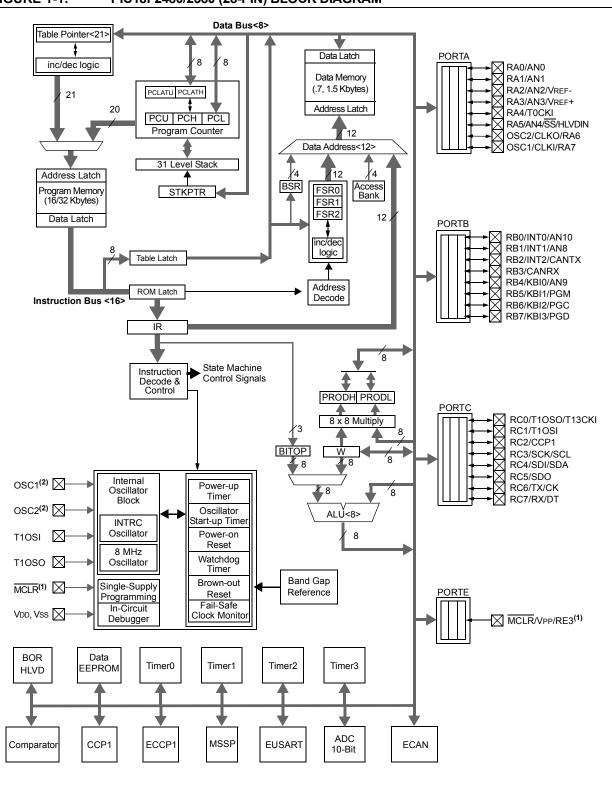


Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"


Details

E·XFI

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	40MHz
Connectivity	CANbus, I ² C, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, HLVD, POR, PWM, WDT
Number of I/O	36
Program Memory Size	32KB (16K x 16)
Program Memory Type	FLASH
EEPROM Size	256 x 8
RAM Size	1.5K x 8
Voltage - Supply (Vcc/Vdd)	4.2V ~ 5.5V
Data Converters	A/D 11x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	44-TQFP
Supplier Device Package	44-TQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic18f4580t-i-pt

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

FIGURE 1-1: PIC18F2480/2580 (28-PIN) BLOCK DIAGRAM

Note 1: RE3 is multiplexed with MCLR and is only available when the MCLR Resets are disabled.

2: OSC1/CLKI and OSC2/CLKO are only available in select oscillator modes and when these pins are not being used as digital I/O. Refer to Section 3.0 "Oscillator Configurations" for additional information.

	Pin Nu	mber	Pin	Buffer				
Pin Name	SPDIP, SOIC	QFN	Туре	Туре	Description			
					PORTB is a bidirectional I/O port. PORTB can be software			
					programmed for internal weak pull-ups on all inputs.			
RB0/INT0/ AN10	21	18						
RB0			I/O	TTL	Digital I/O.			
INT0			I	ST	External Interrupt 0.			
AN10			I	Analog	Analog Input 10.			
RB1/INT1/AN8	22	19						
RB1			I/O	TTL	Digital I/O.			
INT1			I	ST	External Interrupt 1.			
AN8			I	Analog	Analog Input 8.			
RB2/INT2/CANTX	23	20						
RB2			I/O	TTL	Digital I/O.			
INT2			I	ST	External Interrupt 2.			
CANTX			0	TTL	CAN bus TX.			
RB3/CANRX	24	21						
RB3			I/O	TTL	Digital I/O.			
CANRX			I	TTL	CAN bus RX.			
RB4/KBI0/AN9	25	22						
RB4	20	22	I/O	TTL	Digital I/O.			
KBI0				TTL	Interrupt-on-change pin.			
AN9			i	Analog	Analog Input 9.			
RB5/KBI1/PGM	26	23		- 5				
RB5	20	20	I/O	TTL	Digital I/O.			
KBI1	1		"U	TTL	Interrupt-on-change pin.			
PGM			I/O	ST	Low-Voltage ICSP™ Programming enable pin.			
RB6/KBI2/PGC	27	24	-					
RB6	21	27	I/O	TTL	Digital I/O.			
KBI2			"O	TTL	Interrupt-on-change pin.			
PGC			I/O	ST	In-Circuit Debugger and ICSP programming clock pin.			
RB7/KBI3/PGD	28	25						
RB7	20	20	I/O	TTL	Digital I/O.			
KBI3			1/0	TTL	Interrupt-on-change pin.			
PGD			I/O	ST	In-Circuit Debugger and ICSP programming data pin.			
Legend: TTL = TT	<u> </u>			01	CMOS = CMOS compatible input or output			

TABLE 1-2: PIC18F2480/2580 PINOUT I/O DESCRIPTIONS (CONTINUED)

ST = Schmitt Trigger input with CMOS levels I

Р

= Input

= Power

 $\begin{array}{l} O \\ O \\ |^2C \\ |^2C \\ = |^2C^{TM}/SMBus \text{ input buffer} \end{array}$

IABLE 5-4:					DITIONS FOR ALL			
Register Applic		pplicable Devices			Power-on Reset, Brown-out Reset	MCLR Resets, WDT Reset, RESET Instruction, Stack Resets	Wake-up via WDT or Interrupt	
TOSU	2480	2580	4480	4580	0 0000	0 0000	0 uuuu (3)	
TOSH	2480	2580	4480	4580	0000 0000	0000 0000	uuuu uuuu (3)	
TOSL	2480	2580	4480	4580	0000 0000	0000 0000	uuuu uuuu (3)	
STKPTR	2480	2580	4480	4580	00-0 0000	uu-0 0000	uu-u uuuu (3)	
PCLATU	2480	2580	4480	4580	0 0000	0 0000	u uuuu	
PCLATH	2480	2580	4480	4580	0000 0000	0000 0000	սսսս սսսս	
PCL	2480	2580	4480	4580	0000 0000	0000 0000	PC + 2 ⁽²⁾	
TBLPTRU	2480	2580	4480	4580	00 0000	00 0000	uu uuuu	
TBLPTRH	2480	2580	4480	4580	0000 0000	0000 0000	սսսս սսսս	
TBLPTRL	2480	2580	4480	4580	0000 0000	0000 0000	սսսս սսսս	
TABLAT	2480	2580	4480	4580	0000 0000	0000 0000	սսսս սսսս	
PRODH	2480	2580	4480	4580	XXXX XXXX	uuuu uuuu	սսսս սսսս	
PRODL	2480	2580	4480	4580	XXXX XXXX	นนนน นนนน	սսսս սսսս	
INTCON	2480	2580	4480	4580	0000 000x	0000 000u	uuuu uuuu (1)	
INTCON2	2480	2580	4480	4580	1111 -1-1	1111 -1-1	uuuu -u-u (1)	
INTCON3	2480	2580	4480	4580	11-0 0-00	11-0 0-00	uu-u u-uu (1)	
INDF0	2480	2580	4480	4580	N/A	N/A	N/A	
POSTINC0	2480	2580	4480	4580	N/A	N/A	N/A	
POSTDEC0	2480	2580	4480	4580	N/A	N/A	N/A	
PREINC0	2480	2580	4480	4580	N/A	N/A	N/A	
PLUSW0	2480	2580	4480	4580	N/A	N/A	N/A	
FSR0H	2480	2580	4480	4580	0000	0000	uuuu	
FSR0L	2480	2580	4480	4580	XXXX XXXX	นนนน นนนน	սսսս սսսս	
WREG	2480	2580	4480	4580	XXXX XXXX	uuuu uuuu	սսսս սսսս	
INDF1	2480	2580	4480	4580	N/A	N/A	N/A	
POSTINC1	2480	2580	4480	4580	N/A	N/A	N/A	
POSTDEC1	2480	2580	4480	4580	N/A	N/A	N/A	
PREINC1	2480	2580	4480	4580	N/A	N/A	N/A	
PLUSW1	2480	2580	4480	4580	N/A	N/A	N/A	
FSR1H	2480	2580	4480	4580	0000	0000	uuuu	
FSR1L	2480	2580	4480	4580	XXXX XXXX	นนนน นนนน	սսսս սսսս	

TABLE 5-4: INITIALIZATION CONDITIONS FOR ALL REGISTERS

Legend: u = unchanged, x = unknown, - = unimplemented bit, read as '0', q = value depends on condition. Shaded cells indicate conditions do not apply for the designated device.

Note 1: One or more bits in the INTCONx or PIRx registers will be affected (to cause wake-up).

2: When the wake-up is due to an interrupt and the GIEL or GIEH bit is set, the PC is loaded with the interrupt vector (0008h or 0018h).

3: When the wake-up is due to an interrupt and the GIEL or GIEH bit is set, the TOSU, TOSH and TOSL are updated with the current value of the PC. The STKPTR is modified to point to the next location in the hardware stack.

4: See Table 5-3 for Reset value for specific condition.

5: Bits 6 and 7 of PORTA, LATA and TRISA are enabled, depending on the oscillator mode selected. When not enabled as PORTA pins, they are disabled and read '0'.

6: This register reads all '0's until ECAN[™] technology is set up in Mode 1 or Mode 2.

6.1.2.4 Stack Full and Underflow Resets

Device Resets on stack overflow and stack underflow conditions are enabled by setting the STVREN bit in Configuration Register 4L. When STVREN is set, a full or underflow will set the appropriate STKFUL or STKUNF bit and then cause a device Reset. When STVREN is cleared, a full or underflow condition will set the appropriate STKFUL or STKUNF bit but not cause a device Reset. The STKFUL or STKUNF bits are cleared by the user software or a Power-on Reset.

6.1.3 FAST REGISTER STACK

A Fast Register Stack is provided for the STATUS, WREG and BSR registers, to provide a "fast return" option for interrupts. Each stack is only one level deep and is neither readable nor writable. It is loaded with the current value of the corresponding register when the processor vectors for an interrupt. All interrupt sources will push values into the stack registers. The values in the registers are then loaded back into their associated registers, if the RETFIE, FAST instruction is used to return from the interrupt.

If both low and high-priority interrupts are enabled, the stack registers cannot be used reliably to return from low-priority interrupts. If a high-priority interrupt occurs while servicing a low-priority interrupt, the stack register values stored by the low-priority interrupt will be overwritten. In these cases, users must save the key registers in software during a low-priority interrupt.

If interrupt priority is not used, all interrupts may use the Fast Register Stack for returns from interrupt. If no interrupts are used, the Fast Register Stack can be used to restore the STATUS, WREG and BSR registers at the end of a subroutine call. To use the Fast Register Stack for a subroutine call, a CALL label, FAST instruction must be executed to save the STATUS, WREG and BSR registers to the Fast Register Stack. A RETURN, FAST instruction is then executed to restore these registers from the Fast Register Stack.

Example 6-1 shows a source code example that uses the Fast Register Stack during a subroutine call and return.

EXAMPLE 6-1: FAST REGISTER STACK CODE EXAMPLE

		-
CALL	SUB1, FAST	;STATUS, WREG, BSR ;SAVED IN FAST REGISTER ;STACK
0110-1	•	
SUB1	• RETURN, FAST	RESTORE VALUES SAVED
		;IN FAST REGISTER STACK

6.1.4 LOOK-UP TABLES IN PROGRAM MEMORY

There may be programming situations that require the creation of data structures, or look-up tables, in program memory. For PIC18 devices, look-up tables can be implemented in two ways:

- Computed GOTO
- Table Reads

6.1.4.1 Computed GOTO

A computed GOTO is accomplished by adding an offset to the program counter. An example is shown in Example 6-2.

A look-up table can be formed with an ADDWF PCL instruction and a group of RETLW nn instructions. The W register is loaded with an offset into the table before executing a call to that table. The first instruction of the called routine is the ADDWF PCL instruction. The next instruction executed will be one of the RETLW nn instructions, that returns the value 'nn' to the calling function.

The offset value (in WREG) specifies the number of bytes that the program counter should advance and should be multiples of 2 (LSb = 0).

In this method, only one data byte may be stored in each instruction location and room on the return address stack is required.

EXAMPLE 6-2: COMPUTED GOTO USING AN OFFSET VALUE

	MOVF CALL	OFFSET, TABLE	W
	CALL	IADLL	
ORG	nn00h		
TABLE	ADDWF	PCL	
	RETLW	nnh	
	RETLW	nnh	
	RETLW	nnh	
	•		
	•		
	•		

6.1.4.2 Table Reads and Table Writes

A better method of storing data in program memory allows two bytes of data to be stored in each instruction location.

Look-up table data may be stored two bytes per program word by using table reads and writes. The Table Pointer (TBLPTR) register specifies the byte address and the Table Latch (TABLAT) register contains the data that is read from or written to program memory. Data is transferred to or from program memory one byte at a time.

Table read and table write operations are discussed further in Section 7.1 "Table Reads and Table Writes".

File Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Details on Page:
TOSU	_	_		Top-of-Stack	Upper Byte (To	DS<20:16>)			0 0000	55, 68
TOSH	Top-of-Stack High Byte (TOS<15:8>)								0000 0000	55, 68
TOSL	Top-of-Stack L	ow Byte (TOS	<7:0>)						0000 0000	55, 68
STKPTR	STKFUL	STKUNF	—	Return Stack	Pointer				00-0 0000	55, 69
PCLATU	_	—	bit 21 ⁽¹⁾	Holding Regi	ister for PC<20	:16>			0 0000	55, 68
PCLATH	Holding Regist	ter for PC<15:8	}>						0000 0000	55, 68
PCL	PC Low Byte ((PC<7:0>)							0000 0000	55, 68
TBLPTRU	—	_	bit 21	Program Mer	mory Table Poi	nter Upper Byte	(TBLPTR<20:10	6>)	00 0000	55, 109
TBLPTRH	Program Mem	ory Table Poin	ter High Byte	(TBLPTR<15	:8>)				0000 0000	55, 109
TBLPTRL	Program Mem	ory Table Poin	ter Low Byte	(TBLPTR<7:0	>)				0000 0000	55, 109
TABLAT	Program Mem	ory Table Latcl	า						0000 0000	55, 109
PRODH	Product Regis	ter High Byte							XXXX XXXX	55, 117
PRODL	Product Regis	ter Low Byte							XXXX XXXX	55, 117
INTCON	GIE/GIEH	PEIE/GIEL	TMR0IE	INT0IE	RBIE	TMR0IF	INTOIF	RBIF	0000 000x	55, 121
INTCON2	RBPU	INTEDG0	INTEDG1	INTEDG2	_	TMR0IP	_	RBIP	1111 -1-1	55, 122
INTCON3	INT2IP	INT1IP	_	INT2IE	INT1IE	—	INT2IF	INT1IF	11-0 0-00	55, 123
INDF0	Uses contents of FSR0 to address data memory – value of FSR0 not changed (not a physical register)							N/A	55, 96	
POSTINC0	Uses contents of FSR0 to address data memory – value of FSR0 post-incremented (not a physical register)							ster)	N/A	55, 97
POSTDEC0	Uses contents of FSR0 to address data memory – value of FSR0 post-decremented (not a physical register)							ister)	N/A	55, 97
PREINC0	Uses contents of FSR0 to address data memory – value of FSR0 pre-incremented (not a physical register)							ter)	N/A	55, 97
PLUSW0	Uses contents FSR0 offset by		dress data m	emory – value	of FSR0 pre-ir	cremented (not a	a physical regis	ter), value of	N/A	55, 97
FSR0H	-	-		—	Indirect Data I	Memory Address	Pointer 0 High		xxxx	55, 96
FSR0L	Indirect Data N	Memory Addres	ss Pointer 0 L	ow Byte					XXXX XXXX	55, 96
WREG	Working Regis	ster							XXXX XXXX	55
INDF1	Uses contents	of FSR1 to ad	dress data m	emory – value	of FSR1 not ch	nanged (not a ph	ysical register)		N/A	55, 96
POSTINC1	Uses contents	of FSR1 to ad	dress data m	emory – value	of FSR1 post-i	ncremented (not	a physical regi	ster)	N/A	55, 97
POSTDEC1	Uses contents	of FSR1 to ad	dress data m	emory – value	of FSR1 post-	decremented (no	t a physical reg	jister)	N/A	55, 97
PREINC1	Uses contents	of FSR1 to ad	dress data m	emory – value	of FSR1 pre-in	cremented (not	a physical regis	ter)	N/A	55, 97
PLUSW1	Uses contents FSR1 offset by		dress data m	emory – value	of FSR1 pre-ir	cremented (not a	a physical regis	ter), value of	N/A	55, 97
FSR1H	_	_	_	_	Indirect Data I	Memory Address	Pointer 1 High		xxxx	55, 96
FSR1L	Indirect Data N	Memory Addres	s Pointer 1 L	ow Byte					XXXX XXXX	55, 96
BSR	_	_	_	_	Bank Select R	legister			0000	56, 73
INDF2	Uses contents	of FSR2 to ad	dress data m	emory – value	of FSR2 not cl	nanged (not a ph	ysical register)		N/A	56, 96
POSTINC2	Uses contents	of FSR2 to ad	dress data m	emory – value	of FSR2 post-i	ncremented (not	a physical regi	ster)	N/A	56, 97
POSTDEC2	Uses contents	of FSR2 to ad	dress data m	emory – value	of FSR2 post-	decremented (no	t a physical reg	ister)	N/A	56, 97
PREINC2	Uses contents	of FSR2 to ad	dress data m	emory – value	of FSR2 pre-in	cremented (not	a physical regis	ter)	N/A	56, 97
PLUSW2	Uses contents FSR2 offset by		dress data m	emory – value	of FSR2 pre-ir	cremented (not a	a physical regis	ter), value of	N/A	56, 97

Legend: x = unknown, u = unchanged, – = unimplemented, q = value depends on condition

Note 1: Bit 21 of the PC is only available in Test mode and Serial Programming modes.

2: The SBOREN bit is only available when CONFIG2L<1:0> = 01; otherwise, it is disabled and reads as '0'. See Section 5.4 "Brown-out Reset (BOR)".

3: These registers and/or bits are not implemented on PIC18F2X80 devices and are read as '0'. Reset values are shown for PIC18F4X80 devices; individual unimplemented bits should be interpreted as '--'.

4: The PLLEN bit is only available in specific oscillator configuration; otherwise, it is disabled and reads as '0'. See Section 3.6.4 "PLL in INTOSC Modes".

5: The RE3 bit is only available when Master Clear Reset is disabled (CONFIG3H<7> = 0); otherwise, RE3 reads as '0'. This bit is read-only.

6: RA6/RA7 and their associated latch and direction bits are individually configured as port pins based on various primary oscillator modes. When disabled, these bits read as '0'.

7: CAN bits have multiple functions depending on the selected mode of the CAN module.

8: This register reads all '0's until the ECAN™ technology is set up in Mode 1 or Mode 2.

9: These registers are available on PIC18F4X80 devices only.

Mode 0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
Mode U	IRXIF	WAKIF	ERRIF	TXB2IF	TXB1IF ⁽¹⁾	TXB0IF ⁽¹⁾	RXB1IF	RXB0IF
	DAVA	DAMA	D 444 0	DAAAA	D 444 0	D /// 0	D /// 0	DAMA
Mode 1,2	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0 TXB1IF ⁽¹⁾	R/W-0 TXB0IF ⁽¹⁾	R/W-0	R/W-0
	IRXIF bit 7	WAKIF	ERRIF	TXBnlF	1XB1IF(7)	I XBUIF(1)	RXBnlF	bit
	Dit 1							Dit
Legend:								
R = Readal	ole bit		W = Writabl	e bit	U = Unimple	emented bit, r	ead as '0'	
-n = Value a	at POR		'1' = Bit is s	et	ʻ0' = Bit is cl	eared	x = Bit is ur	nknown
bit 7	1 = An inval	Invalid Rece lid message h lid message c	nas occurred		-			
bit 6	1 = Activity	N bus Activity on CAN bus I vity on CAN b	has occurred	terrupt Flag	bit			
bit 5	1 = An error	N bus Error Ir r has occurre I module erro	d in the CAN		ltiple sources))		
bit 4	TXB2IF: CA1 = Transm0 = TransmWhen CAN		s completed ⁻ s not comple or 2:	transmission ted transmis	n of a messag ssion of a mes		reloaded	
bit 3	1 = One or 0 = No tran		it buffers hav ready for relo	e completed	I transmission	of a message	e and may b	e reloaded
bit 5	1 = Transmi	it Buffer 1 has	s completed t	ransmission	of a message sion of a mess		reloaded	
bit 2	1 = Transmi		s completed t	ransmission	1) I of a message sion of a mess		reloaded	
bit 1	When CAN RXB1IF: CA 1 = Receive 0 = Receive When CAN RXBnIF: An 1 = One or a	is in Mode 0: AN Receive B Buffer 1 has Buffer 1 has is in Mode 1 Ny Receive Bu more receive ive buffer has	uffer 1 Interru received a n not received o <u>r 2:</u> uffer Interrupt buffers has r	upt Flag bit ew message a new mess Flag bit eceived a ne	e sage ew message			
bit 0	RXB0IF: CA 1 = Receive 0 = Receive When CAN	is in Mode 0: AN Receive B Buffer 0 has Buffer 0 has is in Mode 1: ented: Read a	received a n not received	ew message				

REGISTER 10-6: PIR3: PERIPHERAL INTERRUPT REQUEST (FLAG) REGISTER 3

Note 1: In CAN Mode 1 and 2, these bits are forced to '0'.

Pin Name	Function	I/O	TRIS	Buffer	Description
RB0/INT0/FLT0/AN10	RB0	OUT	0	DIG	LATB<0> data output.
		IN	1	TTL	PORTB<0> data input. Weak pull-up available only in this mode.
	INT0	IN	1	ST	External Interrupt 0 input.
	FLT0 ⁽¹⁾	IN	1	ST	Enhanced PWM Fault input.
	AN10	IN	1	ANA	A/D Input Channel 10. Enabled on POR, this analog input overrides the digital input (read as clear – low level).
RB1/INT1/AN8	RB1	OUT	0	DIG	LATB<1> data output.
		IN	1	TTL	PORTB<1> data input. Weak pull-up available only in this mode.
	INT1	IN	1	ST	External Interrupt 1 input.
	AN8	IN	1	ANA	A/D Input Channel 8. Enabled on POR; this analog input overrides the digital input (read as clear – low level).
RB2/INT2/CANTX	RB2	OUT	х	DIG	LATB<2> data output.
		IN	1	TTL	PORTB<2> data input. Weak pull-up available only in this mode.
	INT2	IN	1	ST	External Interrupt 2 input.
	CANTX	OUT	1	DIG	CAN transmit signal output. The CAN interface overrides the TRIS<2> control when enabled.
RB3/CANRX	RB3	OUT	0	DIG	LATB<3> data output.
		IN	1	TTL	PORTB<3> data input. Weak pull-up available only in this mode.
	CANRX	IN	1	ST	CAN receive signal input. Pin must be configured as a digital input b setting TRISB<3>.
RB4/KBI0/AN9	RB4	OUT	0	DIG	LATB<4> data output.
		IN	1	TTL	PORTB<4> data input. Weak pull-up available only in this mode.
	KBI0	IN	1	TTL	Interrupt-on-pin change.
	AN9	IN	1	ANA	A/D Input Channel 9. Enabled on POR; this analog input overrides the digital input (read as clear – low level).
RB5/KBI1/PGM	RB5	OUT	0	DIG	LATB<5> data output.
		IN	1	TTL	PORTB<5> data input. Weak pull-up available only in this mode.
	KBI1	IN	1	TTL	Interrupt-on-pin change.
	PGM	IN	х	ST	Low-Voltage Programming mode entry (ICSP™). Enabling this function overrides digital output.
RB6/KBI2/PGC	RB6	OUT	0	DIG	LATB<6> data output.
		IN	1	TTL	PORTB<6> data input. Weak pull-up available only in this mode.
	KBI2	IN	1	TTL	Interrupt-on-pin change.
	PGC	IN	Х	ST	Low-Voltage Programming mode entry (ICSP) clock input.
RB7/KBI3/PGD	RB7	OUT	0	DIG	LATB<7> data output.
		IN	1	TTL	PORTB<7> data input. Weak pull-up available only in this mode.
	KBI3	IN	1	TTL	Interrupt-on-pin change.
	PGD	OUT	х	DIG	Low-Voltage Programming mode entry (ICSP) clock output.
		IN	х	ST	Low-Voltage Programming mode entry (ICSP) clock input.

TABLE 11-3: PORTB I/O SUMMARY

Legend: OUT = Output, IN = Input, ANA = Analog Signal, DIG = Digital Output, ST = Schmitt Buffer Input, TTL = TTL Buffer Input Note 1: Available on 40/44-pin devices only.

18.4.3.2 Reception

When the R/W bit of the address byte is clear and an address match occurs, the R/W bit of the SSPSTAT register is cleared. The received address is loaded into the SSPBUF register and the SDA line is held low (ACK).

When the address byte overflow condition exists, then the no Acknowledge (ACK) pulse is given. An overflow condition is defined as either bit, BF (SSPSTAT<0>), is set, or bit, SSPOV (SSPCON1<6>), is set.

An MSSP interrupt is generated for each data transfer byte. Flag bit, SSPIF (PIR1<3>), must be cleared in software. The SSPSTAT register is used to determine the status of the byte.

If SEN is enabled (SSPCON2<0> = 1), RC3/SCK/SCL will be held low (clock stretch) following each data transfer. The clock must be released by setting bit, CKP (SSPCON<4>). See **Section 18.4.4** "Clock **Stretching**" for more details.

18.4.3.3 Transmission

When the R/W bit of the incoming address byte is set and an address match occurs, the R/W bit of the SSPSTAT register is set. The received address is loaded into the SSPBUF register. The ACK pulse will be sent on the ninth bit and pin RC3/SCK/SCL is held low regardless of SEN (see Section 18.4.4 "Clock Stretching" for more details). By stretching the clock, the master will be unable to assert another clock pulse until the slave is done preparing the transmit data. The transmit data must be loaded into the SSPBUF register which also loads the SSPSR register. Then, the RC3/ SCK/SCL pin should be enabled by setting bit, CKP (SSPCON1<4>). The eight data bits are shifted out on the falling edge of the SCL input. This ensures that the SDA signal is valid during the SCL high time (Figure 18-9).

The ACK pulse from the master-receiver is latched on the rising edge of the ninth SCL input pulse. If the SDA line is high (not ACK), then the data transfer is complete. In this case, when the ACK is latched by the slave, the slave logic is reset and the slave monitors for another occurrence of the Start bit. If the SDA line was low (ACK), the next transmit data must be loaded into the SSPBUF register. Again, pin, RC3/SCK/SCL, must be enabled by setting bit, CKP.

An MSSP interrupt is generated for each data transfer byte. The SSPIF bit must be cleared in software and the SSPSTAT register is used to determine the status of the byte. The SSPIF bit is set on the falling edge of the ninth clock pulse.

REGISTER 24-9: TXBnEIDL: TRANSMIT BUFFER n EXTENDED IDENTIFIER REGISTERS, LOW BYTE $[0 \le n \le 2]$

	-	•	•				
R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
EID7	EID6	EID5	EID4	EID3	EID2	EID1	EID0
bit 7							bit 0
Legend:							

R = Readable bit	W = Writable bit	U = Unimplemented bit,	read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 7-0 **EID<7:0>:** Extended Identifier bits (not used when transmitting standard identifier message)

REGISTER 24-10: TXBnDm: TRANSMIT BUFFER n DATA FIELD BYTE m REGISTERS [0 \leq n \leq 2, 0 \leq m \leq 7]

| R/W-x |
|---------|---------|---------|---------|---------|---------|---------|---------|
| TXBnDm7 | TXBnDm6 | TXBnDm5 | TXBnDm4 | TXBnDm3 | TXBnDm2 | TXBnDm1 | TXBnDm0 |
| bit 7 | | | | | | | bit 0 |

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	d as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 7-0 **TXBnDm<7:0>:** Transmit Buffer n Data Field Byte m bits (where 0 ≤ n < 3 and 0 ≤ m < 8) Each transmit buffer has an array of registers. For example, Transmit Buffer 0 has 7 registers: TXB0D0 to TXB0D7.

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
FIL11_1	FIL11_0	FIL10_1	FIL10_0	FIL9_1	FIL9_0	FIL8_1	FIL8_0
bit 7							bit 0
Legend:							
R = Readabl	e bit	W = Writable	bit	U = Unimpler	mented bit, read	d as '0'	
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cle	eared	x = Bit is unkr	iown
bit 7-6 bit 5-4	11 = No mask 10 = Filter 15 01 = Acceptar 00 = Acceptar FIL10_<1:0>: 11 = No mask 10 = Filter 15	nce Mask 1 nce Mask 0 Filter 10 Sele					
bit 3-2	01 = Acceptar 00 = Acceptar FIL9_<1:0>: F 11 = No mask 10 = Filter 15 01 = Acceptar	nce Mask 0 Filter 9 Select <	oits 1 and 0				
bit 1-0	00 = Acceptar FIL8_<1:0>: F 11 = No mask 10 = Filter 15 01 = Acceptar 00 = Acceptar	Filter 8 Select < nce Mask 1	bits 1 and 0				

REGISTER 24-50: MSEL2: MASK SELECT REGISTER 2⁽¹⁾

Note 1: This register is available in Mode 1 and 2 only.

REGISTER 24-59: TXBIE: TRANSMIT BUFFERS INTERRUPT ENABLE REGISTER⁽¹⁾

U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	U-0	U-0
—	—		TXB2IE ⁽²⁾	TXB1IE ⁽²⁾	TXB0IE ⁽²⁾	_	—
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	l as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 7-5	Unimplemented: Read as '0'
bit 4-2	TXB2IE:TXB0IE: Transmit Buffer 2-0 Interrupt Enable bits ⁽²⁾
	1 = Transmit buffer interrupt is enabled
	0 = Transmit buffer interrupt is disabled
bit 1-0	Unimplemented: Read as '0'

Note 1: This register is available in Mode 1 and 2 only.

2: TXBnIE in PIE3 register must be set to get an interrupt.

REGISTER 24-60: BIE0: BUFFER INTERRUPT ENABLE REGISTER 0⁽¹⁾

R/W-0	R/W-0						
B5IE ⁽²⁾	B4IE ⁽²⁾	B3IE ⁽²⁾	B2IE ⁽²⁾	B1IE ⁽²⁾	B0IE ⁽²⁾	RXB1IE ⁽²⁾	RXB0IE ⁽²⁾
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit,	read as '0'
n = Value at POR (1' = Bit is set		'0' = Bit is cleared	x = Bit is unknown

bit 7-2 B5IE:B0IE: Programmable Transmit/Receive Buffer 5-0 Interrupt Enable bits⁽²⁾ 1 = Interrupt is enabled 0 = Interrupt is disabled bit 1-0 RXB1IE:RXB0IE: Dedicated Receive Buffer 1-0 Interrupt Enable bits⁽²⁾ 1 = Interrupt is enabled

0 = Interrupt is disabled

Note 1: This register is available in Mode 1 and 2 only.

2: Either TXBnIE or RXBnIE in the PIE3 register must be set to get an interrupt.

TABLE 24-1: CAN CONTROLLER REGISTER MAP

Address ⁽¹⁾	Name	Address	Name	Address	Name	Address	Name
F7Fh	SPBRGH ⁽³⁾	F5Fh	CANCON_RO0	F3Fh	CANCON_RO2	F1Fh	RXM1EIDL
F7Eh	BAUDCON ⁽³⁾	F5Eh	CANSTAT_RO0	F3Eh	CANSTAT_RO2	F1Eh	RXM1EIDH
F7Dh	(4)	F5Dh	RXB1D7	F3Dh	TXB1D7	F1Dh	RXM1SIDL
F7Ch	(4)	F5Ch	RXB1D6	F3Ch	TXB1D6	F1Ch	RXM1SIDH
F7Bh	(4)	F5Bh	RXB1D5	F3Bh	TXB1D5	F1Bh	RXM0EIDL
F7Ah	(4)	F5Ah	RXB1D4	F3Ah	TXB1D4	F1Ah	RXM0EIDH
F79h	ECCP1DEL ⁽³⁾	F59h	RXB1D3	F39h	TXB1D3	F19h	RXM0SIDL
F78h	(4)	F58h	RXB1D2	F38h	TXB1D2	F18h	RXM0SIDH
F77h	ECANCON	F57h	RXB1D1	F37h	TXB1D1	F17h	RXF5EIDL
F76h	TXERRCNT	F56h	RXB1D0	F36h	TXB1D0	F16h	RXF5EIDH
F75h	RXERRCNT	F55h	RXB1DLC	F35h	TXB1DLC	F15h	RXF5SIDL
F74h	COMSTAT	F54h	RXB1EIDL	F34h	TXB1EIDL	F14h	RXF5SIDH
F73h	CIOCON	F53h	RXB1EIDH	F33h	TXB1EIDH	F13h	RXF4EIDL
F72h	BRGCON3	F52h	RXB1SIDL	F32h	TXB1SIDL	F12h	RXF4EIDH
F71h	BRGCON2	F51h	RXB1SIDH	F31h	TXB1SIDH	F11h	RXF4SIDL
F70h	BRGCON1	F50h	RXB1CON	F30h	TXB1CON	F10h	RXF4SIDH
F6Fh	CANCON	F4Fh	CANCON_RO1 ⁽²⁾	F2Fh	CANCON_RO3 ⁽²⁾	F0Fh	RXF3EIDL
F6Eh	CANSTAT	F4Eh	CANSTAT_RO1 ⁽²⁾	F2Eh	CANSTAT_RO3 ⁽²⁾	F0Eh	RXF3EIDH
F6Dh	RXB0D7	F4Dh	TXB0D7	F2Dh	TXB2D7	F0Dh	RXF3SIDL
F6Ch	RXB0D6	F4Ch	TXB0D6	F2Ch	TXB2D6	F0Ch	RXF3SIDH
F6Bh	RXB0D5	F4Bh	TXB0D5	F2Bh	TXB2D5	F0Bh	RXF2EIDL
F6Ah	RXB0D4	F4Ah	TXB0D4	F2Ah	TXB2D4	F0Ah	RXF2EIDH
F69h	RXB0D3	F49h	TXB0D3	F29h	TXB2D3	F09h	RXF2SIDL
F68h	RXB0D2	F48h	TXB0D2	F28h	TXB2D2	F08h	RXF2SIDH
F67h	RXB0D1	F47h	TXB0D1	F27h	TXB2D1	F07h	RXF1EIDL
F66h	RXB0D0	F46h	TXB0D0	F26h	TXB2D0	F06h	RXF1EIDH
F65h	RXB0DLC	F45h	TXB0DLC	F25h	TXB2DLC	F05h	RXF1SIDL
F64h	RXB0EIDL	F44h	TXB0EIDL	F24h	TXB2EIDL	F04h	RXF1SIDH
F63h	RXB0EIDH	F43h	TXB0EIDH	F23h	TXB2EIDH	F03h	RXF0EIDL
F62h	RXB0SIDL	F42h	TXB0SIDL	F22h	TXB2SIDL	F02h	RXF0EIDH
F61h	RXB0SIDH	F41h	TXB0SIDH	F21h	TXB2SIDH	F01h	RXF0SIDL
F60h	RXB0CON	F40h	TXB0CON	F20h	TXB2CON	F00h	RXF0SIDH

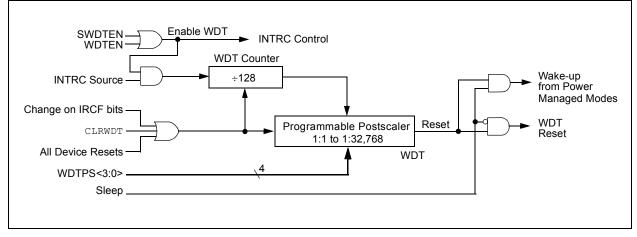
Note 1: Shaded registers are available in Access Bank low area, while the rest are available in Bank 15.

2: CANSTAT register is repeated in these locations to simplify application firmware. Unique names are given for each instance of the controller register due to the Microchip header file requirement.

3: These registers are not CAN registers.

4: Unimplemented registers are read as '0'.

25.2 Watchdog Timer (WDT)


For PIC18F2480/2580/4480/4580 devices, the WDT is driven by the INTRC source. When the WDT is enabled, the clock source is also enabled. The nominal WDT period is 4 ms and has the same stability as the INTRC oscillator.

The 4 ms period of the WDT is multiplied by a 16-bit postscaler. Any output of the WDT postscaler is selected by a multiplexer, controlled by bits in Configuration Register 2H. Available periods range from 4 ms to 131.072 seconds (2.18 minutes). The WDT and postscaler are cleared when any of the following events occur: a SLEEP or CLRWDT instruction is executed, the IRCF bits (OSCCON<6:4>) are changed or a clock failure has occurred.

- Note 1: The CLRWDT and SLEEP instructions clear the WDT and postscaler counts when executed.
 - 2: Changing the setting of the IRCF bits (OSCCON<6:4>) clears the WDT and postscaler counts.
 - **3:** When a CLRWDT instruction is executed, the postscaler count will be cleared.

25.2.1 CONTROL REGISTER

Register 25-14 shows the WDTCON register. This is a readable and writable register which contains a control bit that allows software to override the WDT enable Configuration bit, but only if the Configuration bit has disabled the WDT.

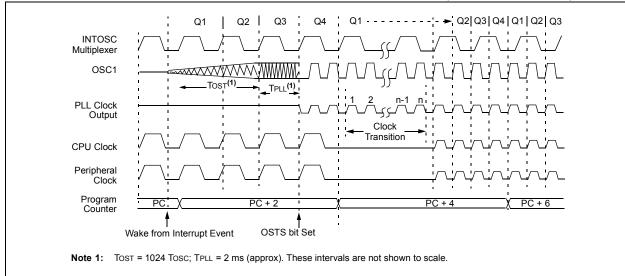
FIGURE 25-1: WDT BLOCK DIAGRAM

25.3 Two-Speed Start-up

The Two-Speed Start-up feature helps to minimize the latency period from oscillator start-up to code execution by allowing the microcontroller to use the INTRC oscillator as a clock source until the primary clock source is available. It is enabled by setting the IESO Configuration bit.

Two-Speed Start-up should be enabled only if the primary oscillator mode is LP, XT, HS or HSPLL (Crystal-Based modes). Other sources do not require an Oscillator Start-up Timer delay; for these, Two-Speed Start-up should be disabled.

When enabled, Resets and wake-ups from Sleep mode cause the device to configure itself to run from the internal oscillator block as the clock source, following the time-out of the Power-up Timer after a Power-on Reset is enabled. This allows almost immediate code execution while the primary oscillator starts and the OST is running. Once the OST times out, the device automatically switches to PRI_RUN mode.


Because the OSCCON register is cleared on Reset events, the INTOSC (or postscaler) clock source is not initially available after a Reset event; the INTRC clock is used directly at its base frequency. To use a higher clock speed on wake-up, the INTOSC or postscaler clock sources can be selected to provide a higher clock speed by setting bits, IRCF<2:0>, immediately after Reset. For wake-ups from Sleep, the INTOSC or postscaler clock sources can be selected by setting the IRCF2:IRCF0 bits prior to entering Sleep mode.

In all other power-managed modes, Two-Speed Start-up is not used. The device will be clocked by the currently selected clock source until the primary clock source becomes available. The setting of the IESO bit is ignored.

25.3.1 SPECIAL CONSIDERATIONS FOR USING TWO-SPEED START-UP

While using the INTRC oscillator in Two-Speed Start-up, the device still obeys the normal command sequences for entering power-managed modes, including serial SLEEP instructions (refer to **Section 4.1.4 "Multiple Sleep Commands"**). In practice, this means that user code can change the SCS<1:0> bit settings or issue SLEEP instructions before the OST times out. This would allow an application to briefly wake-up, perform routine "housekeeping" tasks and return to Sleep before the device starts to operate from the primary oscillator.

User code can also check if the primary clock source is currently providing the device clocking by checking the status of the OSTS bit (OSCCON<3>). If the bit is set, the primary oscillator is providing the clock. Otherwise, the internal oscillator block is providing the clock during wake-up from Reset or Sleep mode.

FIGURE 25-2: TIMING TRANSITION FOR TWO-SPEED START-UP (INTOSC TO HSPLL)

SLEEP	Enter Sle	eep mode		SUBFWB	Subtract	f from W w	ith Borrow	
Syntax:	SLEEP			Syntax:	SUBFWB	f {,d {,a}}		
Operands:	None			Operands:	$0 \le f \le 255$	5		
Operation:	$00h \rightarrow WE$				d ∈ [0,1] a ∈ [0,1]			
	$0 \rightarrow WDT$ $1 \rightarrow TO$,	postscaler,		Operation		$(\overline{C}) \rightarrow \text{dest}$		
	$1 \rightarrow 10, \\ 0 \rightarrow PD$			Operation: Status Affected:				
Status Affected:	TO, PD				N, OV, C,			
Encoding:	0000	0000 000	0 0011	Encoding:	0101	01da ff		
Description:	The Power-Down Status bit (PD) is cleared. The Time-out Status bit (TO) is set. Watchdog Timer and its postscaler are cleared.		Description:	(borrow) fi method). I in W. If 'd' register 'f'	Subtract register 'f' and Carry flag (borrow) from W (2's complement method). If 'd' is '0', the result is stored in W. If 'd' is '1', the result is stored in register 'f'.			
	with the os	ssor is put into scillator stoppe				the BSR is use	nk is selected. d to select the	
Words:	1					 and the extenc	led instruction	
Cycles:	1						ction operates	
Q Cycle Activity:			<u>.</u>			Literal Offset \therefore never f \leq 95 (5		
Q1 Decode	Q2 No	Q3 Process	Q4 Go to		Section 2	6.2.3 "Byte-O	riented and	
Decode	operation	Data	Sleep			ed Instruction fset Mode" for	ns in Indexed details.	
Example:	SLEEP			Words:	1			
Before Instruc				Cycles:	1			
TO =	?			Q Cycle Activity:				
PD =	?			Q1	Q2	Q3	Q4	
After Instructio				Decode	Read	Process	Write to	
<u>TO</u> = PD =	1 † 0				register 'f'	Data	destination	
				Example 1:	SUBFWB	REG, 1, 0)	
† If WDT causes	wake-up, this t	oit is cleared.		Before Instruc REG	= 3			
				W	= 2 = 1			
				After Instruction	-			
				REG	= FF			
				W C	= 2 = 0			
				Z N	= 0 = 1 · re	sult is negativ	e	
				Example 2:	SUBFWB	REG, 0, C		
				Before Instruc				
				REG W	= 2 = 5			
				С	= 1			
				After Instructio REG				
				W	= 2 = 3			
				C Z	= 1 = 0			
				N		sult is positive	•	

Example 3:

Before Instruction REG W C

After Instruction

REG W C Z N

SUBFWB REG, 1, 0

; result is zero

1 2 0 = = =

=

26.2 Extended Instruction Set

In addition to the standard 75 instructions of the PIC18 instruction set, PIC18F2480/2580/4480/4580 devices also provide an optional extension to the core CPU functionality. The added features include eight additional instructions that augment indirect and indexed addressing operations and the implementation of Indexed Literal Offset Addressing mode for many of the standard PIC18 instructions.

The additional features are disabled by default. To enable them, users must set the XINST Configuration bit.

The instructions in the extended set can all be classified as literal operations, which either manipulate the File Select Registers or use them for indexed addressing. Two of the instructions, ADDFSR and SUBFSR, each have an additional special instantiation for using FSR2. These versions (ADDULNK and SUBULNK) allow for automatic return after execution.

The extended instructions are specifically implemented to optimize re-entrant program code (that is, code that is recursive or that uses a software stack) written in high-level languages, particularly C. Among other things, they allow users working in high-level languages to perform certain operations on data structures more efficiently. These include:

- dynamic allocation and de-allocation of software stack space when entering and leaving subroutines
- function pointer invocation
- software Stack Pointer manipulation
- manipulation of variables located in a software stack

A summary of the instructions in the extended instruction set is provided in Table 26-3. Detailed descriptions are provided in **Section 26.2.2** "**Extended Instruction Set**". The opcode field descriptions in Table 26-1 apply to both the standard and extended PIC18 instruction sets.

Note: The instruction set extension and the Indexed Literal Offset Addressing mode were designed for optimizing applications written in C; the user may likely never use these instructions directly in assembler. The syntax for these commands is provided as a reference for users who may be reviewing code that has been generated by a compiler.

26.2.1 EXTENDED INSTRUCTION SYNTAX

Most of the extended instructions use indexed arguments, using one of the File Select Registers and some offset to specify a source or destination register. When an argument for an instruction serves as part of indexed addressing, it is enclosed in square brackets ("[]"). This is done to indicate that the argument is used as an index or offset. MPASM[™] Assembler will flag an error if it determines that an index or offset value is not bracketed.

When the extended instruction set is enabled, brackets are also used to indicate index arguments in byteoriented and bit-oriented instructions. This is in addition to other changes in their syntax. For more details, see Section 26.2.3.1 "Extended Instruction Syntax with Standard PIC18 Commands".

Note: In the past, square brackets have been used to denote optional arguments in the PIC18 and earlier instruction sets. In this text and going forward, optional arguments are denoted by braces ("{}").

Mnemo	onic,	Description	Cycles	16-Bit Instruction Word				Status
Operands		Description	Cycles	MSb			LSb	Affected
ADDFSR	f, k	Add Literal to FSR	1	1110	1000	ffkk	kkkk	None
ADDULNK	k	Add Literal to FSR2 and Return	2	1110	1000	11kk	kkkk	None
CALLW		Call Subroutine using WREG	2	0000	0000	0001	0100	None
MOVSF	z _s , f _d	Move z _s (source) to 1st word	2	1110	1011	0 z z z	ZZZZ	None
		f _d (destination) 2nd word		1111	ffff	ffff	ffff	
MOVSS	z _s , z _d	Move z _s (source) to 1st word	2	1110	1011	1zzz	ZZZZ	None
		z _d (destination)2nd word		1111	XXXX	XZZZ	ZZZZ	
PUSHL	k	Store Literal at FSR2, Decrement FSR2	1	1110	1010	kkkk	kkkk	None
SUBFSR	f, k	Subtract Literal from FSR	1	1110	1001	ffkk	kkkk	None
SUBULNK	k	Subtract Literal from FSR2 and Return	2	1110	1001	11kk	kkkk	None

TABLE 26-3: EXTENSIONS TO THE PIC18 INSTRUCTION SET

SUBFSR	Subtract	Subtract Literal from FSR				
Syntax:	SUBFSR	f, k				
Operands:	$0 \le k \le 63$					
	f∈[0, 1,	•				
Operation:	FSRf – k	\rightarrow FSRf				
Status Affected:	None					
Encoding:	1110	1001	ffk}	c kkk	k	
Description:	The 6-bit I the conter by 'f'.					
Words:	1					
Cycles:	1					
Q Cycle Activity:						
Q1	Q2	Q3		Q4		
Decode	Read	Proce	SS	Write	to	
	register 'f'	Data	1	destinat	tion	
Example:	SUBFSR :	2, 23h				

	50DF5R 2, 25
Before Instructior	า
FSR2 =	03FFh
After Instruction	
FSR2 =	03DCh

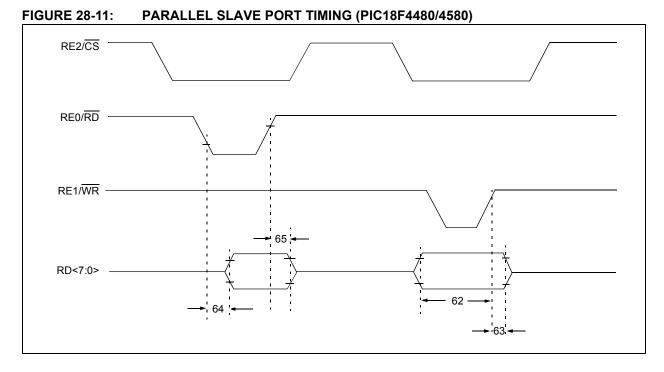
Synta	x:	SUBULN	Κk			
Opera	ands:	$0 \le k \le 63$				
Opera	ation:	$FSR2 - k$ (TOS) \rightarrow	,	R2		
Status	Affected:	None				
Encod	ding:	1110	10	01	11kk	kkkł
	iption:	The instru a NOP is p This may	of the F by load loction ta perform be thou	SR2. ling thakes to ed du	A RETUR e PC wit wo cycles ring the s f as a sp	
Words		the SUBF: '11'); it op 1 2			-	f = 3 (bina
Cycle		'11'); it op 1 2			-	•
Cycle	s:	'11'); it op 1 2	erates	only c	-	•
Cycle	s: vcle Activity	'11'); it op 1 2 y: Q	erates 2 ad	only o	n FSR2.	
Cycle	s: vcle Activity Q1	'11'); it op 1 2 y: Q Rea	erates 2 ad er 'f'	only c Pro	Q3 cess	Q4 Write to

Before Instruction

FSR2	=	03FFh
50		04001

PC = 0100h After Instruction FSR2 = 03DCh PC = (TOS)

 $\ensuremath{\textcircled{}^\circ}$ 2009 Microchip Technology Inc.


28.3 DC Characteristics: PIC18F2480/2580/4480/4580 (Industrial) PIC18LF2480/2580/4480/4580 (Industrial)

DC CH4	ARACTE	RISTICS		erature -40°	$C \le TA \le$	unless otherwise stated) ≤ +85°C for industrial ≤ +125°C for extended
Param No.	Symbol	Characteristic	Min	Мах	Units	Conditions
	VIL	Input Low Voltage				
		I/O Ports:				
D030		with TTL Buffer	Vss	0.15 Vdd	V	VDD < 4.5V
D030A			—	0.8	V	$4.5V \leq V\text{DD} \leq 5.5V$
D031		with Schmitt Trigger Buffer	Vss	0.2 VDD	V	
D031A		RC3 and RC4	Vss	0.3 Vdd	V	I ² C™ enabled
D031B			Vss	0.8	V	SMBus enabled
D032		MCLR	Vss	0.2 Vdd	V	
D033		OSC1	Vss	0.3 VDD	V	HS, HSPLL modes
D033A		OSC1	Vss	0.2 VDD	V	RC, EC modes ⁽¹⁾
D033B		OSC1	Vss	0.3	V	XT, LP modes
D034		T13CKI	Vss	0.3	V	,
	Viн	Input High Voltage				
		I/O Ports:				
D040		with TTL Buffer	0.25 VDD + 0.8V	Vdd	V	VDD < 4.5V
D040A			2.0	Vdd	V	$4.5V \le VDD \le 5.5V$
D041		with Schmitt Trigger Buffer	0.8 Vdd	Vdd	V	
D041A		RC3 and RC4	0.7 Vdd	Vdd	V	I ² C [™] enabled
D041B			2.1	Vdd	V	SMBus enabled, $VDD \ge 3V$
D042		MCLR	0.8 VDD	Vdd	V	,
D043		OSC1	0.7 VDD	VDD	V	HS, HSPLL modes
D043A		OSC1	0.8 VDD	VDD	V	EC mode
D043B		OSC1	0.9 VDD	VDD	V	RC mode ⁽¹⁾
D043C		OSC1	1.6	VDD	V	XT, LP modes
D044		T13CKI	1.6	VDD	V	,
-	lil	Input Leakage Current ^(2,3)	-			
D060		I/O Ports	_	±200	nA	VDD < 5.5V, VSS ≤ VPIN ≤ VDD, Pin at high-impedance
			_	±50	nA	$V_{DD} < 3V$, $V_{SS} \le V_{PIN} \le V_{DD}$, Pin at high-impedance
D061		MCLR	_	±1	μA	$Vss \le VPIN \le VDD$
D063		OSC1	_	±1	μΑ	$VSS \leq VPIN \leq VDD$
2000	IPU	Weak Pull-up Current		<u> </u>	port	
D070	IPURB	PORTB Weak Pull-up Current	50	400	μA	VDD = 5V, VPIN = VSS
		oscillator configuration, the OSC1/Cl				

Note 1: In RC oscillator configuration, the OSC1/CLKI pin is a Schmitt Trigger input. It is not recommended that the PIC[®] device be driven with an external clock while in RC mode.

2: The leakage current on the MCLR pin is strongly dependent on the applied voltage level. The specified levels represent normal operating conditions. Higher leakage current may be measured at different input voltages.

3: Negative current is defined as current sourced by the pin.

TABLE 28-13: PARALLEL SLAVE PORT REQUIREMENTS (PIC18F4480/4580)

Param. No.	Symbol	Characteristic		Min	Max	Units	Conditions
62	TdtV2wrH	Data In Valid before $\overline{WR} \uparrow$ or $\overline{CS} \uparrow$ (setu	p time)	20	_	ns	
63	TwrH2dtl	\overline{WR} \uparrow or \overline{CS} \uparrow to Data–In Invalid	PIC18FXXXX	20	_	ns	
		(hold time)	PIC18LFXXXX	35	—	ns	VDD = 2.0V
64	TRDL2DTV	$\overline{RD} \downarrow and \ \overline{CS} \downarrow to \ Data-Out \ Valid$			80	ns	
65	TRDH2DTI	\overline{RD} \uparrow or \overline{CS} \downarrow to Data–Out Invalid		10	30	ns	
66	TIBFINH	Inhibit of the IBF Flag bit being Cleared fro	m \overline{WR} \uparrow or \overline{CS} \uparrow	_	3 TCY		

RC_IDLE Mode	
RC_RUN Mode	41
RCALL	397
RCON Register	
Bit Status During Initialization	54
Reader Response	
Receiver Warning	347
Register File	
Register File Summary	. 83–93
Registers	
ADCON0 (A/D Control 0)	
ADCON1 (A/D Control 1)	254
ADCON2 (A/D Control 2)	
BAUDCON (Baud Rate Control)	
BIE0 (Buffer Interrupt Enable 0)	324
BnCON (TX/RX Buffer n Control,	
Receive Mode)	300
BnCON (TX/RX Buffer n Control,	
Transmit Mode)	301
BnDLC (TX/RX Buffer n Data Length Code	
in Receive Mode)	306
BnDLC (TX/RX Buffer n Data Length Code	
in Transmit Mode)	307
BnDm (TX/RX Buffer n Data Field Byte m	005
in Receive Mode)	305
BnDm (TX/RX Buffer n Data Field Byte m	205
in Transmit Mode)	305
BnEIDH (TX/RX Buffer n Extended Identifier,	204
High Byte in Receive Mode) BnEIDH (TX/RX Buffer n Extended Identifier,	304
High Byte in Transmit Mode)	304
BnEIDL (TX/RX Buffer n Extended Identifier,	304
Low Byte in Receive Mode)	04 305
BnSIDH (TX/RX Buffer n Standard Identifier,	04, 000
High Byte in Receive Mode)	302
BnSIDH (TX/RX Buffer n Standard Identifier,	
High Byte in Transmit Mode)	302
BnSIDL (TX/RX Buffer n Standard Identifier,	
Low Byte in Receive Mode)	303
BRGCON1 (Baud Rate Control 1)	
BRGCON2 (Baud Rate Control 2)	
BRGCON3 (Baud Rate Control 3)	
BSEL0 (Buffer Select 0)	
CANCON (CAN Control)	
CANSTAT (CAN Status)	283
CCP1CON (Capture/Compare/PWM Control)	
CIOCON (CAN I/O Control)	
CMCON (Comparator Control)	
COMSTAT (CAN Communication Status)	
CONFIG1H (Configuration 1 High)	
CONFIG2H (Configuration 2 High)	
CONFIG2L (Configuration 2 Low)	
CONFIG3H (Configuration 3 High)	
CONFIG4L (Configuration 4 Low)	
CONFIG5H (Configuration 5 High)	
CONFIG5L (Configuration 5 Low)	
CONFIG6H (Configuration 6 High)	
CONFIG6L (Configuration 6 Low)	
CONFIG7H (Configuration 7 High)	
CONFIG7L (Configuration 7 Low)	356
CVRCON (Comparator Voltage	
Reference Control)	
DEVID1 (Device ID 1)	
DEVID2 (Device ID 2)	
ECANCON (Enhanced CAN Control)	200

ECCP1CON (Enhanced
Capture/Compare/PWM Control) 177
ECCP1DEL (ECCP PWM Dead-Band Delay) 187
EECON1 (Data EEPROM Control 1) 103, 112
HLVDCON (HLVD Control) 273
INTCON (Interrupt Control) 121
INTCON2 (Interrupt Control 2) 122
INTCON3 (Interrupt Control 3) 123
IPR1 (Peripheral Interrupt Priority 1)
IPR2 (Peripheral Interrupt Priority 2)
IPR3 (Peripheral Interrupt Priority 3) 132, 323
MSEL0 (Mask Select 0)
MSEL1 (Mask Select 1)
MSEL2 (Mask Select 2)
MSEL3 (Mask Select 3)
OSCCON (Oscillator Control)
OSCTUNE (Oscillator Tuning)
PIE1 (Peripheral Interrupt Enable 1)
PIE2 (Peripheral Interrupt Enable 2)
PIE3 (Peripheral Interrupt Enable 3)
PIR1 (Peripheral Interrupt Request (Flag) 1)
PIR2 (Peripheral Interrupt Request (Flag) 2)
PIR2 (Peripheral Interrupt Request (Flag) 2)
RCON (Reset Control)
RCSTA (Receive Status and Control)
RXB0CON (Receive Buffer 0 Control)
RXB1CON (Receive Buffer 1 Control) 295
RXBnDLC (Receive Buffer n
Data Length Code)
RXBnDm (Receive Buffer n Data Field Byte m) 298
RXBnEIDH (Receive Buffer n
Extended Identifier, High Byte) 297
Extended Identifier, High Byte)
Extended Identifier, High Byte) 297
Extended Identifier, High Byte)