

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	40MHz
Connectivity	CANbus, I ² C, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, HLVD, POR, PWM, WDT
Number of I/O	36
Program Memory Size	16KB (8K x 16)
Program Memory Type	FLASH
EEPROM Size	256 x 8
RAM Size	768 × 8
Voltage - Supply (Vcc/Vdd)	4.2V ~ 5.5V
Data Converters	A/D 11x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	44-TQFP
Supplier Device Package	44-TQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic18f4480-i-pt

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Register	Applicable Devices		Applicable Devices Power-on Reset, Brown-out Reset		MCLR Resets, WDT Reset, RESET Instruction, Stack Resets	Wake-up via WDT or Interrupt	
RXF13EIDL ⁽⁶⁾	2480	2580	4480	4580	XXXX XXXX	սսսս սսսս	սսսս սսսս
RXF13EIDH ⁽⁶⁾	2480	2580	4480	4580	XXXX XXXX	սսսս սսսս	սսսս սսսս
RXF13SIDL ⁽⁶⁾	2480	2580	4480	4580	xxx- x-xx	uuu- u-uu	uuu- u-uu
RXF13SIDH ⁽⁶⁾	2480	2580	4480	4580	XXXX XXXX	սսսս սսսս	սսսս սսսս
RXF12EIDL ⁽⁶⁾	2480	2580	4480	4580	XXXX XXXX	นนนน นนนน	นนนน นนนน
RXF12EIDH ⁽⁶⁾	2480	2580	4480	4580	XXXX XXXX	սսսս սսսս	սսսս սսսս
RXF12SIDL ⁽⁶⁾	2480	2580	4480	4580	XXX- X-XX	uuu- u-uu	uuu- u-uu
RXF12SIDH ⁽⁶⁾	2480	2580	4480	4580	XXXX XXXX	սսսս սսսս	սսսս սսսս
RXF11EIDL ⁽⁶⁾	2480	2580	4480	4580	XXXX XXXX	սսսս սսսս	uuuu uuuu
RXF11EIDH ⁽⁶⁾	2480	2580	4480	4580	XXXX XXXX	սսսս սսսս	uuuu uuuu
RXF11SIDL ⁽⁶⁾	2480	2580	4480	4580	XXX- X-XX	uuu- u-uu	uuu- u-uu
RXF11SIDH ⁽⁶⁾	2480	2580	4480	4580	XXXX XXXX	սսսս սսսս	սսսս սսսս
RXF10EIDL ⁽⁶⁾	2480	2580	4480	4580	XXXX XXXX	սսսս սսսս	-uuu uuuu
RXF10EIDH ⁽⁶⁾	2480	2580	4480	4580	XXXX XXXX	սսսս սսսս	-uuu uuuu
RXF10SIDL ⁽⁶⁾	2480	2580	4480	4580	XXX- X-XX	uuu- u-uu	-uuu uuuu
RXF10SIDH ⁽⁶⁾	2480	2580	4480	4580	XXXX XXXX	սսսս սսսս	-uuu uuuu
RXF9EIDL ⁽⁶⁾	2480	2580	4480	4580	XXXX XXXX	սսսս սսսս	-uuu uuuu
RXF9EIDH ⁽⁶⁾	2480	2580	4480	4580	XXXX XXXX	սսսս սսսս	-uuu uuuu
RXF9SIDL ⁽⁶⁾	2480	2580	4480	4580	XXX- X-XX	uuu- u-uu	-uuu uuuu
RXF9SIDH ⁽⁶⁾	2480	2580	4480	4580	XXXX XXXX	սսսս սսսս	-uuu uuuu
RXF8EIDL ⁽⁶⁾	2480	2580	4480	4580	XXXX XXXX	սսսս սսսս	-uuu uuuu
RXF8EIDH ⁽⁶⁾	2480	2580	4480	4580	XXXX XXXX	սսսս սսսս	-uuu uuuu
RXF8SIDL ⁽⁶⁾	2480	2580	4480	4580	xxx- x-xx	uuu- u-uu	-uuu uuuu
RXF8SIDH ⁽⁶⁾	2480	2580	4480	4580	XXXX XXXX	սսսս սսսս	-uuu uuuu
RXF7EIDL ⁽⁶⁾	2480	2580	4480	4580	XXXX XXXX	սսսս սսսս	-uuu uuuu
RXF7EIDH ⁽⁶⁾	2480	2580	4480	4580	XXXX XXXX	սսսս սսսս	-uuu uuuu
RXF7SIDL ⁽⁶⁾	2480	2580	4480	4580	xxx- x-xx	uuu- u-uu	-uuu uuuu
RXF7SIDH ⁽⁶⁾	2480	2580	4480	4580	XXXX XXXX	սսսս սսսս	-uuu uuuu
RXF6EIDL ⁽⁶⁾	2480	2580	4480	4580	XXXX XXXX	սսսս սսսս	-uuu uuuu
RXF6EIDH ⁽⁶⁾	2480	2580	4480	4580	XXXX XXXX	սսսս սսսս	-uuu uuuu
RXF6SIDL ⁽⁶⁾	2480	2580	4480	4580	xxx- x-xx	uuu- u-uu	-uuu uuuu
RXF6SIDH ⁽⁶⁾	2480	2580	4480	4580	XXXX XXXX	นนนน นนนน	-uuu uuuu
		l	I				I

TABLE 5-4: INITIALIZATION CONDITIONS FOR ALL REGISTERS (CONTINUED)

Legend: u = unchanged, x = unknown, - = unimplemented bit, read as '0', q = value depends on condition. Shaded cells indicate conditions do not apply for the designated device.

Note 1: One or more bits in the INTCONx or PIRx registers will be affected (to cause wake-up).

2: When the wake-up is due to an interrupt and the GIEL or GIEH bit is set, the PC is loaded with the interrupt vector (0008h or 0018h).

- **3:** When the wake-up is due to an interrupt and the GIEL or GIEH bit is set, the TOSU, TOSH and TOSL are updated with the current value of the PC. The STKPTR is modified to point to the next location in the hardware stack.
- 4: See Table 5-3 for Reset value for specific condition.
- **5:** Bits 6 and 7 of PORTA, LATA and TRISA are enabled, depending on the oscillator mode selected. When not enabled as PORTA pins, they are disabled and read '0'.
- 6: This register reads all '0's until ECAN™ technology is set up in Mode 1 or Mode 2.

REGISTER 7-1: EECON1: DATA EEPROM CONTROL REGISTER 1

R/W-x	R/W-x	U-0	R/W-0	R/W-x	R/W-0	R/S-0	R/S-0
EEPGD	CFGS	—	FREE	WRERR ⁽¹⁾	WREN	WR	RD
bit 7							bit 0

Legend:	S = Settable bit		
R = Readable bit	W = Writable bit	U = Unimplemented bit	t, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

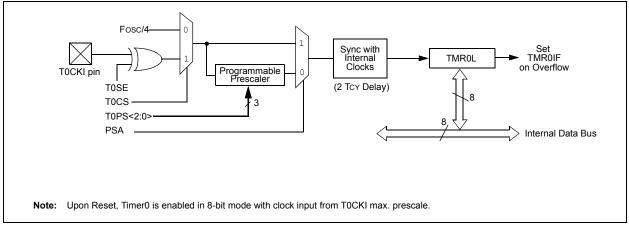
hit 7	EEDCD: Flack Bragger at Data FERROM Mamary Salast hit
bit 7	EEPGD: Flash Program or Data EEPROM Memory Select bit
	1 = Access Flash program memory 0 = Access data EEPROM memory
1.1.0	-
bit 6	CFGS: Flash Program/Data EEPROM or Configuration Select bit
	1 = Access Configuration registers
	0 = Access Flash program or data EEPROM memory
bit 5	Unimplemented: Read as '0'
bit 4	FREE: Flash Row Erase Enable bit
	 1 = Erase the program memory row addressed by TBLPTR on the next WR command (cleared by completion of erase operation)
	0 = Perform write only
bit 3	WRERR: Flash Program/Data EEPROM Error Flag bit ⁽¹⁾
	 1 = A write operation is prematurely terminated (any Reset during self-timed programming in normal operation or an improper write attempt)
	0 = The write operation completed
bit 2	WREN: Flash Program/Data EEPROM Write Enable bit
	1 = Allows write cycles to Flash program/data EEPROM
	0 = Inhibits write cycles to Flash program/data EEPROM
bit 1	WR: Write Control bit
	 1 = Initiates a data EEPROM erase/write cycle or a program memory erase cycle or write cycle (The operation is self-timed and the bit is cleared by hardware once write is complete. The WR bit can only be set (not cleared) in software.)
	0 = Write cycle to the EEPROM is complete
bit 0	RD: Read Control bit
	1 = Initiates an EEPROM read (Read takes one cycle. RD is cleared in hardware. The RD bit can only
	be set (not cleared) in software. RD bit cannot be set when EEPGD = 1 or CFGS = 1.) 0 = Does not initiate an EEPROM read

Note 1: When a WRERR occurs, the EEPGD and CFGS bits are not cleared. This allows tracing of the error condition.

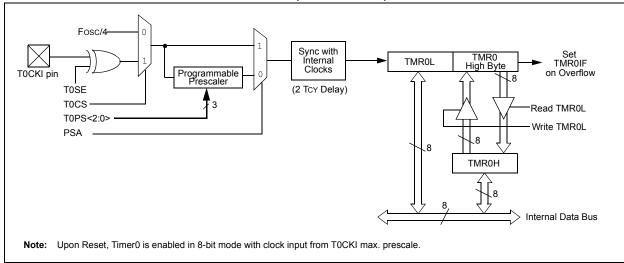
12.1 Timer0 Operation

Timer0 can operate as either a timer or a counter; the mode is selected by clearing the T0CS bit (T0CON<5>). In Timer mode, the module increments on every clock by default unless a different prescaler value is selected (see **Section 12.3 "Prescaler"**). If the TMR0 register is written to, the increment is inhibited for the following two instruction cycles. The user can work around this by writing an adjusted value to the TMR0 register.

The Counter mode is selected by setting the T0CS bit (= 1). In Counter mode, Timer0 increments either on every rising or falling edge of pin, RA4/T0CKI. The incrementing edge is determined by the Timer0 Source Edge Select bit, T0SE (T0CON<4>); clearing this bit selects the rising edge. Restrictions on the external clock input are discussed below.


An external clock source can be used to drive Timer0; however, it must meet certain requirements to ensure that the external clock can be synchronized with the internal phase clock (Tosc). There is a delay between synchronization and the onset of incrementing the timer/counter.

12.2 Timer0 Reads and Writes in 16-Bit Mode


TMR0H is not the actual high byte of Timer0 in 16-bit mode; it is actually a buffered version of the real high byte of Timer0, which is not directly readable nor writable (refer to Figure 12-2). TMR0H is updated with the contents of the high byte of Timer0 during a read of TMR0L. This provides the ability to read all 16 bits of Timer0 without having to verify that the read of the high and low byte were valid, due to a rollover between successive reads of the high and low byte.

Similarly, a write to the high byte of Timer0 must also take place through the TMR0H Buffer register. The high byte is updated with the contents of TMR0H when a write occurs to TMR0L. This allows all 16 bits of Timer0 to be updated at once.

REGISTER 17-2: ECCP1DEL: ECCP PWM DEAD-BAND DELAY REGISTER

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
PRSEN	PDC6 ⁽¹⁾	PDC5 ⁽¹⁾	PDC4 ⁽¹⁾	PDC3 ⁽¹⁾	PDC2 ⁽¹⁾	PDC1 ⁽¹⁾	PDC0 ⁽¹⁾
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	l as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 7	PRSEN: PWM Restart Enable bit
	 1 = Upon auto-shutdown, the ECCPASE bit clears automatically once the shutdown event goes away; the PWM restarts automatically
	0 = Upon auto-shutdown, ECCPASE must be cleared in software to restart the PWM
bit 6-0	PDC<6:0>: PWM Delay Count bits ⁽¹⁾
	Delay time, in number of Fosc/4 (4 * Tosc) cycles, between the scheduled and actual time for a PWM signal to transition to active.

REGISTER 17-3: ECCP1AS: ECCP AUTO-SHUTDOWN CONTROL REGISTER⁽¹⁾

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
ECCPASE	ECCPAS2	ECCPAS1	ECCPAS0	PSSAC1	PSSAC0	PSSBD1 ⁽¹⁾	PSSBD0 ⁽¹⁾
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit,	read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 7	ECCPASE: ECCP Auto-Shutdown Event Status bit
	 1 = A shutdown event has occurred; ECCP outputs are in shutdown state 0 = ECCP outputs are operating
bit 6-4	ECCPAS<2:0>: ECCP Auto-Shutdown Source Select bits
	<pre>111 = RB0 or Comparator 1 or Comparator 2 110 = RB0 or Comparator 2 101 = RB0 or Comparator 1 100 = RB0 011 = Either Comparator 1 or 2 010 = Comparator 2 output 001 = Comparator 1 output 000 = Auto-shutdown is disabled</pre>
bit 3-2	PSSAC<1:0>: Pins, A and C, Shutdown State Control bits
	 1x = Pins, A and C, tri-state (PIC18F4X80 devices) 01 = Drive Pins, A and C, to '1' 00 = Drive Pins, A and C, to '0'
bit 1-0	PSSBD<1:0>: Pins, B and D, Shutdown State Control bits ⁽¹⁾
	 1x = Pins, B and D, tri-state 01 = Drive Pins, B and D, to '1' 00 = Drive Pins, B and D, to '0'
Note 1:	Reserved on PIC18F2X80 devices; maintain these bits clear.

© 2009 Microchip Technology Inc.

18.4.3.2 Reception

When the R/W bit of the address byte is clear and an address match occurs, the R/W bit of the SSPSTAT register is cleared. The received address is loaded into the SSPBUF register and the SDA line is held low (ACK).

When the address byte overflow condition exists, then the no Acknowledge (ACK) pulse is given. An overflow condition is defined as either bit, BF (SSPSTAT<0>), is set, or bit, SSPOV (SSPCON1<6>), is set.

An MSSP interrupt is generated for each data transfer byte. Flag bit, SSPIF (PIR1<3>), must be cleared in software. The SSPSTAT register is used to determine the status of the byte.

If SEN is enabled (SSPCON2<0> = 1), RC3/SCK/SCL will be held low (clock stretch) following each data transfer. The clock must be released by setting bit, CKP (SSPCON<4>). See **Section 18.4.4** "Clock **Stretching**" for more details.

18.4.3.3 Transmission

When the R/W bit of the incoming address byte is set and an address match occurs, the R/W bit of the SSPSTAT register is set. The received address is loaded into the SSPBUF register. The ACK pulse will be sent on the ninth bit and pin RC3/SCK/SCL is held low regardless of SEN (see Section 18.4.4 "Clock Stretching" for more details). By stretching the clock, the master will be unable to assert another clock pulse until the slave is done preparing the transmit data. The transmit data must be loaded into the SSPBUF register which also loads the SSPSR register. Then, the RC3/ SCK/SCL pin should be enabled by setting bit, CKP (SSPCON1<4>). The eight data bits are shifted out on the falling edge of the SCL input. This ensures that the SDA signal is valid during the SCL high time (Figure 18-9).

The ACK pulse from the master-receiver is latched on the rising edge of the ninth SCL input pulse. If the SDA line is high (not ACK), then the data transfer is complete. In this case, when the ACK is latched by the slave, the slave logic is reset and the slave monitors for another occurrence of the Start bit. If the SDA line was low (ACK), the next transmit data must be loaded into the SSPBUF register. Again, pin, RC3/SCK/SCL, must be enabled by setting bit, CKP.

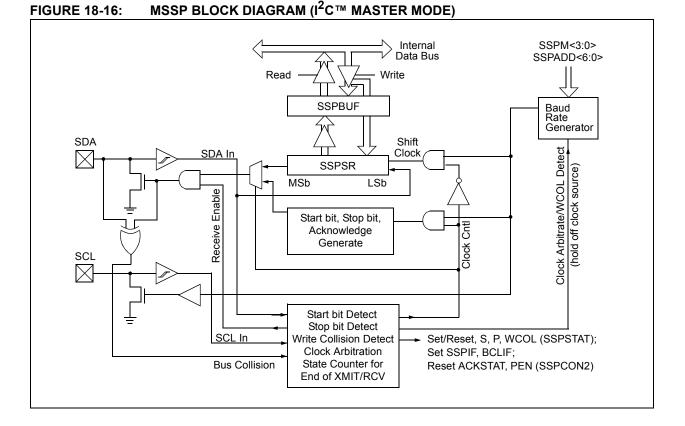
An MSSP interrupt is generated for each data transfer byte. The SSPIF bit must be cleared in software and the SSPSTAT register is used to determine the status of the byte. The SSPIF bit is set on the falling edge of the ninth clock pulse.

18.4.6 MASTER MODE

Master mode is enabled by setting and clearing the appropriate SSPM bits in SSPCON1 and by setting the SSPEN bit. In Master mode, the SCL and SDA lines are manipulated by the MSSP hardware.

Master mode of operation is supported by interrupt generation on the detection of the Start and Stop conditions. The Stop (P) and Start (S) bits are cleared from a Reset or when the MSSP module is disabled. Control of the I^2C bus may be taken when the P bit is set or the bus is Idle, with both the S and P bits clear.

In Firmware Controlled Master mode, user code conducts all I^2C bus operations based on Start and Stop bit conditions.

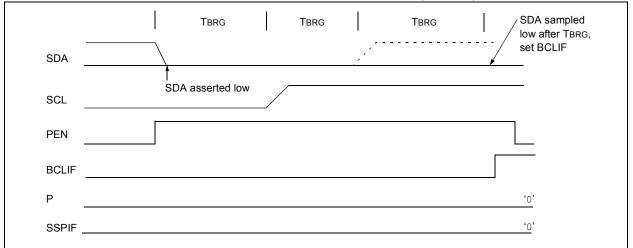

Once Master mode is enabled, the user has six options.

- 1. Assert a Start condition on SDA and SCL.
- 2. Assert a Repeated Start condition on SDA and SCL.
- 3. Write to the SSPBUF register initiating transmission of data/address.
- 4. Configure the I²C port to receive data.
- 5. Generate an Acknowledge condition at the end of a received byte of data.
- 6. Generate a Stop condition on SDA and SCL.

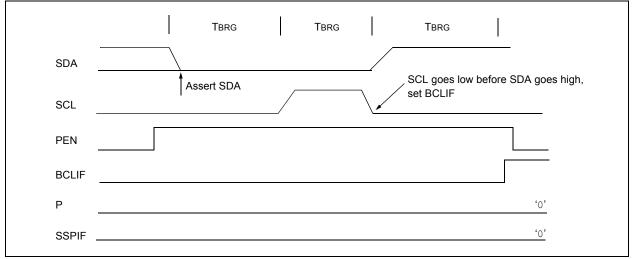
Note: The MSSP module, when configured in I²C Master mode, does not allow queueing of events. For instance, the user is not allowed to initiate a Start condition and immediately write the SSPBUF register to initiate transmission before the Start condition is complete. In this case, the SSPBUF will not be written to and the WCOL bit will be set, indicating that a write to the SSPBUF did not occur.

The following events will cause the MSSP Interrupt Flag bit, SSPIF, to be set (MSSP interrupt, if enabled):

- · Start condition
- Stop condition
- · Data transfer byte transmitted/received
- · Acknowledge transmitted
- · Repeated Start


18.4.17.3 Bus Collision During a Stop Condition

Bus collision occurs during a Stop condition if:


- a) After the SDA pin has been deasserted and allowed to float high, SDA is sampled low after the BRG has timed out.
- b) After the SCL pin is deasserted, SCL is sampled low before SDA goes high.

The Stop condition begins with SDA asserted low. When SDA is sampled low, the SCL pin is allowed to float. When the pin is sampled high (clock arbitration), the Baud Rate Generator is loaded with SSPADD<6:0> and counts down to 0. After the BRG times out, SDA is sampled. If SDA is sampled low, a bus collision has occurred. This is due to another master attempting to drive a data '0' (Figure 18-31). If the SCL pin is sampled low before SDA is allowed to float high, a bus collision occurs. This is another case of another master attempting to drive a data '0' (Figure 18-32).

FIGURE 18-31: BUS COLLISION DURING A STOP CONDITION (CASE 1)

FIGURE 18-32: BUS COLLISION DURING A STOP CONDITION (CASE 2)

19.2.4 AUTO-WAKE-UP ON SYNC BREAK CHARACTER

During Sleep mode, all clocks to the EUSART are suspended. Because of this, the Baud Rate Generator is inactive and a proper byte reception cannot be performed. The auto-wake-up feature allows the controller to wake-up due to activity on the RX/DT line, while the EUSART is operating in Asynchronous mode.

The auto-wake-up feature is enabled by setting the WUE bit (BAUDCON<1>). Once set, the typical receive sequence on RX/DT is disabled and the EUSART remains in an Idle state, monitoring for a wake-up event independent of the CPU mode. A wake-up event consists of a high-to-low transition on the RX/DT line. (This coincides with the start of a Sync Break or a Wake-up Signal character for the LIN/J2602 protocol.)

Following a wake-up event, the module generates an RCIF interrupt. The interrupt is generated synchronously to the Q clocks in normal operating modes (Figure 19-8) and asynchronously, if the device is in Sleep mode (Figure 19-9). The interrupt condition is cleared by reading the RCREG register.

The WUE bit is automatically cleared once a low-to-high transition is observed on the RX line following the wake-up event. At this point, the EUSART module is in Idle mode and returns to normal operation. This signals to the user that the Sync Break event is over.

19.2.4.1 Special Considerations Using Auto-Wake-up

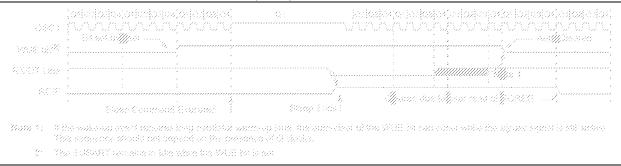
Since auto-wake-up functions by sensing rising edge transitions on RX/DT, information with any state changes before the Stop bit may signal a false

End-of-Character (EOC) and cause data or framing errors. To work properly, therefore, the initial character in the transmission must be all '0's. This can be 00h (8 bits) for standard RS-232 devices or 000h (12 bits) for LIN/J2602 bus.

Oscillator start-up time must also be considered, especially in applications using oscillators with longer start-up intervals (i.e., XT or HS mode). The Sync Break (or Wake-up Signal) character must be of sufficient length and be followed by a sufficient interval to allow enough time for the selected oscillator to start and provide proper initialization of the EUSART.

19.2.4.2 Special Considerations Using the WUE Bit

The timing of WUE and RCIF events may cause some confusion when it comes to determining the validity of received data. As noted, setting the WUE bit places the EUSART in an Idle mode. The wake-up event causes a receive interrupt by setting the RCIF bit. The WUE bit is cleared after this when a rising edge is seen on RX/DT. The interrupt condition is then cleared by reading the RCREG register. Ordinarily, the data in RCREG will be dummy data and should be discarded.


The fact that the WUE bit has been cleared (or is still set) and the RCIF flag is set should not be used as an indicator of the integrity of the data in RCREG. Users should consider implementing a parallel method in firmware to verify received data integrity.

To assure that no actual data is lost, check the RCIDL bit to verify that a receive operation is not in process. If a receive operation is not occurring, the WUE bit may then be set just prior to entering the Sleep mode.

FIGURE 19-8: AUTO-WAKE-UP BIT (WUE) TIMINGS DURING NORMAL OPERATION

- OSC (- MANAL	NGC AL	UNDALAN (* 1917)	UNUALAB	NYNAIN.	agaan	uaupunun	.J.M.D.C	9.9. <u>9</u> .9	naaqaa	.: A. I.
	्रे विषे त्वरे	eriese				3				200MG 8003	385
898 SE ³ -	- 5	·····	····/	···· · · · · · · · · · · · · · · · · ·			······································		innernen p. 5. Spen		
	- 2- 								1. 1	· · ·	
XAN Ane -	- 1	·····	***********************		anna				aar i	······	
	2	*	·	3 2	4.1	No. 1			e - 4	4	
SSC38	- k - generalen en e	, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		; ; ; 			······································	······································	······	······	
		-	-				— Ciperes de	e ožeste	-86 A.Y.C	283 <u>"</u> ,	
	100	1	1 A								

FIGURE 19-9: AUTO-WAKE-UP BIT (WUE) TIMINGS DURING SLEEP

23.0 HIGH/LOW-VOLTAGE DETECT (HLVD)

PIC18F2480/2580/4480/4580 devices have a High/Low-Voltage Detect module (HLVD). This is a programmable circuit that allows the user to specify both a device voltage trip point and the direction of change from that point. If the device experiences an excursion past the trip point in that direction, an interrupt flag is set. If the interrupt is enabled, the program execution will branch to the interrupt vector address and the software can then respond to the interrupt.

The High/Low-Voltage Detect Control register (Register 23-1) completely controls the operation of the HLVD module. This allows the circuitry to be "turned off" by the user under software control, which minimizes the current consumption for the device.

The block diagram for the HLVD module is shown in Figure 23-1.

REGISTER 23-1: HLVDCON: HIGH/LOW-VOLTAGE DETECT CONTROL REGISTER

R/W-0	U-0	R-0	R/W-0	R/W-0	R/W-1	R/W-0	R/W-1			
VDIRMAG		IRVST	HLVDEN	HLVDL3 ⁽¹⁾	HLVDL2 ⁽¹⁾	HLVDL1 ⁽¹⁾	HLVDL0 ⁽¹⁾			
bit 7							bit 0			
Legend:										
R = Readable		W = Writable bit		U = Unimplemented bit, read as '0'						
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unknown				
bit 7		oltage Directio	n Magnitude (Select hit						
Sit		•	•		oint (HLVDL<3:0)>)				
			•		point (HLVDL<	,				
bit 6	Unimplemen	ted: Read as '	0'							
bit 5	IRVST: Intern	al Reference V	oltage Stable	Flag bit						
	1 = Indicates	1 = Indicates that the voltage detect logic will generate the interrupt flag at the specified voltage range								
				will not generation of be enabled	ate the interrup I	t flag at the spe	ecified voltage			
bit 4	HLVDEN: Hig	h/Low-Voltage	Detect Powe	r Enable bit						
	1 = HLVD enabled									
	0 = HLVD dis									
bit 3-0	HLVDL<3:0>: High/Low-Voltage Detection Limit bits ⁽¹⁾									
	1111 = External analog input is used (input comes from the HLVDIN pin)									
	1110 = 4.48V-4.69V 1101 = 4.23V-4.43V									
	1101 = 4.23v - 4.43v 1100 = 4.01V - 4.20V									
	1011 = 3.81V	′-3.99V								
	1010 = 3.63V									
		1001 = 3.46V-3.63V 1000 = 3.31V-3.47V								
	0111 = 3.05V									
	0110 = 2.82V									
	0101 = 2.72V	′-2.85V								
	0100 = 2.54V									
	0011 = 2.38V									
	0010 = 2.31V 0001 = 2.18V									
	00001 = 2.18V 0000 = 2.12V	-								

Note 1: HLVDL<3:0> modes that result in a trip point below the valid operating voltage of the device are not tested.

24.2 CAN Module Registers

Note: Not all CAN registers are available in the Access Bank.

There are many control and data registers associated with the CAN module. For convenience, their descriptions have been grouped into the following sections:

- · Control and Status Registers
- Dedicated Transmit Buffer Registers
- · Dedicated Receive Buffer Registers
- · Programmable TX/RX and Auto RTR Buffers
- Baud Rate Control Registers
- I/O Control Register
- · Interrupt Status and Control Registers

Detailed descriptions of each register and their usage are described in the following sections.

24.2.1 CAN CONTROL AND STATUS REGISTERS

The registers described in this section control the overall operation of the CAN module and show its operational status.

REGISTER 24-13: RXB0CON: RECEIVE BUFFER 0 CONTROL REGISTER (CONTINUED)

bit 2	Mode 0: RXB0DBEN: Receive Buffer 0 Double-Buffer Enable bit
	 1 = Receive Buffer 0 overflow will write to Receive Buffer 1 0 = No Receive Buffer 0 overflow to Receive Buffer 1
	Mode 1, 2:
	FILHIT2: Filter Hit bit 2 This bit combines with other bits to form filter acceptance bits<4:0>.
bit 1	<u>Mode 0:</u> JTOFF: Jump Table Offset bit (read-only copy of RXB0DBEN) ⁽²⁾
	 1 = Allows jump table offset between 6 and 7 0 = Allows jump table offset between 1 and 0
	Mode 1, 2: FILHIT1: Filter Hit bit 1 This bit combines with other bits to form filter acceptance bits<4:0>.
bit 0	Mode 0: FILHIT0: Filter Hit bit 0 This bit indicates which acceptance filter enabled the message reception into Receive Buffer 0. 1 = Acceptance Filter 1 (RXF1) 0 = Acceptance Filter 0 (RXF0) Mode 1, 2: FILHIT0: Filter Hit bit 0 This bit, in combination with FILHIT<4:1>, indicates which acceptance filter enabled the message reception into this receive buffer. 01111 = Acceptance Filter 15 (RXF15) 01110 = Acceptance Filter 14 (RXF14)
	00000 = Acceptance Filter 0 (RXF0)

- **Note 1:** This bit is set by the CAN module upon receiving a message and must be cleared by software after the buffer is read. As long as RXFUL is set, no new message will be loaded and buffer will be considered full. After clearing the RXFUL flag, the PIR3 bit, RXB0IF, can be cleared. If RXB0IF is cleared, but RXFUL is not cleared, then RXB0IF is set again.
 - **2:** This bit allows same filter jump table for both RXB0CON and RXB1CON.

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
FIL11_1	FIL11_0	FIL10_1	FIL10_0	FIL9_1	FIL9_0	FIL8_1	FIL8_0
bit 7	·						bit 0
Legend:							
R = Readabl	e bit	W = Writable	bit	U = Unimpler	mented bit, read	d as '0'	
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cle	eared	x = Bit is unkr	iown
bit 7-6 bit 5-4	11 = No mask 10 = Filter 15 01 = Acceptar 00 = Acceptar FIL10_<1:0>: 11 = No mask 10 = Filter 15 01 = Acceptar	nce Mask 1 nce Mask 0 : Filter 10 Sele < nce Mask 1					
bit 3-2	00 = Acceptance Mask 0 FIL9_<1:0>: Filter 9 Select bits 1 and 0 11 = No mask 10 = Filter 15 01 = Acceptance Mask 1 00 = Acceptance Mask 0						
bit 1-0	FIL8_<1:0>: I 11 = No mask 10 = Filter 15 01 = Accepta 00 = Accepta	nce Mask 1	bits 1 and 0				

REGISTER 24-50: MSEL2: MASK SELECT REGISTER 2⁽¹⁾

Note 1: This register is available in Mode 1 and 2 only.

24.10 Synchronization

To compensate for phase shifts between the oscillator frequencies of each of the nodes on the bus, each CAN controller must be able to synchronize to the relevant signal edge of the incoming signal. When an edge in the transmitted data is detected, the logic will compare the location of the edge to the expected time (Sync_Seg). The circuit will then adjust the values of Phase Segment 1 and Phase Segment 2 as necessary. There are two mechanisms used for synchronization.

24.10.1 HARD SYNCHRONIZATION

Hard synchronization is only done when there is a recessive to dominant edge during a bus Idle condition, indicating the start of a message. After hard synchronization, the bit time counters are restarted with Sync_Seg. Hard synchronization forces the edge, which has occurred to lie within the synchronization segment of the restarted bit time. Due to the rules of synchronization, if a hard synchronization occurs, there will not be a resynchronization within that bit time.

24.10.2 RESYNCHRONIZATION

As a result of resynchronization, Phase Segment 1 may be lengthened or Phase Segment 2 may be shortened. The amount of lengthening or shortening of the phase buffer segments has an upper bound given by the Synchronization Jump Width (SJW). The value of the SJW will be added to Phase Segment 1 (see Figure 24-6) or subtracted from Phase Segment 2 (see Figure 24-7). The SJW is programmable between 1 Tq and 4 Tq.

Clocking information will only be derived from recessive to dominant transitions. The property, that only a fixed maximum number of successive bits have the same value, ensures resynchronization to the bit stream during a frame. The phase error of an edge is given by the position of the edge relative to Sync_Seg, measured in Tq. The phase error is defined in magnitude of Tq as follows:

- e = 0 if the edge lies within Sync_Seg.
- e > 0 if the edge lies before the sample point.
- e < 0 if the edge lies after the sample point of the previous bit.

If the magnitude of the phase error is less than, or equal to, the programmed value of the Synchronization Jump Width, the effect of a resynchronization is the same as that of a hard synchronization.

If the magnitude of the phase error is larger than the Synchronization Jump Width and if the phase error is positive, then Phase Segment 1 is lengthened by an amount equal to the Synchronization Jump Width.

If the magnitude of the phase error is larger than the resynchronization jump width and if the phase error is negative, then Phase Segment 2 is shortened by an amount equal to the Synchronization Jump Width.

24.10.3 SYNCHRONIZATION RULES

- Only one synchronization within one bit time is allowed.
- An edge will be used for synchronization only if the value detected at the previous sample point (previously read bus value) differs from the bus value immediately after the edge.
- All other recessive to dominant edges fulfilling rules 1 and 2 will be used for resynchronization, with the exception that a node transmitting a dominant bit will not perform a resynchronization as a result of a recessive to dominant edge with a positive phase error.

BNC	v	Branch if	Not Overflo	w	BNZ		Branch if	Not Zero		
Synta	ax:	BNOV n			Syntax:		BNZ n			
Oper	ands:	$-128 \le n \le 127$			Operands	$Operands: -128 \le n \le 127$				
Oper	Operation: if Overflow bit is '0', $(PC) + 2 + 2n \rightarrow PC$		Operation	ו:	if Zero bit is '0', (PC) + 2 + 2n \rightarrow PC					
Statu	is Affected:	None			Status Aff	Status Affected: None				
Enco	oding:	1110	0101 nn:	nn nnnn	Encoding	:	1110	0001	nnnn	nnnn
Desc	cription:	If the Overf program wi	low bit is '0', th Il branch.	hen the	Descriptio	on:	If the Zero will branch.	-	en the p	orogram
		The 2's complement number '2n' is added to the PC. Since the PC will have incremented to fetch the next instruction, the new address will be PC + 2 + 2n. This instruction is then a two-cycle instruction.					The 2's cor added to th incremente instruction, PC + 2 + 2 two-cycle ir	e PC. Since d to fetch th the new ad n. This instr	e the PO ne next Idress v	C will have will be
Word	ls:	1			Words:		1			
Cycle	es:	1(2)			Cycles:		1(2)			
	ycle Activity:				Q Cycle	Activity:				
lf Ju	Q1	Q2	Q3	Q4	If Jump:	Q1	Q2	Q3		Q4
	Decode	Read literal 'n'	Process Data	Write to PC	D	ecode	Read literal 'n'	Process Data	Wr	ite to PC
	No	No	No	No		No	No	No		No
	operation	operation	operation	operation	ор	eration	operation	operation	n op	peration
lf No	o Jump:				lf No Jun	np:				
	Q1	Q2	Q3	Q4		Q1	Q2	Q3		Q4
	Decode	Read literal 'n'	Process Data	No operation	D	ecode	Read literal 'n'	Process Data		No peration
<u>Exan</u>	nple:	HERE	BNOV Jump		Example:		HERE	BNZ Ju	mp	
Before Instruction PC = address (HERE) After Instruction If Overflow = 0; PC = address (Jump) If Overflow = 1; PC = address (HERE + 2)				PC PC Instruction If Zero PC If Zero PC	= ad on = 0; = ad = 1;	dress (HEF dress (Jun dress (HEF	ıp))		

RLN	ICF	Rotate Le	eft f (No Car	ry)	RRCF	Rotate Ri	ght f throug	jh Carry	
Synta	ax:	RLNCF	f {,d {,a}}		Syntax:	RRCF f{,	d {,a}}		
Oper	rands:	0 ≤ f ≤ 255 d ∈ [0,1] a ∈ [0,1]			Operands:	$0 \le f \le 255$ $d \in [0,1]$ $a \in [0,1]$			
·	ration:	$(f < 7 >) \rightarrow d$	est <n +="" 1="">, est<0></n>		Operation:	$(f < n >) \rightarrow de$ $(f < 0 >) \rightarrow C$ $(C) \rightarrow dest$,		
	is Affected:	N, Z		<u> </u>	Status Affected:	C, N, Z			
Enco	oding:	0100	01da ff	ff ffff			0.0.1. 5.5		
Desc	cription:		nts of register		Encoding:	0011		ff ffff	
		is placed ir stored bac	he left. If 'd' is n W. If 'd' is '1' k in register 'f'	, the result is	Description:	The contents of register 'f' are rotated one bit to the right through the Carry flag. If 'd' is '0', the result is placed in W			
		If 'a' is '0', the Access Bank is selected. If 'a' is '1', the BSR is used to select the				If 'd' is '1', the result is placed back in register 'f'.			
			and the extend	led instruction		If 'a' is '0', the Access Bank is selected If 'a' is '1', the BSR is used to select the GPR bank.			
			Literal Offset	ction operates		If 'a' is '0' and the extended instruction			
			never f \leq 95 (5	•				ction operates	
			6.2.3 "Byte-O				in Indexed Literal Offset Addressing		
				ns in Indexed			ever f ≤ 95 (5	,	
		Literal Off	set Mode" for	details.			.2.3 "Byte-Or	ns in Indexed	
		-	register	<u></u>			set Mode" for		
Word	ds:	1				C	► registe	er f 🗖	
Cycle	es:	1							
QC	vcle Activity:				Words:	1			
	Q1	Q2	Q3	Q4	Cycles:	1			
	Decode	Read	Process	Write to	Q Cycle Activity:				
		register 'f'	Data	destination	Q1	Q2	Q3	Q4	
				_	Decode	Read	Process	Write to	
Exan	nple:	RLNCF	REG, 1,	0		register 'f'	Data	destination	
	Before Instruc	tion							
	REG	= 1010 1	.011		Example:	RRCF	REG, 0,	0	
		nn			Before Instruc	tion			
	After Instruction								
	After Instruction REG	= 0101 0	111		REG C	= 1110 C = 0	110		
			111		C After Instructio	= 0 on			
			111		С	= 0	110		

SLEEP	Enter Sle	eep mode		SUBFWB	Subtract	f from W w	ith Borrow
Syntax:	SLEEP			Syntax:	SUBFWB	f {,d {,a}}	
Operands:	None			Operands:	$0 \le f \le 255$		
Operation:	$00h \rightarrow WE$				d ∈ [0,1] a ∈ [0,1]		
	$0 \rightarrow WDT$ $1 \rightarrow TO$,	postscaler,		Operation		$(\overline{C}) \rightarrow \text{dest}$	
	$1 \rightarrow 10, \\ 0 \rightarrow PD$			Operation: Status Affected:			
Status Affected:	TO, PD				N, OV, C,		
Encoding:	0000	0000 000	0 0011	Encoding:	0101		ff ffff
Description: The Power-Down Status bit (PD) is cleared. The Time-out Status bit (TO) is set. Watchdog Timer and its postscaler are cleared.			Description:	(borrow) fi method). I in W. If 'd' register 'f'	is '1', the resu	mplement result is stored ult is stored in	
	with the os	ssor is put into scillator stoppe				the BSR is use	nk is selected. ed to select the
Words:	1					 and the extend	ded instruction
Cycles:	1						ction operates
Q Cycle Activity:	~~		<u>.</u>			Literal Offset never f ≤ 95 (5	
Q1 Decode	Q2 No	Q3 Process	Q4 Go to		Section 2	6.2.3 "Byte-O	riented and
Decode	operation	Data	Sleep			ed Instruction fset Mode" for	ns in Indexed
Fuendar				Words:	1		
Example:	SLEEP			Cycles:	1		
Before Instruc TO =	?			Q Cycle Activity:			
PD =	?			Q1	Q2	Q3	Q4
After Instructio				Decode	Read	Process	Write to
<u>TO</u> = PD =	1† 0				register 'f'	Data	destination
				Example 1:	SUBFWB	REG, 1, 0)
† If WDT causes	wake-up, this t	oit is cleared.		Before Instruc REG	= 3		
				W C	= 2 = 1		
				After Instruction	-		
				REG	= FF = 2		
				W C	= 0		
				Z N	= 0 = 1 · re	sult is negativ	e
				Example 2:	SUBFWB	REG, 0, 0	
				Before Instruc			
				REG W	= 2 = 5		
				С	= 1		
				After Instructio REG	on = 2		
				W	= 3		
				C Z	= 1 = 0		
				N		sult is positive	9

Example 3:

Before Instruction REG W C

After Instruction

REG W C Z N

SUBFWB REG, 1, 0

; result is zero

1 2 0 = = =

=

27.0 DEVELOPMENT SUPPORT

The PIC[®] microcontrollers and dsPIC[®] digital signal controllers are supported with a full range of software and hardware development tools:

- Integrated Development Environment
- MPLAB[®] IDE Software
- Compilers/Assemblers/Linkers
 - MPLAB C Compiler for Various Device Families
 - HI-TECH C for Various Device Families
 - MPASM[™] Assembler
 - MPLINK[™] Object Linker/ MPLIB[™] Object Librarian
 - MPLAB Assembler/Linker/Librarian for Various Device Families
- Simulators
 - MPLAB SIM Software Simulator
- Emulators
 - MPLAB REAL ICE™ In-Circuit Emulator
- In-Circuit Debuggers
 - MPLAB ICD 3
 - PICkit™ 3 Debug Express
- Device Programmers
 - PICkit[™] 2 Programmer
 - MPLAB PM3 Device Programmer
- Low-Cost Demonstration/Development Boards, Evaluation Kits, and Starter Kits

27.1 MPLAB Integrated Development Environment Software

The MPLAB IDE software brings an ease of software development previously unseen in the 8/16/32-bit microcontroller market. The MPLAB IDE is a Windows[®] operating system-based application that contains:

- A single graphical interface to all debugging tools
 - Simulator
 - Programmer (sold separately)
 - In-Circuit Emulator (sold separately)
 - In-Circuit Debugger (sold separately)
- A full-featured editor with color-coded context
- A multiple project manager
- Customizable data windows with direct edit of contents
- · High-level source code debugging
- · Mouse over variable inspection
- Drag and drop variables from source to watch windows
- · Extensive on-line help
- Integration of select third party tools, such as IAR C Compilers

The MPLAB IDE allows you to:

- Edit your source files (either C or assembly)
- One-touch compile or assemble, and download to emulator and simulator tools (automatically updates all project information)
- · Debug using:
 - Source files (C or assembly)
 - Mixed C and assembly
 - Machine code

MPLAB IDE supports multiple debugging tools in a single development paradigm, from the cost-effective simulators, through low-cost in-circuit debuggers, to full-featured emulators. This eliminates the learning curve when upgrading to tools with increased flexibility and power.

NOTES:

Write Verify	113
Writing	
Data Memory	73
Access Bank	
and the Extended Instruction Set	
Bank Select Register (BSR)	
General Purpose Registers	
Map for PIC18F2480/4480	74
Map for PIC18F2580/4580	
Special Function Registers	
DAW	
DC Characteristics	
Power-Down and Supply Current	
Supply Voltage	
DCFSNZ	
DECF	
DECFSZ	
Development Support	
Device Differences	
Device Overview	9
Features (table)	
Device Reset Timers	51
Oscillator Start-up Timer (OST)	51
PLL Lock Time-out	
Power-up Timer (PWRT)	
Direct Addressing	
5	

Е

ECAN Module	279
Baud Rate Setting	338
Bit Time Partitioning	338
Bit Timing Configuration Registers	
Calculating To, Nominal Bit Rate and	
Nominal Bit Time	341
CAN Baud Rate Registers	317
CAN Control and Status Registers	281
CAN Controller Register Map	325
CAN I/O Control Register	320
CAN Interrupt Registers	321
CAN Interrupts	345
Acknowledge	347
Bus Activity Wake-up	346
Bus-Off	347
Code Bits	346
Error	346
Message Error	346
Receive	346
Receiver Bus Passive	347
Receiver Overflow	347
Receiver Warning	347
Transmit	
Transmitter Bus Passive	347
Transmitter Warning	347
CAN Message Buffers	332
Dedicated Receive	332
Dedicated Transmit	332
Programmable Auto-RTR	
Programmable Transmit/Receive	332
CAN Message Transmission	333
Aborting	333
Initiating	333
Priority	
CAN Modes of Operation	
CAN Registers	
Configuration Mode	
Dedicated CAN Receive Buffer Registers	293

Dedicated CAN Transmit Buffer Registers	288
Disable Mode	
Error Detection	
Acknowledge	344
Bit	344
CRC	
Error Modes and Counters	344
Error States	311
Form	344
Stuff Bit	344
Error Modes State (diagram)	
Error Recognition Mode	331
Filter-Mask Truth (table)	336
Functional Modes	
Mode 0 (Legacy Mode)	331
Mode 1 (Enhanced Legacy Mode)	331
Mode 2 (Enhanced FIFO Mode)	
Information Processing Time (IPT)	341
Lengthening a Bit Period	
Listen Only Mode	331
Loopback Mode	331
Message Acceptance Filters and Masks 308,	
	550
Message Acceptance Mask and	
Filter Operation	337
Message Reception	
Enhanced FIFO Mode	336
Priority	
Time-Stamping	
Normal Mode	330
Oscillator Tolerance	
Overview	279
Phase Buffer Segments	341
Programmable TX/RX and Auto-RTR Buffers	
Programming Time Segments	343
Propagation Segment	341
Propagation Segment Sample Point	341 341
Propagation Segment	341 341
Propagation Segment Sample Point Shortening a Bit Period	341 341 343
Propagation Segment Sample Point Shortening a Bit Period Synchronization	341 341 343 342
Propagation Segment Sample Point Shortening a Bit Period Synchronization Hard	341 341 343 342 342
Propagation Segment Sample Point Shortening a Bit Period Synchronization	341 341 343 342 342
Propagation Segment Sample Point Shortening a Bit Period Synchronization Hard Resynchronization	341 343 342 342 342 342
Propagation Segment Sample Point Shortening a Bit Period Synchronization Hard Resynchronization Rules	341 343 342 342 342 342 342
Propagation Segment Sample Point Shortening a Bit Period Synchronization Hard Resynchronization Rules Synchronization Segment	341 343 342 342 342 342 342 342
Propagation Segment	341 343 342 342 342 342 342 341 341
Propagation Segment	341 343 342 342 342 342 342 341 341
Propagation Segment	341 343 342 342 342 342 342 341 341
Propagation Segment	341 343 342 342 342 342 342 341 341 346
Propagation Segment	341 343 342 342 342 342 342 341 341 346
Propagation Segment	341 343 342 342 342 342 342 341 341 346 178
Propagation Segment	 341 343 342 342 342 342 341 346 178 178
Propagation Segment	341 343 342 342 342 342 342 341 341 346 178 98
Propagation Segment	341 343 342 342 342 342 342 341 341 346 178 98
Propagation Segment	341 343 342 342 342 342 342 341 341 346 178 98
Propagation Segment	341 343 342 342 342 342 341 341 346 178 178 178 414
Propagation Segment	341 343 342 342 342 342 341 341 346 178 178 178 414
Propagation Segment	341 343 342 342 342 342 341 341 341 346 178 178 178 414 37
Propagation Segment	341 343 342 342 342 342 342 341 341 346 178 178 414 37 421
Propagation Segment	341 343 342 342 342 342 342 341 341 346 178 178 414 37 421
Propagation Segment	341 343 342 342 342 342 342 341 341 346 178 178 414 37 421
Propagation Segment	341 343 342 342 342 342 341 341 341 346 98 414 37 421 177
Propagation Segment	341 343 342 342 342 341 341 341 341 346 98 414 37 421 177 178
Propagation Segment	341 343 342 342 342 341 341 341 341 346 98 414 37 421 177 178
Propagation Segment	341 343 342 342 342 341 341 341 341 346 98 414 37 421 177 178
Propagation Segment	341 341 343 342 342 342 342 341 341 346 178 178 414 37 421 177 178 178
Propagation Segment	341 341 343 342 342 342 341 341 346 178 414 98 414 37 421 177 178 178 178
Propagation Segment	341 341 342 342 342 342 341 341 346 178 414 98 414 37 421 177 178 178 178 178
Propagation Segment	341 341 342 342 342 342 341 341 341 346 178 414 177 178 421 177 178 178 178 258
Propagation Segment	341 341 342 342 342 342 341 341 341 346 178 414 177 178 421 177 178 178 178 258
Propagation Segment	341 341 343 342 342 342 341 341 346 178 414 98 414 98 414 37 178 178 178 178 178 258 258

READER RESPONSE

It is our intention to provide you with the best documentation possible to ensure successful use of your Microchip product. If you wish to provide your comments on organization, clarity, subject matter, and ways in which our documentation can better serve you, please FAX your comments to the Technical Publications Manager at (480) 792-4150.

Please list the following information, and use this outline to provide us with your comments about this document.

To:	Technical Publications Manager	Total Pages Sent
RE:	Reader Response	
Fron	n: Name	
	Company	
	City / State / ZIP / Country	
	Telephone: ()	FAX: ()
Appl	lication (optional):	
Wou	ld you like a reply?YN	
Devi	ce: PIC18F2480/2580/4480/4580	Literature Number: DS39637D
Que	stions:	
1. \	What are the best features of this docu	iment?
-		
-		
2. 1	How does this document meet your ha	rdware and software development needs?
-		
3. I	Do you find the organization of this do	cument easy to follow? If not, why?
-		
-		
4.	What additions to the document do you	u think would enhance the structure and subject?
-		
5. ¹	What deletions from the document cou	Id be made without affecting the overall usefulness?
0.		
-		
6. I	Is there any incorrect or misleading inf	ormation (what and where)?
-		
-		
7. I	How would you improve this document	!?
-		
-		