

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	40MHz
Connectivity	CANbus, I ² C, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, HLVD, POR, PWM, WDT
Number of I/O	25
Program Memory Size	32KB (16K x 16)
Program Memory Type	FLASH
EEPROM Size	256 x 8
RAM Size	1.5K x 8
Voltage - Supply (Vcc/Vdd)	2V ~ 5.5V
Data Converters	A/D 8x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	28-SOIC (0.295", 7.50mm Width)
Supplier Device Package	28-SOIC
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic18lf2580-i-so

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

	Pin Number		Din	Buffor	. ,
Pin Name	SPDIP, SOIC	QFN	Туре	Туре	Description
					PORTC is a bidirectional I/O port.
RC0/T1OSO/T13CKI RC0 T1OSO T13CKI	11	8	I/O O I	ST — ST	Digital I/O. Timer1 oscillator output. Timer1/Timer3 external clock input.
RC1/T1OSI RC1 T1OSI	12	9	I/O I	ST CMOS	Digital I/O. Timer1 oscillator input.
RC2/CCP1 RC2 CCP1	13	10	I/O I/O	ST ST	Digital I/O. Capture 1 input/Compare 1 output/PWM1 output.
RC3/SCK/SCL RC3 SCK SCL	14	11	I/O I/O I/O	ST ST I ² C	Digital I/O. Synchronous serial clock input/output for SPI mode. Synchronous serial clock input/output for I ² C™ mode.
RC4/SDI/SDA RC4 SDI SDA	15	12	I/O I I/O	ST ST I ² C	Digital I/O. SPI data in. I ² C data I/O.
RC5/SDO RC5 SDO	16	13	I/O O	SТ —	Digital I/O. SPI data out.
RC6/TX/CK RC6 TX CK	17	14	I/O O I/O	ST — ST	Digital I/O. EUSART asynchronous transmit. EUSART synchronous clock (see related RX/DT).
RC7/RX/DT RC7 RX DT	18	15	I/O I I/O	ST ST ST	Digital I/O. EUSART asynchronous receive. EUSART synchronous data (see related TX/CK).
RE3	_		_	_	See MCLR/VPP/RE3 pin.
Vss	8, 19	5, 16	Р		Ground reference for logic and I/O pins.
Vdd	20	17	Р	—	Positive supply for logic and I/O pins.
Legend: TTL = TTL ST = Sch	. compati mitt Trigg	ble inpi jer inpi	ut ut with (CMOS lev	CMOS = CMOS compatible input or output vels I = Input

TABLE 1-2: PIC18F2480/2580 PINOUT I/O DESCRIPTIONS (CONTINUED)

Ρ = Power

O = Output I^2C = I^2C^{TM} /SMBus input buffer

Din Namo	Pi	n Numl	oer	Pin	Buffer	Description
Fill Nallie	PDIP	QFN	TQFP	Туре	Туре	Description
MCLR/VPP/RE3 MCLR	1	18	18	I	ST	Master Clear (input) or programming voltage (input). Master Clear (Reset) input. This pin is an active-low Reset to the device.
VPP				Р		Programming voltage input.
RE3				Ι	ST	Digital input.
OSC1/CLKI/RA7 OSC1	13	32	30	I	ST	Oscillator crystal or external clock input. Oscillator crystal input or external clock source input. ST buffer when configured in RC mode;
CLKI				I	CMOS	External clock source input. Always associated with pin function OSC1. (See related OSC1/CLKI, OSC2/CLKO pins.)
RA7				I/O	TTL	General purpose I/O pin.
OSC2/CLKO/RA6 OSC2	14	33	31	0	_	Oscillator crystal or clock output. Oscillator crystal output. Connects to crystal or resonator in Crystal Oscillator mode.
CLKO				0	_	In RC mode, OSC2 pin outputs CLKO which has 1/4 the frequency of OSC1 and denotes the instruction cycle rate
RA6				I/O	TTL	General purpose I/O pin.
Legend: TTL = TTL	compat	ible inpu	ut		C	MOS = CMOS compatible input or output
ST = Schr	nitt Trig	ger inpu	it with Cl	MOS le	evels l	= Input
O = Outr	out				Р	= Power

TABLE 1-3: PIC18F4480/4580 PINOUT I/O DESCRIPTIONS

O = Output I^2C = I^2C^{TM} /SMBus input buffer

NOTES:

6.4.3.2 FSR Registers and POSTINC, POSTDEC, PREINC and PLUSW

In addition to the INDF operand, each FSR register pair also has four additional indirect operands. Like INDF, these are "virtual" registers that cannot be indirectly read or written to. Accessing these registers actually accesses the associated FSR register pair, but also performs a specific action on its stored value. They are:

- POSTDEC: accesses the FSR value, then automatically decrements it by 1 afterwards
- POSTINC: accesses the FSR value, then automatically increments it by 1 afterwards
- PREINC: increments the FSR value by 1, then uses it in the operation
- PLUSW: adds the signed value of the W register (range of -127 to 128) to that of the FSR and uses the new value in the operation.

In this context, accessing an INDF register, uses the value in the FSR registers without changing them. Similarly, accessing a PLUSW register gives the FSR value offset by that in the W register; neither value is actually changed in the operation. Accessing the other virtual registers changes the value of the FSR registers.

Operations on the FSRs with POSTDEC, POSTINC and PREINC affect the entire register pair; that is, rollovers of the FSRnL register from FFh to 00h carry over to the FSRnH register. On the other hand, results of these operations do not change the value of any flags in the STATUS register (e.g., Z, N, OV, etc.).

The PLUSW register can be used to implement a form of Indexed Addressing in the data memory space. By manipulating the value in the W register, users can reach addresses that are fixed offsets from pointer addresses. In some applications, this can be used to implement some powerful program control structure, such as software stacks, inside of data memory.

6.4.3.3 Operations by FSRs on FSRs

Indirect Addressing operations that target other FSRs or virtual registers represent special cases. For example, using an FSR to point to one of the virtual registers will not result in successful operations. As a specific case, assume that FSR0H:FSR0L contains FE7h, the address of INDF1. Attempts to read the value of the INDF1 using INDF0 as an operand will return 00h. Attempts to write to INDF1 using INDF0 as the operand will result in a NOP.

On the other hand, using the virtual registers to write to an FSR pair may not occur as planned. In these cases, the value will be written to the FSR pair but without any incrementing or decrementing. Thus, writing to INDF2 or POSTDEC2 will write the same value to the FSR2H:FSR2L.

Since the FSRs are physical registers mapped in the SFR space, they can be manipulated through all direct operations. Users should proceed cautiously when working on these registers, particularly if their code uses Indirect Addressing.

Similarly, operations by Indirect Addressing are generally permitted on all other SFRs. Users should exercise the appropriate caution that they do not inadvertently change settings that might affect the operation of the device.

7.0 FLASH PROGRAM MEMORY

The Flash program memory is readable, writable and erasable, during normal operation over the entire VDD range.

A read from program memory is executed on one byte at a time. A write to program memory is executed on blocks of 8 bytes at a time. Program memory is erased in blocks of 64 bytes at a time. A bulk erase operation may not be issued from user code.

Writing or erasing program memory will cease instruction fetches until the operation is complete. The program memory cannot be accessed during the write or erase, therefore, code cannot execute. An internal programming timer terminates program memory writes and erases.

7.1 Table Reads and Table Writes

In order to read and write program memory, there are two operations that allow the processor to move bytes between the program memory space and the data RAM:

- Table Read (TBLRD)
- Table Write (TBLWT)

The program memory space is 16 bits wide, while the data RAM space is 8 bits wide. Table reads and table writes move data between these two memory spaces through an 8-bit register (TABLAT).

Table read operations retrieve data from program memory and place it into the data RAM space. Figure 7-1 shows the operation of a table read with program memory and data RAM.

Table write operations store data from the data memory space into holding registers in program memory. The procedure to write the contents of the holding registers into program memory is detailed in **Section 7.5 "Writing to Flash Program Memory"**. Figure 7-2 shows the operation of a table write with program memory and data RAM.

Table operations work with byte entities. A table block containing data, rather than program instructions, is not required to be word aligned. Therefore, a table block can start and end at any byte address. If a table write is being used to write executable code into program memory, program instructions will need to be word aligned.

FIGURE 7-1: TABLE READ OPERATION

REGISTER 10-11: IPR2: PERIPHERAL INTERRUPT PRIORITY REGISTER 2 R/W-1 R/W-1 U-0 R/W-1 R/W-1 R/W-1 R/W-1 R/W-1 CMIP⁽¹⁾ ECCP1IP⁽²⁾ OSCFIP EEIP BCLIP **HLVDIP** TMR3IP bit 7 bit 0 Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as '0' -n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown bit 7 **OSCFIP:** Oscillator Fail Interrupt Priority bit 1 = High priority 0 = Low prioritybit 6 **CMIP:** Comparator Interrupt Priority bit⁽¹⁾ 1 = High priority 0 = Low prioritybit 5 Unimplemented: Read as '0' EEIP: Data EEPROM/Flash Write Operation Interrupt Priority bit bit 4 1 = High priority 0 = Low prioritybit 3 BCLIP: Bus Collision Interrupt Priority bit 1 = High priority0 = Low prioritybit 2 HLVDIP: High/Low-Voltage Detect Interrupt Priority bit 1 = High priority 0 = Low prioritybit 1 TMR3IP: TMR3 Overflow Interrupt Priority bit 1 = High priority 0 = Low priority bit 0 ECCP1IP: CCP1 Interrupt Priority bit⁽²⁾ 1 = High priority 0 = Low priority Note 1: This bit is available in PIC18F4X80 devices and reserved in PIC18F2X80 devices.

2: This bit is available in PIC18F4X80 devices only.

NOTES:

23.6 Operation During Sleep

When enabled, the HLVD circuitry continues to operate during Sleep. If the device voltage crosses the trip point, the HLVDIF bit will be set and the device will wake-up from Sleep. Device execution will continue from the interrupt vector address if interrupts have been globally enabled.

23.7 Effects of a Reset

A device Reset forces all registers to their Reset state. This forces the HLVD module to be turned off.

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Reset Values on Page:
HLVDCON	VDIRMAG		IRVST	HLVDEN	HLVDL3	HLVDL2	HLVDL1	HLVDL0	56
INTCON	GIE/GIEH	PEIE/GIEL	TMR0IE	INT0IE	RBIE	TMR0IF	INT0IF	RBIF	55
PIR2	OSCFIF	CMIF	_	EEIF	BCLIF	HLVDIF	TMR3IF	ECCP1IF	58
PIE2	OSCFIE	CMIE		EEIE	BCLIE	HLVDIE	TMR3IE	ECCP1IE	58
IPR2	OSCFIP	CMIP	_	EEIP	BCLIP	HLVDIP	TMR3IP	ECCP1IP	57

TABLE 23-1: REGISTERS ASSOCIATED WITH HIGH/LOW-VOLTAGE DETECT MODULE

Legend: — = unimplemented, read as '0'. Shaded cells are unused by the HLVD module.

EXAMPLE 24-2: WIN AND ICODE BITS USAGE IN INTERRUPT SERVICE ROUTINE TO ACCESS TX/RX BUFFERS (CONTINUED)

ErrorInter	rupt	
BCF	PIR3, ERRIF	; Clear the interrupt flag
		; Handle error.
RETFIE		
TXB2Interr	upt	
BCF	PIR3, TXB2IF	; Clear the interrupt flag
GOTO	AccessBuffer	
TXB1Interr	upt	
BCF	PIR3, TXB1IF	; Clear the interrupt flag
GOTO	AccessBuffer	
TXB0Interr	upt	
BCF	PIR3, TXBOIF	; Clear the interrupt flag
GOTO	AccessBuffer	
RXBlInterr	upt	
BCF	PIR3, RXB1IF	; Clear the interrupt flag
GOTO	Accessbuffer	
RXB0Interr	upt	
BCF	PIR3, RXB0IF	; Clear the interrupt flag
GOTO	AccessBuffer	
AccessBuff	er	; This is either TX or RX interrupt
; Copy	CANSTAT.ICODE bits to CANC	CON.WIN bits
MOVF	TempCANCON, W	; Clear CANCON.WIN bits before copying
		; new ones.
ANDLW	B'11110001'	; Use previously saved CANCON value to
		; make sure same value.
MOVWF	TempCANCON	; Copy masked value back to TempCANCON
MOVF	TempCANSTAT, W	; Retrieve ICODE bits
ANDLW	B'00001110'	; Use previously saved CANSTAT value
		; to make sure same value.
IORWF	TempCANCON	; Copy ICODE bits to WIN bits.
MOVFF	TempCANCON, CANCON	; Copy the result to actual CANCON
; Acce	ss current buffer…	
; User	code	
; Rest	ore CANCON.WIN bits	
MOVF	CANCON, W	; Preserve current non WIN bits
ANDLW	B'11110001'	
IORWF	TempCANCON	; Restore original WIN bits
; Do n	ot need to restore CANSTAT	- it is read-only register.
; Retu	rn from interrupt or check	for another module interrupt source

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
FIL11_1	FIL11_0	FIL10_1	FIL10_0	FIL9_1	FIL9_0	FIL8_1	FIL8_0
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimplei	mented bit, read	l as '0'	
-n = Value at F	POR	'1' = Bit is set		'0' = Bit is cle	eared	x = Bit is unkr	nown
bit 7-6	FIL11_<1:0>:	Filter 11 Selec	t bits 1 and 0				
	11 = No masł	k					
	10 = Filter 15						
	01 = Accepta	nce Mask 1					
bit 5.4		Eilter 10 Selev	ot bits 1 and 0				
bit 3-4	11 = No mask						
	10 = Filter 15	N.					
	01 = Accepta	nce Mask 1					
	00 = Accepta	nce Mask 0					
bit 3-2	FIL9_<1:0>:	Filter 9 Select I	oits 1 and 0				
	11 = No masł	k					
	10 = Filter 15	noo Mook 1					
	01 = Accepta	nce Mask I					
hit 1_0		Filter 8 Select I	nite 1 and 0				
bit 1-0	11 = No mask						
	10 = Filter 15	N.					
	01 = Accepta	nce Mask 1					
	00 = Accepta	nce Mask 0					

REGISTER 24-50: MSEL2: MASK SELECT REGISTER 2⁽¹⁾

Note 1: This register is available in Mode 1 and 2 only.

TABLE 24-1: CAN CONTROLLER REGISTER MAP

Address ⁽¹⁾	Name	Address	Name	Address	Name	Address	Name
F7Fh	SPBRGH ⁽³⁾	F5Fh	CANCON_RO0	F3Fh	CANCON_RO2	F1Fh	RXM1EIDL
F7Eh	BAUDCON ⁽³⁾	F5Eh	CANSTAT_RO0	F3Eh	CANSTAT_RO2	F1Eh	RXM1EIDH
F7Dh	(4)	F5Dh	RXB1D7	F3Dh	TXB1D7	F1Dh	RXM1SIDL
F7Ch	(4)	F5Ch	RXB1D6	F3Ch	TXB1D6	F1Ch	RXM1SIDH
F7Bh	(4)	F5Bh	RXB1D5	F3Bh	TXB1D5	F1Bh	RXM0EIDL
F7Ah	(4)	F5Ah	RXB1D4	F3Ah	TXB1D4	F1Ah	RXM0EIDH
F79h	ECCP1DEL ⁽³⁾	F59h	RXB1D3	F39h	TXB1D3	F19h	RXM0SIDL
F78h	(4)	F58h	RXB1D2	F38h	TXB1D2	F18h	RXM0SIDH
F77h	ECANCON	F57h	RXB1D1	F37h	TXB1D1	F17h	RXF5EIDL
F76h	TXERRCNT	F56h	RXB1D0	F36h	TXB1D0	F16h	RXF5EIDH
F75h	RXERRCNT	F55h	RXB1DLC	F35h	TXB1DLC	F15h	RXF5SIDL
F74h	COMSTAT	F54h	RXB1EIDL	F34h	TXB1EIDL	F14h	RXF5SIDH
F73h	CIOCON	F53h	RXB1EIDH	F33h	TXB1EIDH	F13h	RXF4EIDL
F72h	BRGCON3	F52h	RXB1SIDL	F32h	TXB1SIDL	F12h	RXF4EIDH
F71h	BRGCON2	F51h	RXB1SIDH	F31h	TXB1SIDH	F11h	RXF4SIDL
F70h	BRGCON1	F50h	RXB1CON	F30h	TXB1CON	F10h	RXF4SIDH
F6Fh	CANCON	F4Fh	CANCON_RO1 ⁽²⁾	F2Fh	CANCON_RO3 ⁽²⁾	F0Fh	RXF3EIDL
F6Eh	CANSTAT	F4Eh	CANSTAT_RO1 ⁽²⁾	F2Eh	CANSTAT_RO3 ⁽²⁾	F0Eh	RXF3EIDH
F6Dh	RXB0D7	F4Dh	TXB0D7	F2Dh	TXB2D7	F0Dh	RXF3SIDL
F6Ch	RXB0D6	F4Ch	TXB0D6	F2Ch	TXB2D6	F0Ch	RXF3SIDH
F6Bh	RXB0D5	F4Bh	TXB0D5	F2Bh	TXB2D5	F0Bh	RXF2EIDL
F6Ah	RXB0D4	F4Ah	TXB0D4	F2Ah	TXB2D4	F0Ah	RXF2EIDH
F69h	RXB0D3	F49h	TXB0D3	F29h	TXB2D3	F09h	RXF2SIDL
F68h	RXB0D2	F48h	TXB0D2	F28h	TXB2D2	F08h	RXF2SIDH
F67h	RXB0D1	F47h	TXB0D1	F27h	TXB2D1	F07h	RXF1EIDL
F66h	RXB0D0	F46h	TXB0D0	F26h	TXB2D0	F06h	RXF1EIDH
F65h	RXB0DLC	F45h	TXB0DLC	F25h	TXB2DLC	F05h	RXF1SIDL
F64h	RXB0EIDL	F44h	TXB0EIDL	F24h	TXB2EIDL	F04h	RXF1SIDH
F63h	RXB0EIDH	F43h	TXB0EIDH	F23h	TXB2EIDH	F03h	RXF0EIDL
F62h	RXB0SIDL	F42h	TXB0SIDL	F22h	TXB2SIDL	F02h	RXF0EIDH
F61h	RXB0SIDH	F41h	TXB0SIDH	F21h	TXB2SIDH	F01h	RXF0SIDL
F60h	RXB0CON	F40h	TXB0CON	F20h	TXB2CON	F00h	RXF0SIDH

Note 1: Shaded registers are available in Access Bank low area, while the rest are available in Bank 15.

2: CANSTAT register is repeated in these locations to simplify application firmware. Unique names are given for each instance of the controller register due to the Microchip header file requirement.

3: These registers are not CAN registers.

4: Unimplemented registers are read as '0'.

ADDV	VFC	ADD W a	nd Carry bit	to f	A	IDLW	AND Lite	ral with	W		
Syntax		ADDWFC	f {,d {,a}}		Sy	ntax:	ANDLW	k			
Operar	nds:	$0 \leq f \leq 255$			Op	erands:	$0 \le k \le 255$	i			
		$d \in [0,1]$			Op	eration:	(W) .AND.	$k \rightarrow W$			
Oneret	ioni	a ∈ [0,1]	(C) deat		Sta	tus Affected:	N, Z				
Operat	ION.		$(C) \rightarrow dest$		En	coding:	0000	1011	kkkk	k k	kk
Status	Anected	N,OV, C, D			De	scription:	The conter	nts of W a	re AND	ed with	the
Encodi	ng:	0100	00da II				8-bit literal	'k'. The r	esult is	placed	in W.
Descri	ption:	location 'f'.	If 'd' is '0', the	e result is	Wo	ords:	1				
		placed in V	V. If 'd' is '1', ti	he result is	Су	cles:	1				
		placed in d	ata memory		Q	Cycle Activity:					
		location 1.	he Access Ba	nk is selected		Q1	Q2	Q3		Q4	
		If 'a' is '1', t	he BSR is use	ed to select the		Decode	Read literal	Proce	SS	Write to	W
		GPR bank.					ĸ	Data	a		
		If 'a' is '0' a	and the extend	led instruction	Ev	ample:	A NIDT W	05.Eh			
		in Indexed	Literal Offset	Addressing		Before Instru	ction	UJFII			
		mode wher	never f ≤ 95 (5	Fh). See		W	= A3h				
		Section 26	5.2.3 "Byte-O	riented and		After Instruct	ion				
		Literal Off	set Mode" for	details.		W	= 03h				
Words	:	1									
Cycles	:	1									
Q Cyc	le Activity:										
	Q1	Q2	Q3	Q4							
	Decode	Read	Process	Write to							
		register 'f'	Data	destination							
Examp	le:	ADDWFC	REG, 0,	1							
B	efore Instruc	tion									
	Carry bit RFG	= 1 = 02h									
	W	= 4Dh									
A	tter Instructio	on = 0									
	REG	= 02h									

BNC	;	Branch if	Not Carry		BNN		Branch if	Not Negativ	/e	
Synta	ax:	BNC n	_		Syntax:		BNN n	BNN n		
Oper	ands:	-128 ≤ n ≤ 1	127		Operands	s:	-128 ≤ n ≤ 1	27		
Oper	ation:	if Carry bit i (PC) + 2 + 2	s '0', 2n → PC		Operatior	ו:	if Negative bit is '0', (PC) + 2 + 2n \rightarrow PC			
Statu	is Affected:	None			Status Af	fected:	None			
Enco	oding:	1110	0011 nni	nn nnnn	Encoding	:	1110	0111 nn:	nn nnnn	
Desc	Description: If the Carry bit is '0', then the program will branch.			Descriptio	on:	If the Negat program wi	ive bit is '0', th I branch.	nen the		
		The 2's con added to th have increm instruction, PC + 2 + 2r two-cycle in	nplement num e PC. Since the nented to fetche the new addree n. This instruct nstruction.	ber '2n' is ne PC will n the next ess will be tion is then a			The 2's con added to the incrementer instruction, PC + 2 + 2r two-cycle in	nplement num e PC. Since th d to fetch the r the new addre n. This instruct istruction.	ber '2n' is e PC will have next ess will be tion is then a	
Word	ds:	1			Words:		1			
Cycle	es:	1(2)			Cycles:		1(2)			
Q C If Ju	ycle Activity:				Q Cycle	Activity:				
	Q1	Q2	Q3	Q4		Q1	Q2	Q3	Q4	
	Decode	Read literal 'n'	Process Data	Write to PC	D	ecode	Read literal 'n'	Process Data	Write to PC	
	No	No	No	No		No	No	No	No	
	operation	operation	operation	operation	ор	eration	operation	operation	operation	
lf No	o Jump:				lf No Jur	np:				
	Q1	Q2	Q3	Q4		Q1	Q2	Q3	Q4	
	Decode	Read literal 'n'	Process Data	No operation	D	ecode	Read literal 'n'	Process Data	No operation	
<u>Exan</u>	nple:	HERE	BNC Jump		Example:	<u>.</u>	HERE	BNN Jump		
	Before Instruct PC After Instruction If Carry PC If Carry PC	tion = ad on = 0; = ad = 1; = ad	dress (HERE) dress (Jump) dress (HERE)) + 2)	Befo Afte	ore Instruc PC r Instructic If Negativ PC If Negativ PC	tion = ad on = 0; /e = 0; /e = ad /e = 1; = ad	dress (HERE dress (Jump dress (HERE)) + 2)	

BTF	sc	Bit Test Fil	le, Skip if Cl	ear	BTF	SS	Bit Test Fi	le, Skip if Se	t
Synta	ax:	BTFSC f, b	{,a}		Synta	ax:	BTFSS f, b {	,a}	
Oper	ands:	$0 \leq f \leq 255$			Oper	ands:	$0 \leq f \leq 255$		
		0 ≤ b ≤ 7 a ∈ [0,1]					0 ≤ b < 7 a ∈ [0,1]		
Oper	ation:	skip if (f)	= 0		Oper	ation:	skip if (f)	= 1	
Statu	s Affected:	None			Statu	s Affected:	None		
Enco	ding:	1011	bbba ff	ff ffff	Enco	ding:	1010	bbba ff:	ff ffff
Desc	ription:	If bit 'b' in re	aister 'f' is '0'. 1	then the next	Desc	ription:	lf bit 'b' in re	aister 'f' is '1'. t	hen the next
		instruction is the next instru- current instru- and a NOP is this a two-cy If 'a' is 'o' th	skipped. If bit ruction fetched uction executio executed instruction.	'b' is '0', then during the n is discarded ead, making			instruction is the next instru- current instru- and a NOP is this a two-cy If 'a' is 'o' th	skipped. If bit ruction fetched uction executio executed instruction.	'b' is '1', then during the n is discarded ead, making
		'a' is '1', the GPR bank.	BSR is used to	select the			'a' is '1', the GPR bank.	BSR is used to	select the
Words:		If 'a' is '0' and is enabled, the Indexed Lite mode where See Section Bit-Oriented Literal Offse	d the extended his instruction of ral Offset Addr ever f ≤ 95 (5Ft 26.2.3 "Byte- I Instructions et Mode" for d	instruction set operates in essing n). Oriented and in Indexed etails.			If 'a' is '0' an set is enable in Indexed L mode where See Section Bit-Oriented Literal Offse	d the extended d, this instructi iteral Offset Ad ever f ≤ 95 (5Ft 26.2.3 "Byte- I Instructions et Mode" for d	d instruction on operates dressing n). Oriented and in Indexed etails.
Word	s:	1			Word	s:	1		
Cycle	s:	1(2)			Cycle	es:	1(2)		
Cycles:		Note: 3 cy by a	Note: 3 cycles if skip and followed by a 2-word instruction.				Note: 3 cyc by a	cles if skip and 2-word instruc	followed tion.
QC	cle Activity:				QC	ycle Activity:			
	Q1	Q2	Q3	Q4		Q1	Q2	Q3	Q4
	Decode	Read	Process	No		Decode	Read	Process	No
		register 'f'	Data	operation			register 'f'	Data	operation
lf sk	ip:	00	00	04	lf sk	ip:	00	00	04
	Q1 No	Q2	Q3	Q4		Q1 No	Q2	Q3	Q4
	operation	operation	operation	operation		operation	operation	operation	operation
lf sk	ip and followed	by 2-word ins	truction:		lf sk	ip and followed	by 2-word ins	truction:	
	Q1	Q2	Q3	Q4		Q1	Q2	Q3	Q4
	No	No	No	No		No	No	No	No
	operation	operation	operation	operation		operation	operation	operation	operation
	No operation	No	N0 operation	N0 operation		No operation	No operation	No	No operation
	operation	operation	operation	operation		operation	operation	operation	operation
<u>Exan</u>	<u>iple:</u>	HERE BI FALSE : TRUE :	FFSC FLAG	, 1 , 0	<u>Exan</u>	<u>nple:</u>	HERE B FALSE : TRUE :	FFSS FLAG	, 1, 0
	Before Instruct	ion				Before Instruct	tion		
	PC After Instructio	= add	ress (HERE)			PC After Instructio	= add	ress (HERE)	
	Anter Instructio	1> = 0 [.]				If FI AG<	11 = 0 [.]		
	If FLAG< PC PC	= add 1> = 1; = add	ress (TRUE) ress (False)			If FLAG< PC PC	= add 1> = 1; = add	ress (FALSE) ress (TRUE)	

NEGF	Negate f							
Syntax:	NEGF f {,a}							
Operands:	0 ≤ f ≤ 255 a ∈ [0,1]							
Operation:	$(\overline{f}) + 1 \rightarrow f$							
Status Affected:	N, OV, C, DC, Z							
Encoding:	0110 110a ffff ffff							
Description:	Location 'f' is negated using two's complement. The result is placed in the data memory location 'f'. If 'a' is '0', the Access Bank is selected. If 'a' is '1', the BSR is used to select the GPR bank. If 'a' is '0' and the extended instruction set is enabled, this instruction operates in Indexed Literal Offset Addressing mode whenever $f \le 95$ (5Fh). See Section 26.2.3 "Byte-Oriented and Bit-Oriented Instructions in Indexed Literal Offset Mode" for details.							
Words:	1							
Cycles:	1							

NOF	OP No Operation									
Synta	ax:	NOP								
Oper	ands:	None								
Oper	ation:	No operati	on							
Statu	s Affected:	None	None							
Enco	ding:	0000	0000 xxxx	000 xxx	00 xx	0000 xxxx				
Desc	ription:	No operati	No operation.							
Word	ls:	1	1							
Cycle	es:	1	1							
QC	ycle Activity:									
	Q1	Q2	Q	3	Q4					
	Decode	No operation	No operat	No operation		No operation				

Example:

None.

Q Cycle Activity:

Q1	Q2	Q3	Q4
Decode	Read	Process	Write
	register 'f'	Data	register 'f'

1

Example:	NEGF	REG

Before Instruct	ion			
REG	=	0011	1010	[3Ah]
After Instructio	n			
REG	=	1100	0110	[C6h]

28.2 DC Characteristics: Power-Down and Supply Current PIC18F2480/2580/4480/4580 (Industrial, Extended) PIC18LF2480/2580/4480/4580 (Industrial) (Continued)

PIC18LF (Indus	Standard Operating Conditions (unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for industrial								
PIC18F2480/2580/4480/4580 (Industrial, Extended)		$ \begin{array}{ll} \mbox{Standard Operating Conditions (unless otherwise stated)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for industrial} \\ -40^{\circ}C \leq TA \leq +125^{\circ}C \mbox{ for extended} \end{array} $							
Param No.	Тур	Typ Max Units Conditions							
	Module Differential Curren	its (ΔİWDT, ΔİBOR, ΔİLVD, ΔİOSCB, ΔİAD)							
D022	Watchdog Timer	1.7	7.6	μA	-40°C				
(∆IWDT)		2.1	8	μA	+25°C	VDD = 2.0V			
		2.6	8.4	μA	+85°C				
		2.2	11.4	μA	-40°C				
		2.4	12	μA	+25°C	VDD = 3.0V			
		2.8	12.6	μA	+85°C				
		2.9	14.3	μA	-40°C				
		3.1	15	μA	+25°C				
		3.3	15.8	μA	+85°C	VDD - 5.0V			
		7.80	19	μA	+125°C				
D022A	Brown-out Reset	17	75	μA	-40°C to +85°C	VDD = 3.0V			
$(\Delta IBOR)$		47	92	μA	-40°C to +85°C				
			58	μA	+125°C	Vpp = 5 0V			
		0	2	μA	-40°C to +85°C	VDD - 3.0V	Sleep mode		
			5	μA	-40°C to +125°C		BOREN<1:0>		
D022B	D022B High/Low-Voltage Detect		47	μA	-40°C to +85°C	VDD = 2.0V			
(∆ILVD)		18	58	μA	-40°C to +85°C	VDD = 3.0V			
		21	69	μA	-40°C to +85°C	Vpp = 5 0V			
		19	50	μA	+125°C	VBB - 3.0V			
D025	Timer1 Oscillator	1.0	8	μA	-40°C				
(Δ IOSCB)		1.1	8	μA	+25°C	VDD = 2.0V	32 kHz on Timer1 ⁽⁴⁾		
		1.1	8	μA	+85°C				
			8.2	μA	-40°C				
		1.3	8.2	μA	+25°C	VDD = 3.0V	32 kHz on Timer1 ⁽⁴⁾		
		1.2	8.2	μA	+85°C				
		1.8	10	μA	-40°C		(···		
		1.9	10	μA	+25°C	VDD = 5.0V	32 kHz on Timer1 ⁽⁴⁾		
		1.9	10	μA	+85°C				

Legend: Shading of rows is to assist in readability of the table.

Note 1: The power-down current in Sleep mode does not depend on the oscillator type. Power-down current is measured with the part in Sleep mode, with all I/O pins in high-impedance state and tied to VDD or VSs and all features that add delta current disabled (such as WDT, Timer1 Oscillator, BOR, etc.).

2: The supply current is mainly a function of operating voltage, frequency and mode. Other factors, such as I/O pin loading and switching rate, oscillator type and circuit, internal code execution pattern and temperature, also have an impact on the current consumption. The test conditions for all IDD measurements in active operation mode are:

- OSC1 = external square wave, from rail-to-rail; all I/O pins tri-stated, pulled to VDD;
 - MCLR = VDD; WDT enabled/disabled as specified.

3: For RC oscillator configurations, current through REXT is not included. The current through the resistor can be estimated by the formula, Ir = VDD/2REXT (mA), with REXT in kΩ.

4: Standard low-cost 32 kHz crystals have an operating temperature range of -10°C to +70°C. Extended temperature crystals are available at a much higher cost.

TABLE 28-18: I²C[™] BUS START/STOP BITS REQUIREMENTS (SLAVE MODE)

Param. No.	Symbol	Characte	Min	Мах	Units	Conditions		
90	TSU:STA	Start Condition	100 kHz mode	4700	_	ns	Only relevant for Repeated	
		Setup Time	400 kHz mode	600			Start condition	
91	THD:STA	Start Condition	100 kHz mode	4000		ns	After this period, the first	
		Hold Time	400 kHz mode	600	_		clock pulse is generated	
92	Tsu:sto	Stop Condition	100 kHz mode	4700		ns		
		Setup Time	400 kHz mode	600				
93	THD:STO	Stop Condition	100 kHz mode	4000	_	ns		
		Hold Time	400 kHz mode	600				

FIGURE 28-17: I²C[™] BUS DATA TIMING

28-Lead Plastic Quad Flat, No Lead Package (ML) – 6x6 mm Body [QFN] with 0.55 mm Contact Length

	MILLIMETERS				
Dimension	MIN	NOM	MAX		
Contact Pitch E		0.65 BSC			
Optional Center Pad Width	W2			4.25	
Optional Center Pad Length	T2			4.25	
Contact Pad Spacing	C1		5.70		
Contact Pad Spacing	C2		5.70		
Contact Pad Width (X28)	X1			0.37	
Contact Pad Length (X28)	Y1			1.00	
Distance Between Pads	G	0.20			

Notes:

1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing No. C04-2105A