

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	25MHz
Connectivity	CANbus, I ² C, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, HLVD, POR, PWM, WDT
Number of I/O	36
Program Memory Size	32KB (16K x 16)
Program Memory Type	FLASH
EEPROM Size	256 x 8
RAM Size	1.5К х 8
Voltage - Supply (Vcc/Vdd)	4.2V ~ 5.5V
Data Converters	A/D 11x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Through Hole
Package / Case	40-DIP (0.600", 15.24mm)
Supplier Device Package	40-PDIP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic18f4580-e-p

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Table of Contents

1.0	Device Overview	9
2.0	Guidelines for Getting Started with PIC18F Microcontrollers	
3.0	Oscillator Configurations	
4.0	Power-Managed Modes	
5.0	Reset	
6.0	Memory Organization	
7.0	Flash Program Memory	101
8.0	Data EEPROM Memory	111
9.0	8 x 8 Hardware Multiplier	117
10.0	Interrupts	119
11.0	I/O Ports	135
12.0	Timer0 Module	151
13.0	Timer1 Module	155
14.0	Timer2 Module	
	Timer3 Module	
	Capture/Compare/PWM (CCP) Modules	
17.0	Enhanced Capture/Compare/PWM (ECCP) Module	
18.0	Master Synchronous Serial Port (MSSP) Module	
19.0	Enhanced Universal Synchronous Receiver Transmitter (EUSART)	
20.0	10-Bit Analog-to-Digital Converter (A/D) Module	
21.0	Comparator Module	
22.0	Comparator Voltage Reference Module	
23.0	High/Low-Voltage Detect (HLVD)	
	ECAN Module	
25.0	Special Features of the CPU	
26.0		
27.0	Development Support	
	Electrical Characteristics	
	Packaging Information	
	endix A: Revision History	
	endix B: Device Differences	
•••	endix C: Conversion Considerations	
	endix D: Migration from Baseline to Enhanced Devices	
	endix E: Migration From Mid-Range to Enhanced Devices	
	endix F: Migration From High-End to Enhanced Devices	
	Microchip Web Site	
	omer Change Notification Service	
	omer Support	
	ler Response	
PIC1	8F2480/2580/4480/4580 Product Identification System	

	Pin Number SPDIP, SOIC QFN		Pin	Buffer	
Pin Name					Description
					PORTA is a bidirectional I/O port.
RA0/AN0 RA0 AN0	2	27	I/O I	TTL Analog	Digital I/O. Analog Input 0.
RA1/AN1 RA1 AN1	3	28	I/O I	TTL Analog	Digital I/O. Analog Input 1.
RA2/AN2/VREF- RA2 AN2 VREF-	4	1	I/O I I	TTL Analog Analog	Digital I/O. Analog Input 2. A/D reference voltage (low) input.
RA3/AN3/Vref+ RA3 AN3 Vref+	5	2	I/O I I	TTL Analog Analog	Digital I/O. Analog Input 3. A/D reference voltage (high) input.
RA4/T0CKI RA4 T0CKI	6	3	I/O I	TTL ST	Digital I/O. Timer0 external clock input.
RA5/AN4/SS/ HLVDIN RA5 AN4 SS HLVDIN RA6	7	4	I/O I I I	TTL Analog TTL Analog	Digital I/O. Analog Input 4. SPI slave select input. High/Low-Voltage Detect input. See the OSC2/CLKO/RA6 pin.
RA7					See the OSC1/CLKI/RA7 pin.

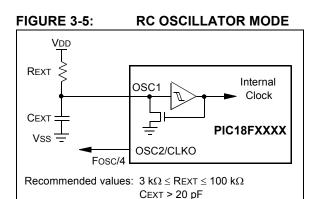
TABLE 1-2:	PIC18F2480/2580 PINOUT I/O DESCRIPTIONS (CONTINUED)

ST = Schmitt Trigger input with CMOS levels

 $I^2C = I^2C^{TM}/SMBus$ input buffer

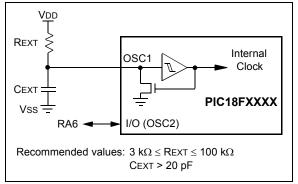
L = Input Ρ = Power

3.4 RC Oscillator


For timing insensitive applications, the "RC" and "RCIO" device options offer additional cost savings. The actual oscillator frequency is a function of several factors:

- supply voltage
- values of the external resistor (REXT) and capacitor (CEXT)
- operating temperature

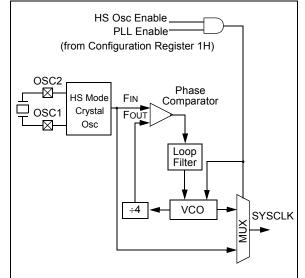
Given the same device, operating voltage and temperature and component values, there will also be unit-to-unit frequency variations. These are due to factors such as:


- normal manufacturing variation
- difference in lead frame capacitance between package types (especially for low CEXT values)
- variations within the tolerance of limits of $\ensuremath{\mathsf{REXT}}$ and $\ensuremath{\mathsf{CEXT}}$

In the RC Oscillator mode, the oscillator frequency divided by 4 is available on the OSC2 pin. This signal may be used for test purposes or to synchronize other logic. Figure 3-5 shows how the R/C combination is connected.

The RCIO Oscillator mode (Figure 3-6) functions like the RC mode, except that the OSC2 pin becomes an additional general purpose I/O pin. The I/O pin becomes bit 6 of PORTA (RA6).

3.5 PLL Frequency Multiplier


A Phase Locked Loop (PLL) circuit is provided as an option for users who wish to use a lower frequency oscillator circuit or to clock the device up to its highest rated frequency from a crystal oscillator. This may be useful for customers who are concerned with EMI due to high-frequency crystals or users who require higher clock speeds from an internal oscillator.

3.5.1 HSPLL OSCILLATOR MODE

The HSPLL mode makes use of the HS mode oscillator for frequencies up to 10 MHz. A PLL then multiplies the oscillator output frequency by 4 to produce an internal clock frequency up to 40 MHz.

The PLL is only available to the crystal oscillator when the FOSC<3:0> Configuration bits are programmed for HSPLL mode (= 0110).

FIGURE 3-7: PLL BLOCK DIAGRAM (HS MODE)

3.5.2 PLL AND INTOSC

The PLL is also available to the internal oscillator block in selected oscillator modes. In this configuration, the PLL is enabled in software and generates a clock output of up to 32 MHz. The operation of INTOSC with the PLL is described in **Section 3.6.4 "PLL in INTOSC Modes**".

TABLE 5-4:					DITIONS FOR ALL						
Register	Applicable Devices				Power-on Reset, Brown-out Reset	WDT I RESET In:	,	Wake-up via WDT or Interrupt			
RXB1SIDH	2480	2580	4480	4580	XXXX XXXX	นนนน	นนนน	սսսս	นนนน		
RXB1CON	2480	2580	4480	4580	000- 0000	000-	0000	uuu-	uuuu		
TXB0D7	2480	2580	4480	4580	XXXX XXXX	սսսս	uuuu	uuuu	uuuu		
TXB0D6	2480	2580	4480	4580	XXXX XXXX	սսսս	uuuu	uuuu	uuuu		
TXB0D5	2480	2580	4480	4580	XXXX XXXX	սսսս	นนนน	սսսս	uuuu		
TXB0D4	2480	2580	4480	4580	XXXX XXXX	սսսս	uuuu	uuuu	uuuu		
TXB0D3	2480	2580	4480	4580	XXXX XXXX	սսսս	uuuu	uuuu	uuuu		
TXB0D2	2480	2580	4480	4580	XXXX XXXX	นนนน	นนนน	սսսս	uuuu		
TXB0D1	2480	2580	4480	4580	XXXX XXXX	սսսս	uuuu	uuuu	uuuu		
TXB0D0	2480	2580	4480	4580	XXXX XXXX	սսսս	uuuu	uuuu	uuuu		
TXB0DLC	2480	2580	4480	4580	-x xxxx	-u	uuuu	-u	uuuu		
TXB0EIDL	2480	2580	4480	4580	XXXX XXXX	սսսս	นนนน	սսսս	uuuu		
TXB0EIDH	2480	2580	4480	4580	XXXX XXXX	սսսս	นนนน	-uuu	uuuu		
TXB0SIDL	2480	2580	4480	4580	XXX- X-XX	uuu-	u-uu	uuu-	u-uu		
TXB0SIDH	2480	2580	4480	4580	XXXX XXXX	սսսս	นนนน	սսսս	uuuu		
TXB0CON	2480	2580	4480	4580	0000 0-00	0000	0-00	uuuu	u-uu		
TXB1D7	2480	2580	4480	4580	XXXX XXXX	սսսս	uuuu	սսսս	uuuu		
TXB1D6	2480	2580	4480	4580	XXXX XXXX	սսսս	นนนน	սսսս	uuuu		
TXB1D5	2480	2580	4480	4580	XXXX XXXX	սսսս	นนนน	սսսս	uuuu		
TXB1D4	2480	2580	4480	4580	XXXX XXXX	սսսս	uuuu	uuuu	uuuu		
TXB1D3	2480	2580	4480	4580	XXXX XXXX	սսսս	นนนน	սսսս	uuuu		
TXB1D2	2480	2580	4480	4580	XXXX XXXX	սսսս	uuuu	uuuu	uuuu		
TXB1D1	2480	2580	4480	4580	XXXX XXXX	սսսս	uuuu	սսսս	uuuu		
TXB1D0	2480	2580	4480	4580	XXXX XXXX	սսսս	uuuu	սսսս	uuuu		
TXB1DLC	2480	2580	4480	4580	-x xxxx	-u	นนนน	-u	uuuu		
TXB1EIDL	2480	2580	4480	4580	XXXX XXXX	սսսս	uuuu	սսսս	uuuu		
TXB1EIDH	2480	2580	4480	4580	XXXX XXXX	սսսս	uuuu	սսսս	uuuu		
TXB1SIDL	2480	2580	4480	4580	XXX- X-XX	uuu-	u-uu	uuu-	uu-u		
TXB1SIDH	2480	2580	4480	4580	XXXX XXXX	սսսս	uuuu	-uuu	uuuu		
TXB1CON	2480	2580	4480	4580	0000 0-00	0000	0-00	սսսս	u-uu		
TXB2D7	2480	2580	4480	4580	XXXX XXXX	นนนน	นนนน	Ouuu	uuuu		

TABLE 5-4: INITIALIZATION CONDITIONS FOR ALL REGISTERS (CONTINUED)

Legend: u = unchanged, x = unknown, - = unimplemented bit, read as '0', q = value depends on condition. Shaded cells indicate conditions do not apply for the designated device.

Note 1: One or more bits in the INTCONx or PIRx registers will be affected (to cause wake-up).

2: When the wake-up is due to an interrupt and the GIEL or GIEH bit is set, the PC is loaded with the interrupt vector (0008h or 0018h).

3: When the wake-up is due to an interrupt and the GIEL or GIEH bit is set, the TOSU, TOSH and TOSL are updated with the current value of the PC. The STKPTR is modified to point to the next location in the hardware stack.

4: See Table 5-3 for Reset value for specific condition.

5: Bits 6 and 7 of PORTA, LATA and TRISA are enabled, depending on the oscillator mode selected. When not enabled as PORTA pins, they are disabled and read '0'.

6: This register reads all '0's until ECAN[™] technology is set up in Mode 1 or Mode 2.

TABLE 6-1:SPECIAL FUNCTION REGISTER MAP FOR
PIC18F2480/2580/4480/4580 DEVICES (CONTINUED)

Address	Name	Address	Name	Address	Name	Address	Name
E7Fh	CANCON_RO4	E6Fh	CANCON_RO5	E5Fh	CANCON_RO6	E4Fh	CANCON_RO7
E7Eh	CANSTAT_RO4	E6Eh	CANSTAT_RO5	E5Eh	CANSTAT_RO6	E4Eh	CANSTAT_R07
E7Dh	B5D7 ⁽²⁾	E6Dh	B4D7 ⁽²⁾	E5Dh	B3D7 ⁽²⁾	E4Dh	B2D7 ⁽²⁾
E7Ch	B5D6 ⁽²⁾	E6Ch	B4D6 ⁽²⁾	E5Ch	B3D6 ⁽²⁾	E4Ch	B2D6 ⁽²⁾
E7Bh	B5D5 ⁽²⁾	E6Bh	B4D5 ⁽²⁾	E5Bh	B3D5 ⁽²⁾	E4Bh	B2D5 ⁽²⁾
E7Ah	B5D4 ⁽²⁾	E6Ah	B4D4 ⁽²⁾	E5Ah	B3D4 ⁽²⁾	E4Ah	B2D4 ⁽²⁾
E79h	B5D3 ⁽²⁾	E69h	B4D3 ⁽²⁾	E59h	B3D3 ⁽²⁾	E49h	B2D3 ⁽²⁾
E78h	B5D2 ⁽²⁾	E68h	B4D2 ⁽²⁾	E58h	B3D2 ⁽²⁾	E48h	B2D2 ⁽²⁾
E77h	B5D1 ⁽²⁾	E67h	B4D1 ⁽²⁾	E57h	B3D1 ⁽²⁾	E47h	B2D1 ⁽²⁾
E76h	B5D0 ⁽²⁾	E66h	B4D0 ⁽²⁾	E56h	B3D0 ⁽²⁾	E46h	B2D0 ⁽²⁾
E75h	B5DLC ⁽²⁾	E65h	B4DLC ⁽²⁾	E55h	B3DLC ⁽²⁾	E45h	B2DLC ⁽²⁾
E74h	B5EIDL ⁽²⁾	E64h	B4EIDL ⁽²⁾	E54h	B3EIDL ⁽²⁾	E44h	B2EIDL ⁽²⁾
E73h	B5EIDH ⁽²⁾	E63h	B4EIDH ⁽²⁾	E53h	B3EIDH ⁽²⁾	E43h	B2EIDH ⁽²⁾
E72h	B5SIDL ⁽²⁾	E62h	B4SIDL ⁽²⁾	E52h	B3SIDL ⁽²⁾	E42h	B2SIDL ⁽²⁾
E71h	B5SIDH ⁽²⁾	E61h	B4SIDH ⁽²⁾	E51h	B3SIDH ⁽²⁾	E41h	B2SIDH ⁽²⁾
E70h	B5CON ⁽²⁾	E60h	B4CON ⁽²⁾	E50h	B3CON ⁽²⁾	E40h	B2CON ⁽²⁾
E3Fh	CANCON_RO8	E2Fh	CANCON_RO9	E1Fh		E0Fh	—
E3Eh	CANSTAT_RO8	E2Eh	CANSTAT_RO9	E1Eh		E0Eh	—
E3Dh	B1D7 ⁽²⁾	E2Dh	B0D7 ⁽²⁾	E1Dh		E0Dh	_
E3Ch	B1D6 ⁽²⁾	E2Ch	B0D6 ⁽²⁾	E1Ch		E0Ch	_
E3Bh	B1D5 ⁽²⁾	E2Bh	B0D5 ⁽²⁾	E1Bh	_	E0Bh	_
E3Ah	B1D4 ⁽²⁾	E2Ah	B0D4 ⁽²⁾	E1Ah		E0Ah	_
E39h	B1D3 ⁽²⁾	E29h	B0D3 ⁽²⁾	E19h		E09h	_
E38h	B1D2 ⁽²⁾	E28h	B0D2 ⁽²⁾	E18h	_	E08h	_
E37h	B1D1 ⁽²⁾	E27h	B0D1 ⁽²⁾	E17h		E07h	_
E36h	B1D0 ⁽²⁾	E26h	B0D0 ⁽²⁾	E16h		E06h	_
E35h	B1DLC ⁽²⁾	E25h	B0DLC ⁽²⁾	E15h		E05h	—
E34h	B1EIDL ⁽²⁾	E24h	B0EIDL ⁽²⁾	E14h		E04h	_
E33h	B1EIDH ⁽²⁾	E23h	B0EIDH ⁽²⁾	E13h	—	E03h	_
E32h	B1SIDL ⁽²⁾	E22h	B0SIDL ⁽²⁾	E12h	_	E02h	_
E31h	B1SIDH ⁽²⁾	E21h	B0SIDH ⁽²⁾	E11h	—	E01h	_
E30h	B1CON ⁽²⁾	E20h	B0CON ⁽²⁾	E10h	_	E00h	—

Note 1: Registers available only on PIC18F4X80 devices; otherwise, the registers read as '0'.

2: When any TX_ENn bit in RX_TX_SELn is set, then the corresponding bit in this register has transmit properties.

3: This is not a physical register.

6.5 Program Memory and the Extended Instruction Set

The operation of program memory is unaffected by the use of the extended instruction set.

Enabling the extended instruction set adds eight additional two-word commands to the existing PIC18 instruction set: ADDFSR, ADDULNK, CALLW, MOVSF, MOVSS, PUSHL, SUBFSR and SUBULNK. These instructions are executed as described in Section 6.2.4 "Two-Word Instructions".

6.6 Data Memory and the Extended Instruction Set

Enabling the PIC18 extended instruction set (XINST Configuration bit = 1) significantly changes certain aspects of data memory and its addressing. Specifically, the use of the Access Bank for many of the core PIC18 instructions is different. This is due to the introduction of a new addressing mode for the data memory space. This mode also alters the behavior of Indirect Addressing using FSR2 and its associated operands.

What does not change is just as important. The size of the data memory space is unchanged, as well as its linear addressing. The SFR map remains the same. Core PIC18 instructions can still operate in both Direct and Indirect Addressing mode; inherent and literal instructions do not change at all. Indirect Addressing with FSR0 and FSR1 also remains unchanged.

6.6.1 INDEXED ADDRESSING WITH LITERAL OFFSET

Enabling the PIC18 extended instruction set changes the behavior of Indirect Addressing using the FSR2 register pair and its associated file operands. Under the proper conditions, instructions that use the Access Bank – that is, most bit-oriented and byte-oriented – instructions – can invoke a form of Indexed Addressing using an offset specified in the instruction. This special addressing mode is known as Indexed Addressing with Literal Offset or Indexed Literal Offset mode. When using the extended instruction set, this addressing mode requires the following:

- The use of the Access Bank is forced ('a' = 0); and
- The file address argument is less than or equal to 5Fh.

Under these conditions, the file address of the instruction is not interpreted as the lower byte of an address (used with the BSR in Direct Addressing), or as an 8-bit address in the Access Bank. Instead, the value is interpreted as an offset value to an Address Pointer, specified by FSR2. The offset and the contents of FSR2 are added to obtain the target address of the operation.

6.6.2 INSTRUCTIONS AFFECTED BY INDEXED LITERAL OFFSET MODE

Any of the core PIC18 instructions that can use Direct Addressing are potentially affected by the Indexed Literal Offset Addressing mode. This includes all byte-oriented and bit-oriented instructions, or almost one-half of the standard PIC18 instruction set. Instructions that only use Inherent or Literal Addressing modes are unaffected.

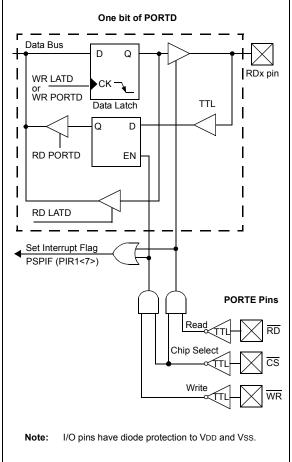
Additionally, byte-oriented and bit-oriented instructions are not affected if they use the Access Bank (Access RAM bit is '1'), or include a file address of 60h or above. Instructions meeting these criteria will continue to execute as before. A comparison of the different possible addressing modes when the extended instruction set is enabled in shown in Figure 6-9.

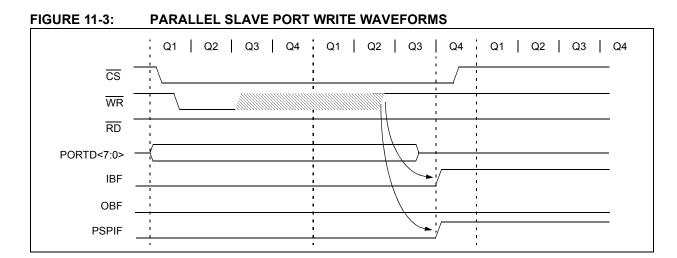
Those who desire to use byte-oriented or bit-oriented instructions in the Indexed Literal Offset mode should note the changes to assembler syntax for this mode. This is described in more detail in **Section 26.2.1** "Extended Instruction Syntax".

11.6 Parallel Slave Port

Note:	The Parallel Slave Port is only available on
	PIC18F4X80 devices.

In addition to its function as a general I/O port, PORTD can also operate as an 8-bit wide Parallel Slave Port (PSP) or microprocessor port. PSP operation is controlled by the 4 upper bits of the TRISE register (Register 11-1). Setting control bit, PSPMODE (TRISE<4>), enables PSP operation, as long as the Enhanced CCP module is not operating in dual output or quad output PWM mode. In Slave mode, the port is asynchronously readable and writable by the external world.


The PSP can directly interface to an 8-bit microprocessor data bus. The external microprocessor can read or write the PORTD latch as an 8-bit latch. Setting the control bit PSPMODE enables the PORTE I/O pins to become control inputs for the microprocessor port. When set, port pin RE0 is the RD input, RE1 is the WR input and RE2 is the CS (Chip Select) input. For this functionality, the corresponding data direction bits of the TRISE register (TRISE<2:0>) must be configured as inputs (set). The A/D port Configuration bits, PFCG<3:0> (ADCON1<3:0>), must also be set to '1010'.


A write to the PSP occurs when both the \overline{CS} and \overline{WR} lines are first detected low and ends when either are detected high. The PSPIF and IBF flag bits are both set when the write ends.

A read from the PSP occurs when both the \overline{CS} and \overline{RD} lines are first detected low. The data in PORTD is read out and the OBF bit is set. If the user writes new data to PORTD to set OBF, the data is immediately read out; however, the OBF bit is not set.

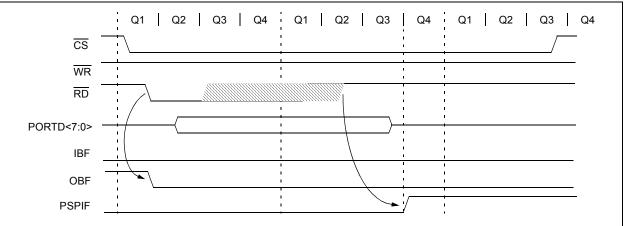

When either the \overline{CS} or \overline{RD} lines are detected high, the PORTD pins return to the input state and the PSPIF bit is set. User applications should wait for PSPIF to be set before servicing the PSP; when this happens, the IBF and OBF bits can be polled and the appropriate action taken. The timing for the control signals in Write and Read modes is shown in Figure 11-3 and Figure 11-4, respectively.

FIGURE 11-2: PORTD AND PORTE BLOCK DIAGRAM (PARALLEL SLAVE PORT)

FIGURE 11-4: PARALLEL SLAVE PORT READ WAVEFORMS

TABLE 11-11: REGISTERS ASSOCIATED WITH PARALLEL SLAVE PORT

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Reset Values on Page:
PORTD ⁽¹⁾	RD7	RD6	RD5	RD4	RD3	RD2	RD1	RD0	58
LATD ⁽¹⁾	LATD Output	ut Latch Regis	ster						58
TRISD ⁽¹⁾	PORTD Da	ta Direction R	egister						58
PORTE ⁽¹⁾	_		_	_	RE3	RE2	RE1	RE0	58
LATE ⁽¹⁾	_	—	_	_	_	LATE Outpu	ut Latch Reg	58	
TRISE ⁽¹⁾	IBF	OBF	IBOV	PSPMODE	_	TRISE2	TRISE1	TRISE0	58
INTCON	GIE/GIEH	PEIE/GIEL	TMR0IE	INTOIE	RBIE	TMR0IF	INT0IF	RBIF	55
PIR1	PSPIF	ADIF	RCIF	TXIF	SSPIF	CCP1IF	TMR2IF	TMR1IF	58
PIE1	PSPIE	ADIE	RCIE	TXIE	SSPIE	CCP1IE	TMR2IE	TMR1IE	58
IPR1	PSPIP	ADIP	RCIP	TXIP	SSPIP	CCP1IP	TMR2IP	TMR1IP	58
ADCON1			VCFG1	VCFG0	PCFG3	PCFG2	PCFG1	PCFG0	56
CMCON ⁽¹⁾	C2OUT	C10UT	C2INV	C1INV	CIS	CM2	CM1	CM0	57

Legend: — = unimplemented, read as '0'. Shaded cells are not used by the Parallel Slave Port.

Note 1: These registers are available on PIC18F4X80 devices only.

	ECCP1CON <7:6>	SIGNAL	0 Duty Cycle	→	PR2 + 1
	1.02			Period —	
00	(Single Output)	P1A Modulated	Delay ⁽¹⁾	Delay ⁽¹⁾	
		P1A Modulated			- - - -
LO	(Half-Bridge)	P1B Modulated			
		P1A Active	 		
)1	(Full-Bridge,	P1B Inactive		1 1 1	- - - -
JT	Forward)	P1C Inactive			1
		P1D Modulated	=	 	
		P1A Inactive	_ !		
11	(Full-Bridge,	P1B Modulated			
L	Reverse)	P1C Active		i I I	
		P1D Inactive	_ ' _ '		1 1 1

FIGURE 17-2: PWM OUTPUT RELATIONSHIPS (ACTIVE-HIGH STATE)

FIGURE 17-3: PWM OUTPUT RELATIONSHIPS (ACTIVE-LOW STATE)

	ECCP1CON <7:6>	SIGNAL	0		-▶	PR2 + 1
	1.0				– Period ––––	
00	(Single Output)	P1A Modulated] '		I
		P1A Modulated		Delay ⁽¹⁾	Delay ⁽¹⁾	1 1 1
10	(Half-Bridge)	P1B Modulated				
		P1A Active		1 1	1 1 1	1 1 1
01	(Full-Bridge, Forward)	P1B Inactive		1 1 1	1 1 1	1 1 1
	i orward)	P1C Inactive		1 1		
		P1D Modulated		ļ		
		P1A Inactive		1 1 1		
11	(Full-Bridge, Reverse)	P1B Modulated		1		I
	Reverse)	P1C Active		1 + 1	1 	
		P1D Inactive		1 1 1	 I I	

Relationships:

• Period = 4 * Tosc * (PR2 + 1) * (TMR2 Prescale Value)

• Duty Cycle = Tosc * (ECCPR1L<7:0>:ECCP1CON<5:4>) * (TMR2 Prescale Value)

• Delay = 4 * Tosc * (ECCP1DEL<6:0>)

Note 1: Dead-band delay is programmed using the ECCP1DEL register (Section 17.4.6 "Programmable Dead-Band Delay").

17.4.9 SETUP FOR PWM OPERATION

The following steps should be taken when configuring the ECCP module for PWM operation:

- 1. Configure the PWM pins, P1A and P1B (and P1C and P1D, if used), as inputs by setting the corresponding TRIS bits.
- 2. Set the PWM period by loading the PR2 register.
- Configure the ECCP1 module for the desired PWM mode and configuration by loading the ECCP1CON register with the appropriate values:
 - Select one of the available output configurations and direction with the EPWM1M<1:0> bits.
 - Select the polarities of the PWM output signals with the ECCP1M<3:0> bits.
- 4. Set the PWM duty cycle by loading the ECCPR1L register and ECCP1CON<5:4> bits.
- 5. For Half-Bridge Output mode, set the dead-band delay by loading ECCP1DEL<6:0> with the appropriate value.
- 6. If auto-shutdown operation is required, load the ECCP1AS register:
 - Select the auto-shutdown sources using the ECCPAS<2:0> bits.
 - Select the shutdown states of the PWM output pins using PSSAC<1:0> and PSSBD<1:0> bits.
 - Set the ECCPASE bit (ECCP1AS<7>).
 - Configure the comparators using the CMCON register.
 - Configure the comparator inputs as analog inputs.

- 7. If auto-restart operation is required, set the PRSEN bit (ECCP1DEL<7>).
- 8. Configure and start TMR2:
 - Clear the TMR2 interrupt flag bit by clearing the TMR2IF bit (PIR1<1>).
 - Set the TMR2 prescale value by loading the T2CKPS bits (T2CON<1:0>).
 - Enable Timer2 by setting the TMR2ON bit (T2CON<2>).
- 9. Enable PWM outputs after a new PWM cycle has started:
 - Wait until TMRn overflows (TMRnIF bit is set).
 - Enable the ECCP1/P1A, P1B, P1C and/or P1D pin outputs by clearing the respective TRIS bits.
 - Clear the ECCPASE bit (ECCP1AS<7>).

17.4.10 EFFECTS OF A RESET

Both Power-on Reset and subsequent Resets will force all ports to Input mode and the CCP registers to their Reset states.

This forces the Enhanced CCP module to reset to a state compatible with the standard CCP module.

EXAMPLE 19-1: CALCULATING BAUD RATE ERROR

For a device with Fosc	c of	16 MHz, desired baud rate of 9600, Asynchronous mode, 8-bit BRG:
Desired Baud Rate	=	Fosc/(64 ([SPBRGH:SPBRG] + 1)
Solving for SPBRGH:S	SPB	RG:
Х	=	((Fosc/Desired Baud Rate)/64) – 1
	=	((1600000/9600)/64) – 1
	=	[25.042] = 25
Calculated Baud Rate	=	16000000/(64 (25 + 1))
	=	9615
Error	=	(Calculated Baud Rate - Desired Baud Rate)/Desired Baud Rate
	=	(9615 - 9600)/9600 = 0.16%
	= =	[25.042] = 25 16000000/(64 (25 + 1)) 9615 (Calculated Baud Rate – Desired Baud Rate)/Desired Baud Rate

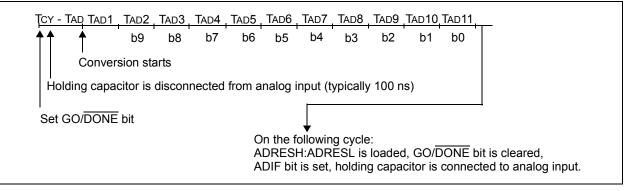
TABLE 19-2: REGISTERS ASSOCIATED WITH BAUD RATE GENERATOR

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Reset Values on Page:	
TXSTA	CSRC	TX9	TXEN	SYNC	SENDB	BRGH	TRMT	TX9D	57	
RCSTA	SPEN	RX9	SREN	CREN	ADDEN	FERR	OERR	RX9D	57	
BAUDCON	ABDOVF	RCIDL	_	SCKP	BRG16	_	WUE	ABDEN	57	
SPBRGH	EUSART B	EUSART Baud Rate Generator Register High Byte								
SPBRG	SPBRG EUSART Baud Rate Generator Register Low Byte									
SPBRG				<u> </u>	Byte				57	

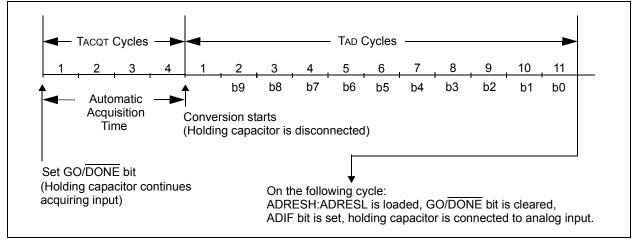
Legend: — = unimplemented, read as '0'. Shaded cells are not used by the BRG.

20.6 A/D Conversions

Figure 20-3 shows the operation of the A/D Converter after the GO/DONE bit has been set and the ACQT<2:0> bits are cleared. A conversion is started after the following instruction to allow entry into Sleep mode before the conversion begins.


Figure 20-4 shows the operation of the A/D Converter after the GO/DONE bit has been set and the ACQT<2:0> bits are set to '010' and selecting a 4 TAD acquisition time before the conversion starts.

Clearing the GO/DONE bit during a conversion will abort the current conversion. The A/D Result register pair will NOT be updated with the partially completed A/D conversion sample. This means the ADRESH:ADRESL registers will continue to contain the value of the last completed conversion (or the last value written to the ADRESH:ADRESL registers).


After the A/D conversion is completed or aborted, a 2 TAD wait is required before the next acquisition can be started. After this wait, acquisition on the selected channel is automatically started.

Note: The GO/DONE bit should **NOT** be set in the same instruction that turns on the A/D.

FIGURE 20-3: A/D CONVERSION TAD CYCLES (ACQT<2:0> = 000, TACQ = 0)

FIGURE 20-4: A/D CONVERSION TAD CYCLES (ACQT<2:0> = 010, TACQ = 4 TAD)

REGISTER 24-21: RXERRCNT: RECEIVE ERROR COUNT REGISTER

R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0
REC7	REC6	REC5	REC4	REC3	REC2	REC1	REC0
bit 7							bit 0
l egend.							

Legena.				
R = Readable bit W = Writable bit		U = Unimplemented bit, read as '0'		
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown	

bit 7-0 **REC<7:0>:** Receive Error Counter bits

This register contains the receive error value as defined by the CAN specifications. When RXERRCNT > 127, the module will go into an error-passive state. RXERRCNT does not have the ability to put the module in "bus-off" state.

EXAMPLE 24-5: READING A CAN MESSAGE

; Need to read a pending message from RXB0 buffer. ; To receive any message, filter, mask and RXM1:RXM0 bits in RXB0CON registers must be ; programmed correctly. ; Make sure that there is a message pending in RXBO. BTFSS RXBOCON, RXFUL ; Does RXB0 contain a message? BRA NoMessage ; No. Handle this situation... ; We have verified that a message is pending in RXBO buffer. ; If this buffer can receive both Standard or Extended Identifier messages, ; identify type of message received. ; Is this Extended Identifier? BTFSS RXBOSIDL, EXID BRA StandardMessage ; No. This is Standard Identifier message. ; Yes. This is Extended Identifier message. ; Read all 29-bits of Extended Identifier message. . . . ; Now read all data bytes MOVFF RXB0DO, MY DATA BYTE1 . . . ; Once entire message is read, mark the RXBO that it is read and no longer FULL. BCF RXB0CON, RXFUL ; This will allow CAN Module to load new messages ; into this buffer. . . .

$\label{eq:register24-26:BnSIDL: TX/RX BUFFER n STANDARD IDENTIFIER REGISTERS, \\ LOW BYTE IN RECEIVE MODE [0 \le n \le 5, TXnEN (BSEL0<n>) = 0]^{(1)}$

R-x	R-x	R-x	R-x	R-x	U-0	R-x	R-x
SID2	SID1	SID0	SRR	EXID		EID17	EID16
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit	, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 7-5	SID<2:0>: Standard Identifier bits (if EXID = 0)
	Extended Identifier bits, EID<20:18> (if EXID = 1).
bit 4	SRR: Substitute Remote Transmission Request bit
	This bit is always '1' when EXID = 1 or equal to the value of RXRTRRO (BnCON<5>) when EXID = 0.
bit 3	EXID: Extended Identifier Enable bit
	 1 = Received message is an extended identifier frame (SID<10:0> are EID<28:18>) 0 = Received message is a standard identifier frame
bit 2	Unimplemented: Read as '0'
bit 1-0	EID<17:16>: Extended Identifier bits

Note 1: These registers are available in Mode 1 and 2 only.

$\label{eq:register24-27:BnSiDL: TX/RX BUFFER n STANDARD IDENTIFIER REGISTERS, \\ LOW BYTE IN RECEIVE MODE [0 \le n \le 5, TXnEN (BSEL0<n>) = 1]^{(1)}$

R/W-x	R/W-x	R/W-x	U-0	R/W-x	U-0	R/W-x	R/W-x
SID2	SID1	SID0	—	EXIDE	—	EID17	EID16
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	l as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 7-5	SID<2:0>: Standard Identifier bits (if EXIDE = 0)
	Extended Identifier bits, EID<20:18> (if EXIDE = 1).
bit 4	Unimplemented: Read as '0'
bit 3	EXIDE: Extended Identifier Enable bit
	 1 = Received message is an extended identifier frame (SID<10:0> are EID<28:18>) 0 = Received message is a standard identifier frame
bit 2	Unimplemented: Read as '0'
bit 1-0	EID<17:16>: Extended Identifier bits

Note 1: These registers are available in Mode 1 and 2 only.

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
FIL15_1	FIL15_0	FIL14_1	FIL14_0	FIL13_1	FIL13_0	FIL12_1	FIL12_0		
bit 7							bit C		
Legend:									
R = Readable	e bit	W = Writable	bit	U = Unimpler	mented bit, read	l as '0'			
-n = Value at	POR	'1' = Bit is set	t	'0' = Bit is cle	ared	x = Bit is unki	nown		
bit 7-6	FIL15_<1:0>:	: Filter 15 Sele	ct bits 1 and 0						
		11 = No mask							
		10 = Filter 15 01 = Acceptance Mask 1							
	00 = Accepta								
bit 5-4	FIL14_<1:0>:	FIL14_<1:0>: Filter 14 Select bits 1 and 0							
	11 = No masl	11 = No mask							
		10 = Filter 15							
	01 = Acceptance Mask 1 00 = Acceptance Mask 0								
bit 3-2	•	: Filter 13 Sele	ct bits 1 and 0						
	11 = No masl								
	10 = Filter 15								
	01 = Accepta								
h:4 0	00 = Accepta								
bit 1-0	11 = No mas	: Filter 12 Sele	ct bits 1 and 0						
	10 = Filter 15	-							
	01 = Accepta								
	00 = Accepta	nce Mask 0							

REGISTER 24-51: MSEL3: MASK SELECT REGISTER 3⁽¹⁾

Note 1: This register is available in Mode 1 and 2 only.

24.7 Message Reception

24.7.1 RECEIVING A MESSAGE

Of all receive buffers, the MAB is always committed to receiving the next message from the bus. The MCU can access one buffer while the other buffer is available for message reception or holding a previously received message.

Note: The entire contents of the MAB are moved into the receive buffer once a message is accepted. This means that regardless of the type of identifier (standard or extended) and the number of data bytes received, the entire receive buffer is overwritten with the MAB contents. Therefore, the contents of all registers in the buffer must be assumed to have been modified when any message is received.

When a message is moved into either of the receive buffers, the associated RXFUL bit is set. This bit must be cleared by the MCU when it has completed processing the message in the buffer in order to allow a new message to be received into the buffer. This bit provides a positive lockout to ensure that the firmware has finished with the message before the module attempts to load a new message into the receive buffer. If the receive interrupt is enabled, an interrupt will be generated to indicate that a valid message has been received.

Once a message is loaded into any matching buffer, user firmware may determine exactly what filter caused this reception by checking the filter hit bits in the RXBnCON or BnCON registers. In Mode 0, FILHIT<3:0> of RXBnCON serve as filter hit bits. In Mode 1 and 2, FILHIT<4:0> bits of BnCON serve as filter hit bits. The same registers also indicate whether the current message is an RTR frame or not. A received message is considered a standard identifier message if the EXID bit in the RXBnSIDL or the BnSIDL register is cleared. Conversely, a set EXID bit indicates an extended identifier message. If the received message is a standard identifier message, user firmware needs to read the SIDL and SIDH registers. In the case of an extended identifier message, firmware should read the SIDL, SIDH, EIDL and EIDH registers. If the RXBnDLC or BnDLC register contain non-zero data count, user firmware should also read the corresponding number of data bytes by accessing the RXBnDm or the BnDm registers. When a received message is an RTR and if the current buffer is not configured for automatic RTR handling, user firmware must take appropriate action and respond manually.

Each receive buffer contains RXM bits to set special Receive modes. In Mode 0, RXM<1:0> bits in RXBnCON define a total of four Receive modes. In Mode 1 and 2, RXM1 bit, in combination with the EXID mask and filter bit, define the same four receive modes.

Normally, these bits are set to '00' to enable reception of all valid messages as determined by the appropriate acceptance filters. In this case, the determination of whether or not to receive standard or extended messages is determined by the EXIDE bit in the acceptance filter register. In Mode 0, if the RXM bits are set to '01' or '10', the receiver will accept only messages with standard or extended identifiers, respectively. If an acceptance filter has the EXIDE bit set such that it does not correspond with the RXM mode, that acceptance filter is rendered useless. In Mode 1 and 2, setting EXID in the SIDL Mask register will ensure that only standard or extended identifiers are received. These two modes of RXM bits can be used in systems where it is known that only standard or extended messages will be on the bus. If the RXM bits are set to '11' (RXM1 = 1 in Mode 1 and 2), the buffer will receive all messages regardless of the values of the acceptance filters. Also, if a message has an error before the end of frame, that portion of the message assembled in the MAB before the error frame will be loaded into the buffer. This mode may serve as a valuable debugging tool for a given CAN network. It should not be used in an actual system environment as the actual system will always have some bus errors and all nodes on the bus are expected to ignore them.

In Mode 1 and 2, when a programmable buffer is configured as a transmit buffer and one or more acceptance filters are associated with it, all incoming messages matching this acceptance filter criteria will be discarded. To avoid this scenario, user firmware must make sure that there are no acceptance filters associated with a buffer configured as a transmit buffer.

24.7.2 RECEIVE PRIORITY

When in Mode 0, RXB0 is the higher priority buffer and has two message acceptance filters associated with it. RXB1 is the lower priority buffer and has four acceptance filters associated with it. The lower number of acceptance filters makes the match on RXB0 more restrictive and implies a higher priority for that buffer. Additionally, the RXB0CON register can be configured such that if RXB0 contains a valid message and another valid message is received, an overflow error will not occur and the new message will be moved into RXB1 regardless of the acceptance criteria of RXB1. There are also two programmable acceptance filter masks available, one for each receive buffer (see Section 24.5 "CAN Message Buffers").

In Mode 1 and 2, there are a total of 16 acceptance filters available and each can be dynamically assigned to any of the receive buffers. A buffer with a lower number has higher priority. Given this, if an incoming message matches with two or more receive buffer acceptance criteria, the buffer with the lower number will be loaded with that message.

REGISTER 25-1: CONFIG1H: CONFIGURATION REGISTER 1 HIGH (BYTE ADDRESS 300001h)

R/P-0	R/P-0	U-0	U-0	R/P-0	R/P-1	R/P-1	R/P-1			
IESO	FCMEN	_		FOSC3	FOSC2	FOSC1	FOSC0			
bit 7			·			•	bit 0			
Legend:										
R = Readab	le bit	P = Program	nable bit	U = Unimpler	nented bit, read	l as '0'				
-n = Value w	hen device is unp	programmed		u = Unchange	ed from prograr	nmed state				
bit 7	IESO: Interna	I/External Osc	illator Switcho	ver bit						
		Switchover me								
	0 = Oscillator	Switchover me	ode disabled							
bit 6	FCMEN: Fail-	FCMEN: Fail-Safe Clock Monitor Enable bit								
	1 = Fail-Safe Clock Monitor enabled									
		Clock Monitor								
bit 5-4	Unimplemen	ted: Read as '	0'							
bit 3-0	FOSC<3:0>:	Oscillator Sele	ction bits							
	11xx = External RC oscillator, CLKO function on RA6									
		101x = External RC oscillator, CLKO function on RA6 1001 = Internal oscillator block, CLKO function on RA6, port function on RA7								
						NRA7				
	1000 = Internal oscillator block, port function on RA6 and RA7 0111 = External RC oscillator, port function on RA6									
	0111 = External RC oscillator, point initial of RAG0110 = HS oscillator, PLL enabled (Clock Frequency = 4 x FOSC1)									
	0101 = EC oscillator, port function on RA6									
		scillator, CLKO								
		nal RC oscillat	or, CLKO fund	tion on RA6						
	0010 = HS os 0001 = XT os									
	0001 = XT os $0000 = LP $ os									

IORLW	Inclusive	Inclusive OR Literal with W					
Syntax:	IORLW k						
Operands:	$0 \le k \le 255$	5					
Operation: (W) .OR. $k \rightarrow W$							
Status Affected:	N, Z						
Encoding:	0000	1001	kkkk	kkkk			
Description:	The conter eight-bit lite in W.						
Words:	1						
Cycles:	1	1					
Q Cycle Activity:							
Q1	Q2	Q3	3	Q4			
Decode	Read literal 'k'	Proce Data		rite to W			
Example:	IORLW	35h					
Before Instruction W = 9Ah							

IORWF	ORWF Inclusive OR W with f						
Syntax:	IORWF f	{,d {,a}}					
Operands:	$0 \le f \le 255$ $d \in [0,1]$ $a \in [0,1]$	d ∈ [0,1]					
Operation:	(W) .OR. (f) \rightarrow dest						
Status Affected:	N, Z						
Encoding:	0001	00da ff	ff ffff				
Description:	J						
		set Mode" for	details.				
Words:	1						
Cycles:	1	1					
Q Cycle Activity:							
Q1	Q2	Q3	Q4				
Decode	Read register 'f'	Process Data	Write to destination				

Example:

imple:	IORWF	RESULT,	Ο,	1						
Before Instruction	on									
RESULT = W =	= 13h = 91h									
After Instruction										
RESULT = W =	= 13h = 93h									

After Instruction BFh W =

DC Characteristics		$\begin{array}{l} \mbox{Standard Operating Conditions (unless otherwise stated)} \\ \mbox{Operating temperature } -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for industrial} \\ -40^{\circ}C \leq TA \leq +125^{\circ}C \mbox{ for extended} \end{array}$					
Param No.	Sym	Characteristic	Min	Тур†	Max	Units	Conditions
		Internal Program Memory Programming Specifications ⁽¹⁾					
D110	Vpp	Voltage on MCLR/VPP/RE3 Pin	9.00	_	13.25	V	(Note 3)
D113	IDDP	Supply Current during Programming	-	_	10	mA	
		Data EEPROM Memory					
D120	ED	Byte Endurance	100K	1M	—	E/W	-40°C to +85°C
D121	Vdrw	VDD for Read/Write	VMIN	_	5.5	V	Using EECON to read/write VMIN = Minimum operating voltage
D122	TDEW	Erase/Write Cycle Time	_	4	—	ms	
D123	TRETD	Characteristic Retention	40	—	—	Year	Provided no other specifications are violated
D124	TREF	Number of Total Erase/Write Cycles before Refresh ⁽²⁾	1M	10M	—	E/W	-40°C to +85°C
		Program Flash Memory					
D130	Eр	Cell Endurance	10K	100K	_	E/W	-40°C to +85°C
D131	Vpr	VDD for Read	VMIN	—	5.5	V	Vміn = Minimum operating voltage
D132	VIE	VDD for Block Erase	4.5	_	5.5	V	Using ICSP™ port
D132A	Viw	VDD for Externally Timed Erase or Write	4.5	—	5.5	V	Using ICSP port
D132B	Vpew	VDD for Self-Timed Write	VMIN	—	5.5	V	Vміn = Minimum operating voltage
D133	TIE	ICSP Block Erase Cycle Time	_	4	—	ms	VDD > 4.5V
D133A	Tiw	ICSP Erase or Write Cycle Time (externally timed)	1	_	_	ms	VDD > 4.5V
D133A	Tiw	Self-Timed Write Cycle Time	—	2	_	ms	
D134	TRETD	Characteristic Retention	40	100	_	Year	Provided no other specifications are violated

TABLE 28-1: MEMORY PROGRAMMING REQUIREMENTS

† Data in "Typ" column is at 5.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: These specifications are for programming the on-chip program memory through the use of table write instructions.

2: Refer to Section 8.8 "Using the Data EEPROM" for a more detailed discussion on data EEPROM endurance.

3: Required only if Single-Supply Programming is disabled.

WORLDWIDE SALES AND SERVICE

AMERICAS

Corporate Office 2355 West Chandler Blvd. Chandler, AZ 85224-6199 Tel: 480-792-7200 Fax: 480-792-7277 Technical Support: http://support.microchip.com Web Address: www.microchip.com

Atlanta Duluth, GA Tel: 678-957-9614 Fax: 678-957-1455

Boston Westborough, MA Tel: 774-760-0087 Fax: 774-760-0088

Chicago Itasca, IL Tel: 630-285-0071 Fax: 630-285-0075

Cleveland Independence, OH Tel: 216-447-0464 Fax: 216-447-0643

Dallas Addison, TX Tel: 972-818-7423 Fax: 972-818-2924

Detroit Farmington Hills, MI Tel: 248-538-2250 Fax: 248-538-2260

Kokomo Kokomo, IN Tel: 765-864-8360 Fax: 765-864-8387

Los Angeles Mission Viejo, CA Tel: 949-462-9523 Fax: 949-462-9608

Santa Clara Santa Clara, CA Tel: 408-961-6444 Fax: 408-961-6445

Toronto Mississauga, Ontario, Canada Tel: 905-673-0699 Fax: 905-673-6509

ASIA/PACIFIC

Asia Pacific Office Suites 3707-14, 37th Floor Tower 6, The Gateway Harbour City, Kowloon Hong Kong Tel: 852-2401-1200 Fax: 852-2401-3431

Australia - Sydney Tel: 61-2-9868-6733 Fax: 61-2-9868-6755

China - Beijing Tel: 86-10-8528-2100 Fax: 86-10-8528-2104

China - Chengdu Tel: 86-28-8665-5511 Fax: 86-28-8665-7889

China - Hong Kong SAR Tel: 852-2401-1200 Fax: 852-2401-3431

China - Nanjing Tel: 86-25-8473-2460

Fax: 86-25-8473-2470 China - Qingdao

Tel: 86-532-8502-7355 Fax: 86-532-8502-7205

China - Shanghai Tel: 86-21-5407-5533 Fax: 86-21-5407-5066

China - Shenyang Tel: 86-24-2334-2829 Fax: 86-24-2334-2393

China - Shenzhen Tel: 86-755-8203-2660 Fax: 86-755-8203-1760

China - Wuhan Tel: 86-27-5980-5300 Fax: 86-27-5980-5118

China - Xiamen Tel: 86-592-2388138 Fax: 86-592-2388130

China - Xian Tel: 86-29-8833-7252 Fax: 86-29-8833-7256

China - Zhuhai Tel: 86-756-3210040 Fax: 86-756-3210049

ASIA/PACIFIC

India - Bangalore Tel: 91-80-3090-4444 Fax: 91-80-3090-4080

India - New Delhi Tel: 91-11-4160-8631 Fax: 91-11-4160-8632

India - Pune Tel: 91-20-2566-1512 Fax: 91-20-2566-1513

Japan - Yokohama Tel: 81-45-471- 6166 Fax: 81-45-471-6122

Korea - Daegu Tel: 82-53-744-4301 Fax: 82-53-744-4302

Korea - Seoul Tel: 82-2-554-7200 Fax: 82-2-558-5932 or 82-2-558-5934

Malaysia - Kuala Lumpur Tel: 60-3-6201-9857 Fax: 60-3-6201-9859

Malaysia - Penang Tel: 60-4-227-8870 Fax: 60-4-227-4068

Philippines - Manila Tel: 63-2-634-9065 Fax: 63-2-634-9069

Singapore Tel: 65-6334-8870 Fax: 65-6334-8850

Taiwan - Hsin Chu Tel: 886-3-6578-300 Fax: 886-3-6578-370

Taiwan - Kaohsiung Tel: 886-7-536-4818 Fax: 886-7-536-4803

Taiwan - Taipei Tel: 886-2-2500-6610 Fax: 886-2-2508-0102

Thailand - Bangkok Tel: 66-2-694-1351 Fax: 66-2-694-1350

EUROPE

Austria - Wels Tel: 43-7242-2244-39 Fax: 43-7242-2244-393 Denmark - Copenhagen Tel: 45-4450-2828 Fax: 45-4485-2829

France - Paris Tel: 33-1-69-53-63-20 Fax: 33-1-69-30-90-79

Germany - Munich Tel: 49-89-627-144-0 Fax: 49-89-627-144-44

Italy - Milan Tel: 39-0331-742611 Fax: 39-0331-466781

Netherlands - Drunen Tel: 31-416-690399 Fax: 31-416-690340

Spain - Madrid Tel: 34-91-708-08-90 Fax: 34-91-708-08-91

UK - Wokingham Tel: 44-118-921-5869 Fax: 44-118-921-5820

03/26/09