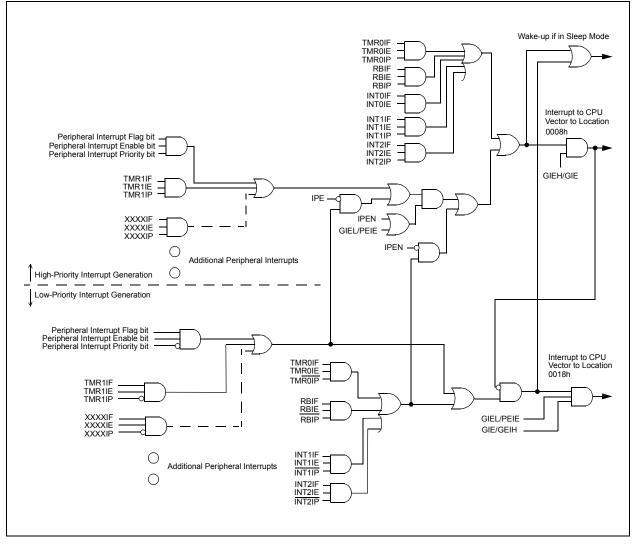

When an erase of program memory is executed, the 16 MSbs of the Table Pointer register (TBLPTR<21:6>) point to the 64-byte block that will be erased. The Least Significant bits (TBLPTR<5:0>) are ignored.

Figure 7-3 describes the relevant boundaries of TBLPTR based on Flash program memory operations.


TABLE 7-1: TABLE POINTER OPERATIONS WITH TBLRD AND TBLWT INSTRUCTIONS

Example Operation on Table Pointer						
TBLRD* TBLWT*	TBLPTR is not modified					
TBLRD*+ TBLWT*+	TBLPTR is incremented after the read/write					
TBLRD*- TBLWT*-	TBLPTR is decremented after the read/write					
TBLRD+* TBLWT+*	TBLPTR is incremented before the read/write					

FIGURE 7-3: TABLE POINTER BOUNDARIES BASED ON OPERATION

23.6 Operation During Sleep

When enabled, the HLVD circuitry continues to operate during Sleep. If the device voltage crosses the trip point, the HLVDIF bit will be set and the device will wake-up from Sleep. Device execution will continue from the interrupt vector address if interrupts have been globally enabled.

23.7 Effects of a Reset

A device Reset forces all registers to their Reset state. This forces the HLVD module to be turned off.

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Reset Values on Page:
HLVDCON	VDIRMAG	—	IRVST	HLVDEN	HLVDL3	HLVDL2	HLVDL1	HLVDL0	56
INTCON	GIE/GIEH	PEIE/GIEL	TMR0IE	INT0IE	RBIE	TMR0IF	INT0IF	RBIF	55
PIR2	OSCFIF	CMIF	—	EEIF	BCLIF	HLVDIF	TMR3IF	ECCP1IF	58
PIE2	OSCFIE	CMIE	_	EEIE	BCLIE	HLVDIE	TMR3IE	ECCP1IE	58
IPR2	OSCFIP	CMIP	_	EEIP	BCLIP	HLVDIP	TMR3IP	ECCP1IP	57

TABLE 23-1: REGISTERS ASSOCIATED WITH HIGH/LOW-VOLTAGE DETECT MODULE

Legend: — = unimplemented, read as '0'. Shaded cells are unused by the HLVD module.

| R/W-x |
|-------|-------|-------|-------|-------|-------|-------|-------|
| EID7 | EID6 | EID5 | EID4 | EID3 | EID2 | EID1 | EID0 |
| bit 7 | | | | | | | bit 0 |
| | | | | | | | |

Legend:				
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'		
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown	

bit 7-0 EID<7:0>: Extended Identifier bits

Note 1: These registers are available in Mode 1 and 2 only.

REGISTER 24-32: BnDm: TX/RX BUFFER n DATA FIELD BYTE m REGISTERS IN RECEIVE MODE $[0 \le n \le 5, 0 \le m \le 7, TXnEN (BSEL < n >) = 0]^{(1)}$

| R-x |
|-------|-------|-------|-------|-------|-------|-------|-------|
| BnDm7 | BnDm6 | BnDm5 | BnDm4 | BnDm3 | BnDm2 | BnDm1 | BnDm0 |
| bit 7 | | | | | | | bit 0 |

Legend:				
R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'				
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown	

bit 7-0 BnDm<7:0>: Receive Buffer n Data Field Byte m bits (where 0 ≤ n < 3 and 0 < m < 8) Each receive buffer has an array of registers. For example, Receive Buffer 0 has 7 registers: B0D0 to B0D7.

Note 1: These registers are available in Mode 1 and 2 only.

REGISTER 24-33: BnDm: TX/RX BUFFER n DATA FIELD BYTE m REGISTERS IN TRANSMIT MODE $[0 \le n \le 5, 0 \le m \le 7, TXnEN (BSEL<n>) = 1]^{(1)}$

| R/W-x |
|-------|-------|-------|-------|-------|-------|-------|-------|
| BnDm7 | BnDm6 | BnDm5 | BnDm4 | BnDm3 | BnDm2 | BnDm1 | BnDm0 |
| bit 7 | | | | | | | bit 0 |

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit,	read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 7-0BnDm<7:0>: Transmit Buffer n Data Field Byte m bits (where 0 ≤ n < 3 and 0 < m < 8)</th>Each transmit buffer has an array of registers. For example, Transmit Buffer 0 has 7 registers: TXB0D0 to TXB0D7.

Note 1: These registers are available in Mode 1 and 2 only.

B # 4 / A	-			B # 4 / A		-	-
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
SEG2PHTS	SAM	SEG1PH2	SEG1PH1	SEG1PH0	PRSEG2	PRSEG1	PRSEG0
bit 7							bit 0
Legend:							
R = Readable bitW = Writable bit-n = Value at POR'1' = Bit is set		W = Writable	bit	U = Unimplemented bit, read as '0'			
			'0' = Bit is cleared x = Bit is unknown		nown		
bit 7	1 = Freely pro	0			(IPT), whichev	er is greater	
bit 6	1 = Bus line is	e of the CAN business of the CAN business of the sampled threases as a sampled once	e times prior to	o the sample po e point	oint		
bit 5-3	111 = Phase 110 = Phase 101 = Phase 100 = Phase 011 = Phase 010 = Phase 001 = Phase	>: Phase Segr Segment 1 tim Segment 1 tim	e = 8 x Tq e = 7 x Tq e = 6 x Tq e = 5 x Tq e = 4 x Tq e = 3 x Tq e = 2 x Tq				
bit 2-0	111 = Propag 110 = Propag 101 = Propag 100 = Propag 011 = Propag 010 = Propag 001 = Propag	•: Propagation gation time = 8 gation time = 7 gation time = 6 gation time = 5 gation time = 4 gation time = 3 gation time = 2 gation time = 1	x TQ x TQ x TQ x TQ x TQ x TQ x TQ x TQ	its			

REGISTER 24-53: BRGCON2: BAUD RATE CONTROL REGISTER 2

24.3 CAN Modes of Operation

The PIC18F2480/2580/4480/4580 has six main modes of operation:

- Configuration mode
- · Disable/Sleep mode
- Normal Operation mode
- · Listen Only mode
- · Loopback mode
- · Error Recognition mode

All modes, except Error Recognition, are requested by setting the REQOP bits (CANCON<7:5>). Error Recognition mode is requested through the RXM bits of the Receive Buffer register(s). Entry into a mode is Acknowledged by monitoring the OPMODE bits.

When changing modes, the mode will not actually change until all pending message transmissions are complete. Because of this, the user must verify that the device has actually changed into the requested mode before further operations are executed.

24.3.1 CONFIGURATION MODE

The CAN module has to be initialized before the activation. This is only possible if the module is in the Configuration mode. The Configuration mode is requested by setting the REQOP2 bit. Only when the status bit, OPMODE2, has a high level can the initialization be performed. Afterwards, the Configuration registers, the acceptance mask registers and the acceptance filter registers can be written. The module is activated by setting the REQOP control bits to zero.

The module will protect the user from accidentally violating the CAN protocol through programming errors. All registers which control the configuration of the module can not be modified while the module is online. The CAN module will not be allowed to enter the Configuration mode while a transmission or reception is taking place. The Configuration mode serves as a lock to protect the following registers:

- Configuration Registers
- Functional Mode Selection Registers
- Bit Timing Registers
- Identifier Acceptance Filter Registers
- Identifier Acceptance Mask Registers
- Filter and Mask Control Registers
- Mask Selection Registers

In the Configuration mode, the module will not transmit or receive. The error counters are cleared and the interrupt flags remain unchanged. The programmer will have access to Configuration registers that are access restricted in other modes. I/O pins will revert to normal I/O functions.

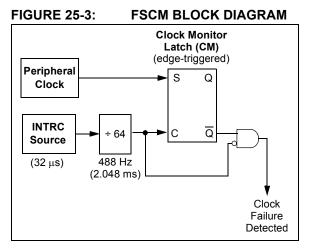
24.3.2 DISABLE/SLEEP MODE

In Disable/Sleep mode, the module will not transmit or receive. The module has the ability to set the WAKIF bit due to bus activity; however, any pending interrupts will remain and the error counters will retain their value.

If the REQOP<2:0> bits are set to '001', the module will enter the module Disable/Sleep mode. This mode is similar to disabling other peripheral modules by turning off the module enables. This causes the module internal clock to stop unless the module is active (i.e., receiving or transmitting a message). If the module is active, the module will wait for 11 recessive bits on the CAN bus, detect that condition as an Idle bus, then accept the module Disable/Sleep command. OPMODE<2:0> = 001 indicates whether the module successfully went into the module Disable/Sleep mode.

The WAKIF interrupt is the only module interrupt that is still active in the Disable/Sleep mode. If the WAKDIS is cleared and WAKIE is set, the processor will receive an interrupt whenever the module detects recessive to dominant transition. On wake-up, the module will automatically be set to the previous mode of operation. For example, if the module was switched from Normal to Disable/Sleep mode on bus activity wake-up, the module will automatically enter into Normal mode and the first message that caused the module to wake-up is lost. The module will not generate any error frame. Firmware logic must detect this condition and make sure that retransmission is requested. If the processor receives a wake-up interrupt while it is sleeping, more than one message may get lost. The actual number of messages lost would depend on the processor oscillator start-up time and incoming message bit rate.

The TXCAN pin will stay in the recessive state while the module is in Disable/Sleep mode.


24.3.3 NORMAL MODE

This is the standard operating mode of the PIC18F2480/2580/4480/4580 devices. In this mode, the device actively monitors all bus messages and generates Acknowledge bits, error frames, etc. This is also the only mode in which the PIC18F2480/2580/4480/4580 devices will transmit messages over the CAN bus.

25.4 Fail-Safe Clock Monitor

The Fail-Safe Clock Monitor (FSCM) allows the microcontroller to continue operation in the event of an external oscillator failure by automatically switching the device clock to the internal oscillator block. The FSCM function is enabled by setting the FCMEN Configuration bit.

When FSCM is enabled, the INTRC oscillator runs at all times to monitor clocks to peripherals and provide a backup clock in the event of a clock failure. Clock monitoring (shown in Figure 25-3) is accomplished by creating a sample clock signal, which is the INTRC output divided by 64. This allows ample time between FSCM sample clocks for a peripheral clock edge to occur. The peripheral device clock and the sample clock are presented as inputs to the Clock Monitor (CM) latch. The CM is set on the falling edge of the device clock source, but cleared on the rising edge of the sample clock.

Clock failure is tested for on the falling edge of the sample clock. If a sample clock falling edge occurs while CM is still set, a clock failure has been detected (Figure 25-4). This causes the following:

- the FSCM generates an oscillator fail interrupt by setting bit, OSCFIF (PIR2<7>);
- the device clock source is switched to the internal oscillator block (OSCCON is not updated to show the current clock source – this is the Fail-Safe condition); and
- the WDT is reset.

During switchover, the postscaler frequency from the internal oscillator block may not be sufficiently stable for timing-sensitive applications. In these cases, it may be desirable to select another clock configuration and enter an alternate power-managed mode. This can be done to attempt a partial recovery or execute a controlled shutdown. See Section 4.1.4 "Multiple Sleep Commands" and Section 25.3.1 "Special Considerations for Using Two-Speed Start-up" for more details.

To use a higher clock speed on wake-up, the INTOSC or postscaler clock sources can be selected to provide a higher clock speed by setting bits, IRCF<2:0>, immediately after Reset. For wake-ups from Sleep, the INTOSC or postscaler clock sources can be selected by setting the IRCF<2:0> bits prior to entering Sleep mode.

The FSCM will detect failures of the primary or secondary clock sources only. If the internal oscillator block fails, no failure would be detected, nor would any action be possible.

25.4.1 FSCM AND THE WATCHDOG TIMER

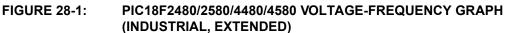
Both the FSCM and the WDT are clocked by the INTRC oscillator. Since the WDT operates with a separate divider and counter, disabling the WDT has no effect on the operation of the INTRC oscillator when the FSCM is enabled.

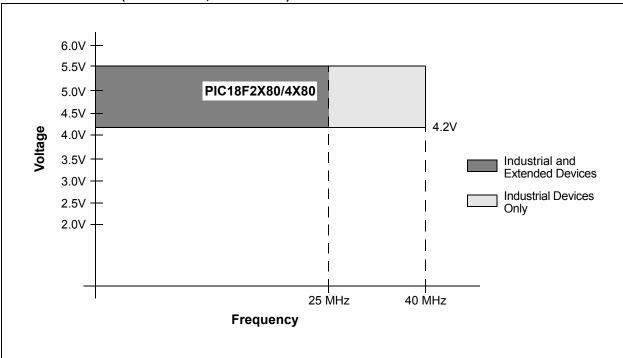
As already noted, the clock source is switched to the INTOSC clock when a clock failure is detected. Depending on the frequency selected by the IRCF<2:0> bits, this may mean a substantial change in the speed of code execution. If the WDT is enabled with a small prescale value, a decrease in clock speed allows a WDT time-out to occur and a subsequent device Reset. For this reason, Fail-Safe Clock events also reset the WDT and postscaler, allowing it to start timing from when execution speed was changed and decreasing the likelihood of an erroneous time-out.

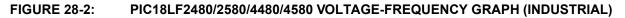
25.4.2 EXITING FAIL-SAFE OPERATION

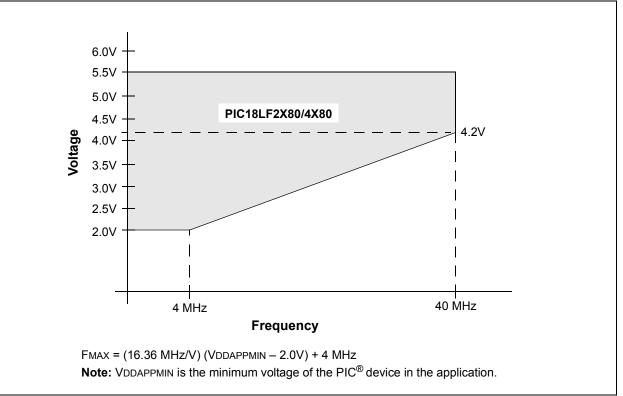
The Fail-Safe condition is terminated by either a device Reset or by entering a power-managed mode. On Reset, the controller starts the primary clock source specified in Configuration Register 1H (with any required start-up delays that are required for the oscillator mode, such as OST or PLL timer). The INTOSC multiplexer provides the device clock until the primary clock source becomes ready (similar to a Two-Speed Start-up). The clock source is then switched to the primary clock (indicated by the OSTS bit in the OSCCON register becoming set). The Fail-Safe Clock Monitor then resumes monitoring the peripheral clock.

The primary clock source may never become ready during start-up. In this case, operation is clocked by the INTOSC multiplexer. The OSCCON register will remain in its Reset state until a power-managed mode is entered.


Byte-oriented file register operations	Example Instruction
15 10 9 8 7 0	
OPCODE d a f (FILE #)	ADDWF MYREG, W, B
 d = 0 for result destination to be WREG register d = 1 for result destination to be file register (f) a = 0 to force Access Bank a = 1 for BSR to select bank f = 8-bit file register address 	
Byte to Byte move operations (2-word)	
<u>15 12 11 0</u>	
OPCODE f (Source FILE #)	MOVFF MYREG1, MYREG2
<u>15 12 11 0</u>	
1111 f (Destination FILE #)	
f = 12-bit file register address	
Bit-oriented file register operations	
<u>15 12 11 9 8 7 0</u>	
OPCODE b (BIT #) a f (FILE #)	BSF MYREG, bit, B
 b = 3-bit position of bit in file register (f) a = 0 to force Access Bank a = 1 for BSR to select bank f = 8-bit file register address 	
Literal operations	
15 8 7 0 OPCODE k (literal)	MOVLW 7Fh
OPCODE k (literal) k = 8-bit immediate value	
Control operations	
CALL, GOTO and Branch operations	
15 8 7 0	
OPCODE n<7:0> (literal)	GOTO Label
1111 n<19:8> (literal)	
n = 20-bit immediate value	
<u>15 8 7 0</u>	
OPCODE S n<7:0> (literal)	CALL MYFUNC
15 12 11 0	
1111 n<19:8> (literal)	
S = Fast bit	
15 11 10 0	
OPCODE n<10:0> (literal)	BRA MYFUNC
15 8 7 0 OPCODE n<7:0> (literal)	BC MYFUNC


COMF	Complement f	CPFSEQ	Compare f with W, Skip if f = W
Syntax:	COMF f {,d {,a}}	Syntax:	CPFSEQ f {,a}
Operands:	0 ≤ f ≤ 255	Operands:	$0 \le f \le 255$
	d ∈ [0,1]		a ∈ [0,1]
	a ∈ [0,1]	Operation:	(f) – (W),
Operation:	$(\overline{f}) \rightarrow dest$		skip if (f) = (W)
Status Affected:	N, Z		(unsigned comparison)
Encoding:	0001 11da ffff ffff	Status Affected:	None
Description:	The contents of register 'f' are	Encoding:	0110 001a ffff ffff
Description.	complemented. If 'd' is '1', the result is stored in W. If 'd' is '0', the result is	Description:	Compares the contents of data memory location 'f' to the contents of W by performing an unsigned subtraction.
	stored back in register 'f'.		
	If 'a' is '0', the Access Bank is selected. If 'a' is '1', the BSR is used to select the GPR bank.		If 'f' = W, then the fetched instruction is discarded and a NOP is executed instead, making this a two-cycle instruction.
	If 'a' is '0' and the extended instruction		If 'a' is '0', the Access Bank is selected.
	set is enabled, this instruction operates in Indexed Literal Offset Addressing		If 'a' is '0', the BSR is used to select the GPR bank.
	mode whenever f \leq 95 (5Fh). See		If 'a' is '0' and the extended instruction
	Section 26.2.3 "Byte-Oriented and		set is enabled, this instruction operates
	Bit-Oriented Instructions in Indexed Literal Offset Mode" for details.		in Indexed Literal Offset Addressing
Words:			mode whenever f ≤ 95 (5Fh). See Section 26.2.3 "Byte-Oriented and
			Bit-Oriented Instructions in Indexed
Cycles:	1		Literal Offset Mode" for details.
Q Cycle Activity:		Words:	1
Q1	Q2 Q3 Q4	Cycles:	1(2)
Decode	ReadProcessWrite toregister 'f'Datadestination	,	Note: 3 cycles if skip and followed by a 2-word instruction.
		Q Cycle Activity:	.,
Example:	COMF REG, 0, 0	Q1	Q2 Q3 Q4
Before Instruct	ion	Decode	Read Process No
REG	= 13h		register 'f' Data operation
After Instruction		lf skip:	
REG W	= 13h = ECh	Q1	Q2 Q3 Q4
		No	No No No
		operation	operation operation operation
			d by 2-word instruction:
		Q1	Q2 Q3 Q4
		No operation	No No No operation operation
		No	No No No
		operation	operation operation operation
		Example:	HERE CPFSEQ REG, 0 NEQUAL :
			EQUAL :
		Before Instruc	
		PC Addr	
		W REG	= ? = ?


PC Address	=	HERE	
W	=	?	
REG	=	?	
After Instruction			
If REG	=	W;	
PC	=	Address	(EQUAL)
If REG	≠	W;	
PC	=	Address	(NEQUAL)


CPF	SGT	Compare	f with W, Sk	ip if f > W
Synta	ax:	CPFSGT	f {,a}	
Oper	ands:	$0 \le f \le 255$		
		a ∈ [0,1]		
Oper	ation:	(f) – (W),		
		skip if (f) >	(W)	
		(unsigned c	comparison)	
Statu	s Affected:	None		
Enco	ding:	0110	010a fff	f ffff
Desc	ription:	location 'f' t	he contents of o the contents an unsigned s	of the W by
		contents of instruction i	nts of 'f' are gr WREG, then t s discarded ar stead, making istruction.	he fetched
			he Access Bar he BSR is use	
			nd the extende	ad instruction
		set is enabl in Indexed I mode when Section 26	ed, this instruct Literal Offset A lever f ≤ 95 (5F .2.3 "Byte-Ori ed Instruction:	tion operates ddressing h). See ented and
			et Mode" for	
Word	s:	1		
Cycle	×S.	1(2)		
Cycle		. ,	ycles if skip a	nd followed
			a 2-word instr	
QC	vcle Activity:			
	Q1	Q2	Q3	Q4
	Decode	Read	Process	No
		register 'f'	Data	operation
lf sk	ip:			
	Q1	Q2	Q3	Q4
	No	No	No	No
	operation	operation	operation	operation
lf sk	ip and followed	d by 2-word in	struction:	
	Q1	Q2	Q3	Q4
	No	No	No	No
	operation	operation	operation	operation
	No	No	No	No
	operation	operation	operation	operation
<u>Exam</u>	<u>nple:</u>	HERE NGREATER GREATER	CPFSGT RE : :	G, 0
	Before Instruc	tion		
	PC		dress (HERE))
	W After Instructic	= ?		
	lf REG PC	> W; = Ad	dress (GREAT	TER)
	If REG PC	≤ W; = Ad	dress (NGREA	ATER)

CPF	SLT	Compare	f with W, Sk	cip if f < W
Synta	IX:	CPFSLT	f {,a}	
Opera	ands:	0 ≤ f ≤ 255 a ∈ [0,1]		
Opera	ation:	(f) – (W), skip if (f) < (unsigned c	(W) comparison)	
Statu	s Affected:	None		
Enco	ding:	0110	000a ff:	ff ffff
Desc	ription:	location 'f' t performing If the conte contents of instruction i executed in two-cycle in If 'a' is '0', t	the contents of o the contents an unsigned s nts of 'f' are le W, then the fe is discarded ar istead, making histruction. he Access Bar he BSR is use	of W by ubtraction. ss than the etched nd a NOP is this a nk is selected.
Word	s:	1		
Cycle	S:	1(2)		
Q C	cle Activity:		cycles if skip a a 2-word instr	
	Q1	Q2	Q3	Q4
[Decode	Read	Process	No
		register 'f'	Data	operation
lf ski	p:			
Г	Q1	Q2	Q3	Q4
	No operation	No operation	No operation	No operation
lfski		d by 2-word in		operation
ii ola	Q1	Q2	Q3	Q4
[No	No	No	No
	operation	operation	operation	operation
	No	No	No	No
l	operation	operation	operation	operation
<u>Exam</u>	<u>iple:</u>	NLESS	CPFSLT REG, : :	1
	Before Instruc PC W After Instructic	= Ad = ?	dress (HERE)
	If REG PC If REG PC PC	< ₩ = Ad ≥ ₩	dress (LESS	

Write Verify	113
Writing	
Data Memory	73
Access Bank	
and the Extended Instruction Set	
Bank Select Register (BSR)	
General Purpose Registers	
Map for PIC18F2480/4480	74
Special Function Registers	
DAW	
DC Characteristics	
Power-Down and Supply Current	
Supply Voltage	
DCFSNZ	
DECF	
DECFSZ	
Development Support	
Device Differences	
Device Overview	9
Features (table)	
Device Reset Timers	51
Oscillator Start-up Timer (OST)	51
PLL Lock Time-out	
Power-up Timer (PWRT)	
Direct Addressing	
5	

Е

ECAN Module	279
Baud Rate Setting	338
Bit Time Partitioning	338
Bit Timing Configuration Registers	
Calculating To, Nominal Bit Rate and	
Nominal Bit Time	341
CAN Baud Rate Registers	317
CAN Control and Status Registers	281
CAN Controller Register Map	325
CAN I/O Control Register	320
CAN Interrupt Registers	321
CAN Interrupts	345
Acknowledge	347
Bus Activity Wake-up	346
Bus-Off	347
Code Bits	346
Error	346
Message Error	346
Receive	346
Receiver Bus Passive	347
Receiver Overflow	347
Receiver Warning	347
Transmit	
Transmitter Bus Passive	347
Transmitter Warning	347
CAN Message Buffers	332
Dedicated Receive	332
Dedicated Transmit	332
Programmable Auto-RTR	
Programmable Transmit/Receive	332
CAN Message Transmission	333
Aborting	333
Initiating	333
Priority	
CAN Modes of Operation	
CAN Registers	
Configuration Mode	
Dedicated CAN Receive Buffer Registers	293

Dedicated CAN Transmit Buffer Registers	288
Disable Mode	
Error Detection	
Acknowledge	344
Bit	344
CRC	
Error Modes and Counters	344
Error States	311
Form	344
Stuff Bit	344
Error Modes State (diagram)	
Error Recognition Mode	331
Filter-Mask Truth (table)	336
Functional Modes	
Mode 0 (Legacy Mode)	331
Mode 1 (Enhanced Legacy Mode)	331
Mode 2 (Enhanced FIFO Mode)	
Information Processing Time (IPT)	341
Lengthening a Bit Period	
Listen Only Mode	331
Loopback Mode	331
Message Acceptance Filters and Masks 308,	
	000
Message Acceptance Mask and	
Filter Operation	337
Message Reception	
Enhanced FIFO Mode	336
Priority	
Time-Stamping	
Normal Mode	330
Oscillator Tolerance	
Overview	279
Phase Buffer Segments	341
Programmable TX/RX and Auto-RTR Buffers	
Programming Time Segments	343
Propagation Segment	341
Propagation Segment Sample Point	341 341
Propagation Segment	341 341
Propagation Segment Sample Point Shortening a Bit Period	341 341 343
Propagation Segment Sample Point Shortening a Bit Period Synchronization	341 341 343 342
Propagation Segment Sample Point Shortening a Bit Period Synchronization Hard	341 341 343 342 342
Propagation Segment Sample Point Shortening a Bit Period Synchronization	341 341 343 342 342
Propagation Segment Sample Point Shortening a Bit Period Synchronization Hard Resynchronization	341 343 342 342 342 342
Propagation Segment Sample Point Shortening a Bit Period Synchronization Hard Resynchronization Rules	341 343 342 342 342 342 342
Propagation Segment Sample Point Shortening a Bit Period Synchronization Hard Resynchronization Rules Synchronization Segment	341 343 342 342 342 342 342 342
Propagation Segment	341 343 342 342 342 342 342 341 341
Propagation Segment	341 343 342 342 342 342 342 341 341
Propagation Segment	341 343 342 342 342 342 342 341 341
Propagation Segment	341 343 342 342 342 342 342 341 341 346
Propagation Segment	341 343 342 342 342 342 342 341 341 346
Propagation Segment	341 343 342 342 342 342 342 341 341 346 178
Propagation Segment	 341 343 342 342 342 342 341 346 178 178
Propagation Segment	341 343 342 342 342 342 342 341 341 346 178 98
Propagation Segment	341 343 342 342 342 342 342 341 341 346 178 98
Propagation Segment	341 343 342 342 342 342 342 341 341 346 178 98
Propagation Segment	341 343 342 342 342 342 341 341 346 178 178 178 414
Propagation Segment	341 343 342 342 342 342 341 341 346 178 178 178 414
Propagation Segment	341 343 342 342 342 342 341 341 341 346 178 178 178 414 37
Propagation Segment	341 343 342 342 342 342 342 341 341 346 178 178 414 37 421
Propagation Segment	341 343 342 342 342 342 342 341 341 346 178 178 414 37 421
Propagation Segment	341 343 342 342 342 342 342 341 341 346 178 178 414 37 421
Propagation Segment	341 343 342 342 342 342 341 341 341 346 98 414 37 421 177
Propagation Segment	341 343 342 342 342 342 341 341 341 346 98 414 37 421 177 178
Propagation Segment	341 343 342 342 342 342 341 341 341 346 98 414 37 421 177 178
Propagation Segment	341 343 342 342 342 342 341 341 341 346 98 414 37 421 177 178
Propagation Segment	341 341 343 342 342 342 342 341 341 346 178 178 414 37 421 177 178 178
Propagation Segment	341 341 343 342 342 342 341 341 346 178 414 98 414 37 421 177 178 178 178
Propagation Segment	341 341 342 342 342 342 341 341 346 178 414 98 414 37 421 177 178 178 178 178
Propagation Segment	341 341 342 342 342 342 341 341 341 346 178 414 177 178 421 177 178 178 178 258
Propagation Segment	341 341 342 342 342 342 341 341 341 346 178 414 177 178 421 177 178 178 178 258
Propagation Segment	341 341 343 342 342 342 341 341 346 178 414 98 414 98 414 37 178 178 178 178 178 258 258