

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Obsolete
Core Processor	PIC
Core Size	8-Bit
Speed	40MHz
Connectivity	CANbus, I ² C, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, HLVD, POR, PWM, WDT
Number of I/O	36
Program Memory Size	32KB (16K x 16)
Program Memory Type	FLASH
EEPROM Size	256 x 8
RAM Size	1.5К х 8
Voltage - Supply (Vcc/Vdd)	4.2V ~ 5.5V
Data Converters	A/D 11x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	44-VQFN Exposed Pad
Supplier Device Package	44-QFN (8x8)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic18f4580t-i-ml

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

	Pin Nu	mber	Dim	Duffer	
Pin Name	SPDIP, SOIC	QFN	Туре	Туре	Description
					PORTB is a bidirectional I/O port. PORTB can be software
					programmed for internal weak pull-ups on all inputs.
RB0/INT0/ AN10	21	18	1/0	T TI	Digital 1/0
			1/0	ST	External Interrunt 0
AN10				Analog	Analog Input 10.
RB1/INT1/AN8	22	19			
RB1			I/O	TTL	Digital I/O.
INT1			I	ST	External Interrupt 1.
AN8			I	Analog	Analog Input 8.
RB2/INT2/CANTX	23	20			
RB2			I/O	TTL	Digital I/O.
					External Interrupt 2.
	24	21	0	116	CAN bus TA.
RB3	24	21	1/0	тті	Digital I/O
CANRX			1	TTL	CAN bus RX.
RB4/KBI0/AN9	25	22			
RB4			I/O	TTL	Digital I/O.
KBI0			Ι	TTL	Interrupt-on-change pin.
AN9			I	Analog	Analog Input 9.
RB5/KBI1/PGM	26	23			
RB5			1/0		Digital I/O.
PGM			1/0	ST	Low-Voltage ICSP™ Programming enable nin
	27	24	"0	01	
RB6	21	24	I/O	TTL	Digital I/O.
KBI2			I	TTL	Interrupt-on-change pin.
PGC			I/O	ST	In-Circuit Debugger and ICSP programming clock pin.
RB7/KBI3/PGD	28	25			
RB7			I/O	TTL	Digital I/O.
KBI3				TTL	Interrupt-on-change pin.
			. 1/0	51	
Legend: IIL = IIL	. compati	bie inp	ut		CINOS = CMOS compatible input or output

TABLE 1-2: PIC18F2480/2580 PINOUT I/O DESCRIPTIONS (CONTINUED)

ST = Schmitt Trigger input with CMOS levels I

Р

= Input

= Power

Din Nome	Pi	n Numl	ber	Pin	Buffer	Description	
Pin Name	PDIP	QFN	TQFP	Туре	Туре	Description	
						PORTC is a bidirectional I/O port.	
RC0/T1OSO/T13CKI	15	34	32				
RC0				I/O	ST	Digital I/O.	
T10S0				0		Timer1 oscillator output.	
TIJCKI				I	SI	Timer1/Timer3 external clock input.	
RC1/T1OSI	16	35	35	1/0	OT		
RU1 T108L				1/0	SI	Digital I/O. Timor1 oppillator input	
				1	CIVIOS		
RC2/CCP1	1/	36	36	1/0	от	Digital I/O	
CCP1				1/0	ST	Digital I/O. Capture 1 input/Compare 1 output/PWM1 output	
	10	27	27	1/0	01		
RC3	10	57	57	1/0	ST	Digital I/O	
SCK				1/0	ST	Synchronous serial clock input/output for	
					•••	SPI mode.	
SCL				I/O	I ² C	Synchronous serial clock input/output for	
						I ² C™ mode.	
RC4/SDI/SDA	23	42	42				
RC4				I/O	ST	Digital I/O.	
SDI					ST	SPI data in.	
SDA				I/O	I ² C	I ² C data I/O.	
RC5/SDO	24	43	43				
RC5				1/0	ST	Digital I/O.	
SDO				0		SPI data out.	
RC6/TX/CK	25	44	44	1/0	от		
				1/0	51	Digital I/O. ELISART asynchronous transmit	
CK				1/0	ST	FUSART synchronous clock (see related RX/DT)	
	26	1	1	"0	01		
RC7	20			1/0	ST	Digital I/O	
RX				1	ST	EUSART asynchronous receive.	
DT				I/O	ST	EUSART synchronous data (see related TX/CK).	
Legend: TTL = TTL	compat	ible inpu	ut		C	MOS = CMOS compatible input or output	
ST = Schi	mitt Trig	ger inpl	it with Cl	MOS le	evels l	= Input	
O = Output P = Power							

TABLE 1-3:	PIC18F4480/4580 PINOUT I/O DESCRIPTIONS ((CONTINUED)	

O = Output I^2C = I^2C^{TM} /SMBus input buffer

= Power

© 2009 Microchip Technology Inc.

	1								
Register	Ар	plicabl	e Devi	ces	Power-on Reset, Brown-out Reset	MCLR Resets, WDT Reset, RESET Instruction, Stack Resets	Wake-up via WDT or Interrupt		
BSR	2480	2580	4480	4580	0000	0000	uuuu		
INDF2	2480	2580	4480	4580	N/A	N/A	N/A		
POSTINC2	2480	2580	4480	4580	N/A	N/A	N/A		
POSTDEC2	2480	2580	4480	4580	N/A	N/A	N/A		
PREINC2	2480	2580	4480	4580	N/A	N/A	N/A		
PLUSW2	2480	2580	4480	4580	N/A	N/A	N/A		
FSR2H	2480	2580	4480	4580	0000	0000	uuuu		
FSR2L	2480	2580	4480	4580	XXXX XXXX	սսսս սսսս	սսսս սսսս		
STATUS	2480	2580	4480	4580	x xxxx	u uuuu	u uuuu		
TMR0H	2480	2580	4480	4580	0000 0000	0000 0000	սսսս սսսս		
TMR0L	2480	2580	4480	4580	XXXX XXXX	นนนน นนนน	սսսս սսսս		
T0CON	2480	2580	4480	4580	1111 1111	1111 1111	นนนน นนนน		
OSCCON	2480	2580	4480	4580	0100 q000	0100 00q0	uuuu uuqu		
HLVDCON	2480	2580	4480	4580	0-00 0101	0-00 0101	0-uu uuuu		
WDTCON	2480	2580	4480	4580	0	0	u		
RCON ⁽⁴⁾	2480	2580	4480	4580	0q-1 11q0	0q-q qquu	uq-u qquu		
TMR1H	2480	2580	4480	4580	XXXX XXXX	սսսս սսսս	սսսս սսսս		
TMR1L	2480	2580	4480	4580	XXXX XXXX	นนนน นนนน	սսսս սսսս		
T1CON	2480	2580	4480	4580	0000 0000	u0uu uuuu	սսսս սսսս		
TMR2	2480	2580	4480	4580	0000 0000	0000 0000	սսսս սսսս		
PR2	2480	2580	4480	4580	1111 1111	1111 1111	1111 1111		
T2CON	2480	2580	4480	4580	-000 0000	-000 0000	-uuu uuuu		
SSPBUF	2480	2580	4480	4580	XXXX XXXX	սսսս սսսս	սսսս սսսս		
SSPADD	2480	2580	4480	4580	0000 0000	0000 0000	սսսս սսսս		
SSPSTAT	2480	2580	4480	4580	0000 0000	0000 0000	սսսս սսսս		
SSPCON1	2480	2580	4480	4580	0000 0000	0000 0000	นนนน นนนน		
SSPCON2	2480	2580	4480	4580	0000 0000	0000 0000	นนนน นนนน		
ADRESH	2480	2580	4480	4580	XXXX XXXX	นนนน นนนน	սսսս սսսս		
ADRESL	2480	2580	4480	4580	XXXX XXXX	นนนน นนนน	นนนน นนนน		
ADCON0	2480	2580	4480	4580	00 0000	00 0000	uu uuuu		
ADCON1	2480	2580	4480	4580	00 0qqq	00 0qqq	uu uuuu		

TABLE 5-4: INITIALIZATION CONDITIONS FOR ALL REGISTERS (CONTINUED)

Legend: u = unchanged, x = unknown, - = unimplemented bit, read as '0', q = value depends on condition. Shaded cells indicate conditions do not apply for the designated device.

Note 1: One or more bits in the INTCONx or PIRx registers will be affected (to cause wake-up).

2: When the wake-up is due to an interrupt and the GIEL or GIEH bit is set, the PC is loaded with the interrupt vector (0008h or 0018h).

3: When the wake-up is due to an interrupt and the GIEL or GIEH bit is set, the TOSU, TOSH and TOSL are updated with the current value of the PC. The STKPTR is modified to point to the next location in the hardware stack.

4: See Table 5-3 for Reset value for specific condition.

5: Bits 6 and 7 of PORTA, LATA and TRISA are enabled, depending on the oscillator mode selected. When not enabled as PORTA pins, they are disabled and read '0'.

6: This register reads all '0's until ECAN[™] technology is set up in Mode 1 or Mode 2.

TABLE 6-1:	SPECIAL FUNCTION REGISTER MAP FOR
	PIC18F2480/2580/4480/4580 DEVICES (CONTINUED)

Address	Name	Address	Name	Address	Name	Address	Name
DFFh	—	DDFh	_	DBFh	_	D9Fh	_
DFEh	_	DDEh	_	DBEh	_	D9Eh	_
DFDh	_	DDDh	_	DBDh	_	D9Dh	_
DFCh	TXBIE	DDCh	—	DBCh		D9Ch	
DFBh	—	DDBh	—	DBBh		D9Bh	
DFAh	BIE0	DDAh	—	DBAh	—	D9Ah	—
DF9h	—	DD9h	—	DB9h		D99h	
DF8h	BSEL0	DD8h	SDFLC	DB8h		D98h	
DF7h		DD7h	—	DB7h	—	D97h	—
DF6h		DD6h	—	DB6h	—	D96h	—
DF5h		DD5h	RXFCON1	DB5h	—	D95h	—
DF4h		DD4h	RXFCON0	DB4h	—	D94h	—
DF3h	MSEL3	DD3h	—	DB3h	—	D93h	RXF15EIDL
DF2h	MSEL2	DD2h	—	DB2h	—	D92h	RXF15EIDH
DF1h	MSEL1	DD1h	—	DB1h	—	D91h	RXF15SIDL
DF0h	MSEL0	DD0h	—	DB0h	—	D90h	RXF15SIDH
DEFh		DCFh	—	DAFh	—	D8Fh	—
DEEh		DCEh	—	DAEh	_	D8Eh	_
DEDh	_	DCDh	—	DADh	—	D8Dh	—
DECh	_	DCCh	—	DACh	—	D8Ch	—
DEBh	_	DCBh	_	DABh	_	D8Bh	RXF14EIDL
DEAh	_	DCAh	—	DAAh	—	D8Ah	RXF14EIDH
DE9h	_	DC9h	—	DA9h	—	D89h	RXF14SIDL
DE8h	—	DC8h		DA8h	—	D88h	RXF14SIDH
DE7h	RXFBCON7	DC7h		DA7h	—	D87h	RXF13EIDL
DE6h	RXFBCON6	DC6h	—	DA6h	—	D86h	RXF13EIDH
DE5h	RXFBCON5	DC5h		DA5h	—	D85h	RXF13SIDL
DE4h	RXFBCON4	DC4h	—	DA4h	—	D84h	RXF13SIDH
DE3h	RXFBCON3	DC3h	—	DA3h	—	D83h	RXF12EIDL
DE2h	RXFBCON2	DC2h	_	DA2h	_	D82h	RXF12EIDH
DE1h	RXFBCON1	DC1h	—	DA1h	—	D81h	RXF12SIDL
DE0h	RXFBCON0	DC0h	—	DA0h	—	D80h	RXF12SIDH

Note 1: Registers available only on PIC18F4X80 devices; otherwise, the registers read as '0'.

2: When any TX_ENn bit in RX_TX_SELn is set, then the corresponding bit in this register has transmit properties.

3: This is not a physical register.

8.6 Operation During Code-Protect

Data EEPROM memory has its own code-protect bits in Configuration Words. External read and write operations are disabled if code protection is enabled.

The microcontroller itself can both read and write to the internal data EEPROM, regardless of the state of the code-protect Configuration bit. Refer to Section 25.0 "Special Features of the CPU" for additional information.

8.7 Protection Against Spurious Write

There are conditions when the device may not want to write to the data EEPROM memory. To protect against spurious EEPROM writes, various mechanisms have been implemented. On power-up, the WREN bit is cleared. In addition, writes to the EEPROM are blocked during the Power-up Timer period (TPWRT, parameter 33).

The write initiate sequence and the WREN bit together help prevent an accidental write during brown-out, power glitch or software malfunction.

8.8 Using the Data EEPROM

The data EEPROM is a high-endurance, byte addressable array that has been optimized for the storage of frequently changing information (e.g., program variables or other data that are updated often). Frequently changing values will typically be updated more often than specification D124. If this is not the case, an array refresh must be performed. For this reason, variables that change infrequently (such as constants, IDs, calibration, etc.) should be stored in Flash program memory.

A simple data EEPROM refresh routine is shown in Example 8-3.

Note: If data EEPROM is only used to store constants and/or data that changes rarely, an array refresh is likely not required. See specification D124.

EXAMPLE 8-3:	DATA EEPROM REFRESH ROUTINE
--------------	-----------------------------

	CLRF	EEADR	;	Start at address 0
	BCF	EECON1, CFGS	;	Set for memory
	BCF	EECON1, EEPGD	;	Set for Data EEPROM
	BCF	INTCON, GIE	;	Disable interrupts
	BSF	EECON1, WREN	;	Enable writes
LOOP			;	Loop to refresh array
	BSF	EECON1, RD	;	Read current address
	MOVLW	55h	;	
	MOVWF	EECON2	;	Write 55h
	MOVLW	0AAh	;	
	MOVWF	EECON2	;	Write OAAh
	BSF	EECON1, WR	;	Set WR bit to begin write
	BTFSC	EECON1, WR	;	Wait for write to complete
	BRA	\$-2		
	INCFSZ	EEADR, F	;	Increment address
	BRA	LOOP	;	Not zero, do it again
	BCF	EECON1, WREN	;	Disable writes
	BSF	INTCON, GIE	;	Enable interrupts

R/W-0	R/W-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
OSCFIF	CMIF ⁽¹⁾	_	EEIF	BCLIF	HLVDIF	TMR3IF	ECCP1IF ⁽¹⁾		
bit 7	ł						bit 0		
Legend:									
R = Readable	e bit	W = Writable	bit	U = Unimple	mented bit, rea	d as '0'			
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cle	eared	x = Bit is unk	known		
DIT /		cillator Fall Intel	rupt Flag bit	an abangad ta		the cleared in	ooffwara)		
	0 = System 0	clock operating	CIOCK INPUL I	ias changeu to	in 1030 (inus	t be cleared in	soltware)		
bit 6	CMIF: Comp	arator Interrupt	Flag bit ⁽¹⁾						
	1 = Compara	ator input has c	hanged (mus	t be cleared in	software)				
	0 = Compara	ator input has n	ot changed						
bit 5	Unimplemer	Unimplemented: Read as '0'							
bit 4	EEIF: Data E	EPROM/Flash	Write Operat	ion Interrupt FI	ag bit				
	1 = The write	e operation is c	omplete (mus	st be cleared in	software)				
bit 3	BCLIF: Bus (BCLIE: Bus Collision Interrunt Flag bit							
	1 = A bus co	1 = A bus collision occurred (must be cleared in software)							
	0 = No bus c	collision occurre	d		,				
bit 2	HLVDIF: Higl	HLVDIF: High/Low-Voltage Detect Interrupt Flag bit							
	1 = A low-voltage condition occurred (must be cleared in software)								
L:1 4		ice voltage is al	bove the Higr	i/Low-voitage i	Jetect trip poin	t			
DICI	1 - TMP3 re	R3 Overnow in	errupt Flag b	IL Neared in softw	(are)				
\perp = TMR3 register overhowed (must be cleared in software) 0 = TMR3 register did not overflow									
bit 0	ECCP1IF: CO	CPx Interrupt F	lag bit ⁽¹⁾						
	Capture mod	<u>e:</u>	•						
	1 = A TMR1 0 = No TMR	register captur 1 register captu	e occurred (n ire occurred	nust be cleared	l in software)				
	Compare mo	<u>de:</u>	wa waatab aaa	unred (never be	alaarad in aaff				
	$\perp = A \square V R \square$ 0 = No TMR	1 register compa	are match occ	curred (must be	cieared in soft	ware)			
	PWM mode:	egictor comp							
	Unused in thi	is mode.							

Note 1: These bits are available in PIC18F4X80 and reserved in PIC18F2X80 devices.

	R/W-0	R/W-0	R/W-0	R/\\/-0	R/W-0	R/W-0	R/W-0	R/W-0	
Mode 0	IRXIE	WAKIE	ERRIE	TXB2IE	TXB1IE ⁽¹⁾	TXB0IE ⁽¹⁾	RXB1IE	RXB0IE	
						-			
Mode 1.2	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
Mode 1,2	IRXIE	WAKIE	ERRIE	TXBnIE	TXB1IE ⁽¹⁾	TXB0IE ⁽¹⁾	RXBnIE	FIFOWMIE ⁽¹⁾	
	bit 7							bit 0	
Logond									
R = Readat	ole hit		W = Writable	≏ hit	l I = l Inimple	mented hit in	ead as 'O'		
-n = Value a	at POR		'1' = Bit is set	et	0' = Bit is cluster of the second	eared	x = Bit is un	known	
in value (U Dicio di	ourou	X Ditio un		
bit 7	bit 7 IRXIE: CAN Invalid Received Message Interrupt Enable bit 1 = Enable invalid message received interrupt 0 = Disable invalid message received interrupt								
bit 6	WAKIE: CAL 1 = Enable k 0 = Disable	N bus Activity ous activity was bus activity w	v Wake-up Int ake-up interru vake-up interr	errupt Enab upt upt	le bit				
bit 5	ERRIE: CAN 1 = Enable (0 = Disable (l bus Error In CAN bus erro CAN bus erro	terrupt Enabl r interrupt or interrupt	e bit					
bit 4	<u>When CAN is in Mode 0:</u> TXB2IE: CAN Transmit Buffer 2 Interrupt Enable bit 1 = Enable Transmit Buffer 2 interrupt 0 = Disable Transmit Buffer 2 interrupt <u>When CAN is in Mode 1 or 2:</u>								
	1 = Enable t 0 = Disable	ransmit buffe all transmit b	r interrupt; ind uffer interrupt	dividual inte s	rrupt is enable	ed by TXBIE a	and BIE0		
bit 3	TXB1IE: CA1 = Enable0 = Disable	N Transmit B Fransmit Buffe Transmit Buff	uffer 1 Interru er 1 interrupt er 1 interrupt	upt Enable t	bit ⁽¹⁾				
bit 2	TXB0IE: CA 1 = Enable 7 0 = Disable 7	N Transmit B Fransmit Buffe Transmit Buff	uffer 0 Interru er 0 interrupt er 0 interrupt	upt Enable t	bit ⁽¹⁾				
bit 1	When CAN is in Mode 0: RXB1IE: CAN Receive Buffer 1 Interrupt Enable bit 1 = Enable Receive Buffer 1 interrupt 0 = Disable Receive Buffer 1 interrupt								
	When CAN is in Mode 1 or 2: RXBnIE: CAN Receive Buffer Interrupts Enable bit 1 = Enable receive buffer interrupt; individual interrupt is enabled by BIE0 0 = Disable all receive buffer interrupts								
bit 0	When CAN is in Mode 0: RXB0IE: CAN Receive Buffer 0 Interrupt Enable bit 1 = Enable Receive Buffer 0 interrupt 0 = Disable Receive Buffer 0 interrupt								
	When CAN i Unimpleme When CAN i FIFOWMIE: 1 = Enable F 0 = Disable	<u>s in Mode 1:</u> nted: Read a <u>s in Mode 2:</u> FIFO Watern FIFO waterma FIFO waterm	nark Interrupt ark interrupt ark interrupt ark interrupt	Enable bit ⁽	1)				

REGISTER 10-9: PIE3: PERIPHERAL INTERRUPT ENABLE REGISTER 3

Note 1: In CAN Mode 1 and 2, these bits are forced to '0'.

15.1 Timer3 Operation

Timer3 can operate in one of three modes:

- Timer
- Synchronous Counter
- Asynchronous Counter

The operating mode is determined by the clock select bit, TMR3CS (T3CON<1>). When TMR3CS is cleared (= 0), Timer3 increments on every internal instruction

FIGURE 15-1: TIMER3 BLOCK DIAGRAM

cycle (Fosc/4). When the bit is set, Timer3 increments on every rising edge of the Timer1 external clock input or the Timer1 oscillator if enabled.

As with Timer1, the RC1/T1OSI and RC0/T1OSO/ T13CKI pins become inputs when the Timer1 oscillator is enabled. This means the values of TRISC<1:0> are ignored and the pins are read as '0'.

FIGURE 15-2: TIMER3 BLOCK DIAGRAM (16-BIT READ/WRITE MODE)

16.4 PWM Mode

In Pulse-Width Modulation (PWM) mode, the CCP1 pin produces up to a 10-bit resolution PWM output. Since the CCP1 pin is multiplexed with a PORTB or PORTC data latch, the appropriate TRIS bit must be cleared to make the CCP1 pin an output.

Note:	Clearing the CCP1CON register will force
	the RC2 output latch (depending on
	device configuration) to the default low
	level. This is not the PORTC I/O data
	latch.

Figure 16-3 shows a simplified block diagram of the CCP module in PWM mode.

For a step-by-step procedure on how to set up the CCP module for PWM operation, see **Section 16.4.4** "Setup for PWM Operation".

FIGURE 16-3: SIMPLIFIED PWM BLOCK DIAGRAM

A PWM output (Figure 16-4) has a time base (period) and a time that the output stays high (duty cycle). The frequency of the PWM is the inverse of the period (1/period).

FIGURE 16-4: PWM OUTPUT

16.4.1 PWM PERIOD

The PWM period is specified by writing to the PR2 (PR4) register. The PWM period can be calculated using the following formula.

EQUATION 16-1:

 $PWM Period = (PR2) + 1] \cdot 4 \cdot TOSC \cdot$ (TMR2 Prescale Value)

PWM frequency is defined as 1/[PWM period].

When TMR1 (TMR3) is equal to PR2 (PR2), the following three events occur on the next increment cycle:

- TMR2 is cleared
- The CCP1 pin is set (exception: if PWM duty cycle = 0%, the CCP1 pin will not be set)
- The PWM duty cycle is latched from CCPR1L into CCPR1H

Note:	The Timer2 postscalers (see Section 14.0 "Timer2 Module") are not used in the determination of the PWM frequency. The
	postscaler could be used to have a servo update rate at a different frequency than the PWM output.

16.4.2 PWM DUTY CYCLE

The PWM duty cycle is specified by writing to the CCPR1L register and to the CCP1CON<5:4> bits. Up to 10-bit resolution is available. The CCPR1L contains the eight MSbs and the CCP1CON<5:4> bits contain the two LSbs. This 10-bit value is represented by CCPR1L:CCP1CON<5:4>. The following equation is used to calculate the PWM duty cycle in time.

EQUATION 16-2:

$PWM Duty Cycle = (CCPR1L:CCP1CON < 5:4>) \bullet$	
TOSC • (TMR2 Prescale Value)	

CCPR1L and CCP1CON<5:4> can be written to at any time, but the duty cycle value is not latched into CCPR1H until after a match between PR2 and TMR2 occurs (i.e., the period is complete). In PWM mode, CCPR1H is a read-only register.

REGISTER 17-2: ECCP1DEL: ECCP PWM DEAD-BAND DELAY REGISTER

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
PRSEN	PDC6 ⁽¹⁾	PDC5 ⁽¹⁾	PDC4 ⁽¹⁾	PDC3 ⁽¹⁾	PDC2 ⁽¹⁾	PDC1 ⁽¹⁾	PDC0 ⁽¹⁾
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	l as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 7	PRSEN: PWM Restart Enable bit
	 Upon auto-shutdown, the ECCPASE bit clears automatically once the shutdown event goes away; the PWM restarts automatically
	0 = Upon auto-shutdown, ECCPASE must be cleared in software to restart the PWM
bit 6-0	PDC<6:0>: PWM Delay Count bits ⁽¹⁾
	Delay time, in number of Fosc/4 (4 * Tosc) cycles, between the scheduled and actual time for a PWM signal to transition to active.

Note	1:	Reserved on	PIC18F2X80	devices;	maintain	these bits	clear.
------	----	-------------	------------	----------	----------	------------	--------

REGISTER 17-3: ECCP1AS: ECCP AUTO-SHUTDOWN CONTROL REGISTER⁽¹⁾

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
ECCPASE	ECCPAS2	ECCPAS1	ECCPAS0	PSSAC1	PSSAC0	PSSBD1 ⁽¹⁾	PSSBD0 ⁽¹⁾	
bit 7 bit 0								

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 7	ECCPASE: ECCP Auto-Shutdown Event Status bit
	 1 = A shutdown event has occurred; ECCP outputs are in shutdown state 0 = ECCP outputs are operating
bit 6-4	ECCPAS<2:0>: ECCP Auto-Shutdown Source Select bits
	<pre>111 = RB0 or Comparator 1 or Comparator 2 110 = RB0 or Comparator 2 101 = RB0 or Comparator 1 100 = RB0 011 = Either Comparator 1 or 2 010 = Comparator 2 output 001 = Comparator 1 output 000 = Auto-shutdown is disabled</pre>
bit 3-2	PSSAC<1:0>: Pins, A and C, Shutdown State Control bits
	 1x = Pins, A and C, tri-state (PIC18F4X80 devices) 01 = Drive Pins, A and C, to '1' 00 = Drive Pins, A and C, to '0'
bit 1-0	PSSBD<1:0>: Pins, B and D, Shutdown State Control bits ⁽¹⁾
	 1x = Pins, B and D, tri-state 01 = Drive Pins, B and D, to '1' 00 = Drive Pins, B and D, to '0'
Note 1:	Reserved on PIC18F2X80 devices; maintain these bits clear.

© 2009 Microchip Technology Inc.

18.4.4.5 Clock Synchronization and the CKP bit

When the CKP bit is cleared, the SCL output is forced to '0'. However, setting the CKP bit will not assert the SCL output low until the SCL output is already sampled low. Therefore, the CKP bit will not assert the SCL line until an external I^2C master device has

already asserted the SCL line. The SCL output will remain low until the CKP bit is set and all other devices on the I^2 C bus have deasserted SCL. This ensures that a write to the CKP bit will not violate the minimum high time requirement for SCL (see Figure 18-12).

18.4.6.1 I²C Master Mode Operation

The master device generates all of the serial clock pulses and the Start and Stop conditions. A transfer is ended with a Stop condition or with a Repeated Start condition. Since the Repeated Start condition is also the beginning of the next serial transfer, the I²C bus will not be released.

In Master Transmitter mode, serial data is output through SDA while SCL outputs the serial clock. The first byte transmitted contains the slave address of the receiving device (7 bits) and the Read/Write (R/W) bit. In this case, the R/W bit will be logic '0'. Serial data is transmitted 8 bits at a time. After each byte is transmitted, an Acknowledge bit is received. Start and Stop conditions are output to indicate the beginning and the end of a serial transfer.

In Master Receive mode, the first byte transmitted contains the slave address of the transmitting device (7 bits) and the R/\overline{W} bit. In this case, the R/\overline{W} bit will be logic '1' Thus, the first byte transmitted is a 7-bit slave address followed by a '1' to indicate the receive bit. Serial data is received via SDA, while SCL outputs the serial clock. Serial data is received 8 bits at a time. After each byte is received, an Acknowledge bit is transmitted. Start and Stop conditions indicate the beginning and end of transmission.

The Baud Rate Generator used for the SPI mode operation is used to set the SCL clock frequency for either 100 kHz, 400 kHz or $1 \text{ MHz} \text{ l}^2\text{C}$ operation. See **Section 18.4.7 "Baud Rate"** for more details. A typical transmit sequence would go as follows:

- 1. The user generates a Start condition by setting the Start Enable bit, SEN (SSPCON2<0>).
- 2. SSPIF is set. The MSSP module will wait the required start time before any other operation takes place.
- 3. The user loads the SSPBUF with the slave address to transmit.
- 4. Address is shifted out the SDA pin until all 8 bits are transmitted.
- 5. The MSSP module shifts in the ACK bit from the slave device and writes its value into the SSPCON2 register (SSPCON2<6>).
- 6. The MSSP module generates an interrupt at the end of the ninth clock cycle by setting the SSPIF bit.
- 7. The user loads the SSPBUF with eight bits of data.
- 8. Data is shifted out the SDA pin until all 8 bits are transmitted.
- The MSSP module shifts in the ACK bit from the slave device and writes its value into the SSPCON2 register (SSPCON2<6>).
- 10. The MSSP module generates an interrupt at the end of the ninth clock cycle by setting the SSPIF bit.
- 11. The user generates a Stop condition by setting the Stop Enable bit, PEN (SSPCON2<2>).
- 12. Interrupt is generated once the Stop condition is complete.

18.4.9 I²C MASTER MODE REPEATED START CONDITION TIMING

A Repeated Start condition occurs when the RSEN bit (SSPCON2<1>) is programmed high and the I²C logic module is in the Idle state. When the RSEN bit is set, the SCL pin is asserted low. When the SCL pin is sampled low, the Baud Rate Generator is loaded with the contents of SSPADD<5:0> and begins counting. The SDA pin is released (brought high) for one Baud Rate Generator count (TBRG). When the Baud Rate Generator times out, and if SDA is sampled high, the SCL pin will be deasserted (brought high). When SCL is sampled high, the Baud Rate Generator is reloaded with the contents of SSPADD<6:0> and begins counting. SDA and SCL must be sampled high for one TBRG. This action is then followed by assertion of the SDA pin (SDA = 0) for one TBRG while SCL is high. Following this, the RSEN bit (SSPCON2<1>) will be automatically cleared and the Baud Rate Generator will not be reloaded, leaving the SDA pin held low. As soon as a Start condition is detected on the SDA and SCL pins, the S bit (SSPSTAT<3>) will be set. The SSPIF bit will not be set until the Baud Rate Generator has timed out.

- Note 1: If RSEN is programmed while any other event is in progress, it will not take effect.
 - **2:** A bus collision during the Repeated Start condition occurs if:
 - SDA is sampled low when SCL goes from low-to-high.
 - SCL goes low before SDA is asserted low. This may indicate that another master is attempting to transmit a data '1'.

Immediately following the SSPIF bit getting set, the user may write the SSPBUF with the 7-bit address in 7-bit mode, or the default first address in 10-bit mode. After the first eight bits are transmitted and an ACK is received, the user may then transmit an additional eight bits of address (10-bit mode) or eight bits of data (7-bit mode).

18.4.9.1 WCOL Status Flag

If the user writes the SSPBUF when a Repeated Start sequence is in progress, the WCOL is set and the contents of the buffer are unchanged (the write doesn't occur).

Note: Because queueing of events is not allowed, writing of the lower 5 bits of SSPCON2 is disabled until the Repeated Start condition is complete.

FIGURE 18-20: REPEAT START CONDITION WAVEFORM

23.2 HLVD Setup

The following steps are needed to set up the HLVD module:

- 1. Disable the module by clearing the HLVDEN bit (HLVDCON<4>).
- 2. Write the value to the HLVDL<3:0> bits that select the desired HLVD trip point.
- Set the VDIRMAG bit to detect high voltage (VDIRMAG = 1) or low voltage (VDIRMAG = 0).
- 4. Enable the HLVD module by setting the HLVDEN bit.
- 5. Clear the HLVD interrupt flag (PIR2<2>), which may have been set from a previous interrupt.
- Enable the HLVD interrupt if interrupts are desired by setting the HLVDIE and GIE bits (PIE<2> and INTCON<7>). An interrupt will not be generated until the IRVST bit is set.

23.3 Current Consumption

When the module is enabled, the HLVD comparator and voltage divider are enabled and will consume static current. The total current consumption, when enabled, is specified in electrical specification parameter D022B. Depending on the application, the HLVD module does not need to be operating constantly. To decrease the current requirements, the HLVD circuitry may only need to be enabled for short periods where the voltage is checked. After doing the check, the HLVD module may be disabled.

23.4 HLVD Start-up Time

The internal reference voltage of the HLVD module, specified in electrical specification parameter D420, may be used by other internal circuitry, such as the Programmable Brown-out Reset. If the HLVD or other circuits using the voltage reference are disabled to lower the device's current consumption, the reference voltage circuit will require time to become stable before a low or high-voltage condition can be reliably detected. This start-up time, TIRVST, is an interval that is independent of device clock speed. It is specified in electrical specification parameter 36.

The HLVD interrupt flag is not enabled until TIRVST has expired and a stable reference voltage is reached. For this reason, brief excursions beyond the set point may not be detected during this interval. Refer to Figure 23-2 or Figure 23-3.

NOTES:

24.15.6.1 Receiver Overflow

An overflow condition occurs when the MAB has assembled a valid received message (the message meets the criteria of the acceptance filters) and the receive buffer associated with the filter is not available for loading of a new message. The associated RXBnOVFL bit in the COMSTAT register will be set to indicate the overflow condition. This bit must be cleared by the MCU.

24.15.6.2 Receiver Warning

The receive error counter has reached the MCU warning limit of 96.

24.15.6.3 Transmitter Warning

The transmit error counter has reached the MCU warning limit of 96.

24.15.6.4 Receiver Bus Passive

This will occur when the device has gone to the errorpassive state because the receive error counter is greater or equal to 128.

24.15.6.5 Transmitter Bus Passive

This will occur when the device has gone to the errorpassive state because the transmit error counter is greater or equal to 128.

24.15.6.6 Bus-Off

The transmit error counter has exceeded 255 and the device has gone to bus-off state.

GO	го	Uncondit	ional Branc	h		INCF	Incremen	tf	
Synt	ax:	GOTO k			•	Syntax:	INCF f{,c	1 {,a}}	
Oper	ands:	$0 \le k \le 104$	8575			Operands:	$0 \le f \le 255$		
Oper	ation:	$k \rightarrow PC<20$):1>				d ∈ [0,1] a ∈ [0,1]		
Statu	is Affected:	None				Operation:	$a \in [0, 1]$	act	
Enco	oding:]	Statua Affactadu	$(1) + 1 \rightarrow 00$		
1st w	/ord (k<7:0>)	1110	1111 k ₇ k	kk kkkk ₀			C, DC, N,	00, 2	
2nd v	word(k<19:8>)	1111	k ₁₉ kkk kk	kk kkkk ₈		Encoding:	0010	10da ff	ff ffff
Desc	ription:	GOTO allow anywhere v 2-Mbyte me value 'k' is l is always a instruction.	s an unconditi vithin entire emory range. oaded into PC two-cycle	onal branch The 20-bit C<20:1>. GOTO		Description:	The content incremente placed in W placed bac If 'a' is '0', t If 'a' is '1', t	ts of register 'f d. If 'd' is '0', t /. If 'd' is '1', tr k in register 'f' he Access Ba he BSR is use	f' are he result is he result is he result is he result is he result is he result is he result i
Word	ds:	2						nd the extend	od instruction
Cycle	es:	2					set is enab	led, this instru	ction operates
QC	ycle Activity:						in Indexed	Literal Offset A	Addressing
	Q1	Q2	Q3	Q4			mode wher	never f ≤ 95 (5	Fh). See
	Decode	Read literal 'k'<7:0>,	No operation	Read literal 'k'<19:8>, Write to PC			Bit-Oriente	ed Instruction set Mode" for	is in Indexed details.
	No	No	No	No	-	Words:	1		
	operation	operation	operation	operation		Cycles:	1		
						Q Cycle Activity:			
Exar	nple:	GOTO THE	RE			Q1	Q2	Q3	Q4
	After Instruction PC =	n Address (T	HERE)			Decode	Read register 'f'	Process Data	Write to destination
						Example: Before Instruc CNT	INCF tion = FFh	CNT, 1, 0	
						Z C DC	= 0 = ? = ?		

After Instruction

CNT Z C DC

= = =

28.2 DC Characteristics:

Power-Down and Supply Current PIC18F2480/2580/4480/4580 (Industrial, Extended) PIC18LF2480/2580/4480/4580 (Industrial) (Continued)

PIC18LF (Indu	Standa Operati	rd Oper	ating Co erature	onditions (unless -40°C \leq TA	s otherwise stated ≤ +85°C for indust	l) rial				
PIC18F2480/2580/4480/4580 (Industrial, Extended)										
Param No.	Тур	Max	Units		Condit	ions				
-	Supply Current (IDD) ^(2,3)									
	PIC18LF2X80/4X80	1.5	2.1	mA	-40°C					
		1.5	2.1	mA	+25°C	VDD = 2.0V				
		1.5	2.1	mA	+85°C					
	PIC18LF2X80/4X80	2.4	3.3	mA	-40°C					
		2.4	3.3	mA	+25°C	VDD = 3.0V	(RC_RUN mode, Internal oscillator source)			
		2.4	3.3	mA	+85°C					
	All devices	4.4	5.3	mA	-40°C					
		4.4	5.3	mA	+25°C	$V_{DD} = 5.0V$				
		4.4	5.3	mA	+85°C	VDD - 3.0V				
	Extended devices only	9.2	11	mA	+125°C					
	PIC18LF2X80/4X80	6.1	8.4	μA	-40°C					
		6.7	8.4	μA	+25°C	VDD = 2.0V				
		7.4	21	μA	+85°C					
	PIC18LF2X80/4X80	9.6	12	μA	-40°C					
			12	μA	+25°C	VDD = 3.0V	Fosc = 31 kHz (RC_IDLE mode			
		12	33	μA	+85°C		Internal oscillator source)			
	All devices	20	28	μA	-40°C		,			
		22	28	μA	+25°C	$V_{DD} = 5.0 V$				
		24	55	μA	+85°C	VDD - 3.0V				
	Extended devices only	84	200	μA	+125°C					

Legend: Shading of rows is to assist in readability of the table.

Note 1: The power-down current in Sleep mode does not depend on the oscillator type. Power-down current is measured with the part in Sleep mode, with all I/O pins in high-impedance state and tied to VDD or Vss and all features that add delta current disabled (such as WDT, Timer1 Oscillator, BOR, etc.).

2: The supply current is mainly a function of operating voltage, frequency and mode. Other factors, such as I/O pin loading and switching rate, oscillator type and circuit, internal code execution pattern and temperature, also have an impact on the current consumption. The test conditions for all IDD measurements in active operation mode are:

OSC1 = external square wave, from rail-to-rail; all I/O pins tri-stated, pulled to VDD;

MCLR = VDD; WDT enabled/disabled as specified.

3: For RC oscillator configurations, current through REXT is not included. The current through the resistor can be estimated by the formula, Ir = VDD/2REXT (mA), with REXT in kΩ.

4: Standard low-cost 32 kHz crystals have an operating temperature range of -10°C to +70°C. Extended temperature crystals are available at a much higher cost.

Param No.	Symbol	Characteristic			Мах	Units	Conditions
130	Tad	A/D Clock Period	PIC18FXXXX	0.7	25.0 ⁽¹⁾	μS	Tosc based, VREF $\geq 3.0V$
			PIC18 LF XXXX	1.4	25.0 ⁽¹⁾	μS	VDD = 2.0V; TOSC based, VREF full range
			PIC18FXXXX		1	μS	A/D RC mode
			PIC18 LF XXXX		3	μS	VDD = 2.0V; A/D RC mode
131	TCNV	Conversion Time (not including acquisit	11	12	Tad		
132	TACQ	Acquisition Time (No	ote 3)	1.4	—	μS	-40°C to +85°C
135	Tswc	Switching Time from (Convert \rightarrow Sample		(Note 4)	—	
136	Тамр	Amplifier Settling Tin	1		μS	This may be used if the "new" input voltage has not changed by more than 1 LSb (i.e., 5 mV @ 5.12V) from the last sampled voltage (as stated on CHOLD).	

TABLE 28-25: A/D CONVERSION REQUIREMENTS

Note 1: The time of the A/D clock period is dependent on the device frequency and the TAD clock divider.

2: ADRES register may be read on the following TCY cycle.

- **3:** The time for the holding capacitor to acquire the "New" input voltage when the voltage changes full scale after the conversion (AVDD to AVSS or AVSS to AVDD). The source impedance (RS) on the input channels is 50Ω.
- 4: On the following cycle of the device clock.
- 5: See Section 20.0 "10-Bit Analog-to-Digital Converter (A/D) Module" for minimum conditions when input voltage has changed more than 1 LSb.

NOTES: