
Microchip Technology - PIC18LF2580T-I/ML Datasheet

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated
circuits designed to perform specific tasks within larger
systems. These microcontrollers are essentially compact
computers on a single chip, containing a processor core,
memory, and programmable input/output peripherals.
They are called "embedded" because they are embedded
within electronic devices to control various functions,
rather than serving as standalone computers.
Microcontrollers are crucial in modern electronics,
providing the intelligence and control needed for a wide
range of applications.

Applications of "Embedded -
Microcontrollers"

Embedded microcontrollers are used in virtually every
sector of electronics, providing the necessary control and
processing power for a multitude of applications. In
consumer electronics, they manage the operations of
smartphones, home appliances, and wearable devices. In
automotive systems, microcontrollers control engine
functions, safety features, and infotainment systems.
Industrial applications rely on microcontrollers for
automation, robotics, and process control. Additionally,
microcontrollers are integral in medical devices, handling
functions such as monitoring, diagnostics, and control of
therapeutic equipment. Their versatility and
programmability make them essential components in
creating efficient, responsive, and intelligent electronic
systems.

Common Subcategories of "Embedded -
Microcontrollers"

Embedded microcontrollers can be categorized based on
their architecture, performance, and application focus.
Common subcategories include 8-bit, 16-bit, and 32-bit
microcontrollers, differentiated by their processing power
and memory capacity. 8-bit microcontrollers are typically
used in simple applications like basic control systems and
small devices. 16-bit microcontrollers offer a balance
between performance and complexity, suitable for
medium-scale applications like industrial automation. 32-
bit microcontrollers provide high performance and are
used in complex applications requiring advanced
processing, such as automotive systems and sophisticated
consumer electronics. Each subcategory serves a specific
range of applications, providing tailored solutions for
different performance and complexity needs.

Types of "Embedded - Microcontrollers"

There are various types of embedded microcontrollers,
each designed to meet specific application requirements.
General-purpose microcontrollers are versatile and used in
a wide range of applications, offering a balance of
performance, memory, and peripheral options. Special-
purpose microcontrollers are tailored for specific tasks,
such as automotive controllers, which include features like
built-in motor control peripherals and automotive-grade

Details

Product Status Obsolete

Core Processor PIC

Core Size 8-Bit

Speed 40MHz

Connectivity CANbus, I²C, SPI, UART/USART

Peripherals Brown-out Detect/Reset, HLVD, POR, PWM, WDT

Number of I/O 25

Program Memory Size 32KB (16K x 16)

Program Memory Type FLASH

EEPROM Size 256 x 8

RAM Size 1.5K x 8

Voltage - Supply (Vcc/Vdd) 2V ~ 5.5V

Data Converters A/D 8x10b

Oscillator Type Internal

Operating Temperature -40°C ~ 85°C (TA)

Mounting Type Surface Mount

Package / Case 28-VQFN Exposed Pad

Supplier Device Package 28-QFN (6x6)

Purchase URL https://www.e-xfl.com/product-detail/microchip-technology/pic18lf2580t-i-ml

Email: info@E-XFL.COM Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

https://www.e-xfl.com/product/pdf/pic18lf2580t-i-ml-4428711
https://www.e-xfl.com
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers

PIC18F2480/2580/4480/4580

6.2 PIC18 Instruction Cycle

6.2.1 CLOCKING SCHEME
The microcontroller clock input, whether from an inter-
nal or external source, is internally divided by four to
generate four non-overlapping quadrature clocks (Q1,
Q2, Q3 and Q4). Internally, the Program Counter (PC)
is incremented on every Q1; the instruction is fetched
from the program memory and latched into the Instruc-
tion Register (IR) during Q4. The instruction is decoded
and executed during the following Q1 through Q4. The
clocks and instruction execution flow are shown in
Figure 6-3.

6.2.2 INSTRUCTION FLOW/PIPELINING
An “Instruction Cycle” consists of four Q cycles: Q1
through Q4. The instruction fetch and execute are
pipelined in such a manner that a fetch takes one
instruction cycle, while the decode and execute take
another instruction cycle. However, due to the
pipelining, each instruction effectively executes in one
cycle. If an instruction causes the program counter to
change (e.g., GOTO), then two cycles are required to
complete the instruction (Example 6-3).

A fetch cycle begins with the program counter
incrementing in Q1.

In the execution cycle, the fetched instruction is latched
into the Instruction Register (IR) in cycle Q1. This
instruction is then decoded and executed during the
Q2, Q3 and Q4 cycles. Data memory is read during Q2
(operand read) and written during Q4 (destination
write).

FIGURE 6-3: CLOCK/INSTRUCTION CYCLE

EXAMPLE 6-3: INSTRUCTION PIPELINE FLOW

Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4
OSC1

Q1

Q2
Q3

Q4

PC

OSC2/CLKO
(RC mode)

PC PC + 2 PC + 4

Fetch INST (PC)
Execute INST (PC – 2)

Fetch INST (PC + 2)
Execute INST (PC)

Fetch INST (PC + 4)
Execute INST (PC + 2)

Internal
Phase
Clock

Note: All instructions are single cycle, except for any program branches. These take two cycles since the
fetch instruction is “flushed” from the pipeline while the new instruction is being fetched and then
executed.

TCY0 TCY1 TCY2 TCY3 TCY4 TCY5
1. MOVLW 55h Fetch 1 Execute 1
2. MOVWF PORTB Fetch 2 Execute 2
3. BRA SUB_1 Fetch 3 Execute 3
4. BSF PORTA, BIT3 (Forced NOP) Fetch 4 Flush (NOP)
5. Instruction @ address SUB_1 Fetch SUB_1 Execute SUB_1
© 2009 Microchip Technology Inc. DS39637D-page 71

PIC18F2480/2580/4480/4580

7.2.2 TABLAT – TABLE LATCH REGISTER
The Table Latch (TABLAT) is an 8-bit register mapped
into the SFR space. The Table Latch register is used to
hold 8-bit data during data transfers between program
memory and data RAM.

7.2.3 TBLPTR – TABLE POINTER
REGISTER

The Table Pointer (TBLPTR) register addresses a byte
within the program memory. The TBLPTR is comprised
of three SFR registers: Table Pointer Upper Byte, Table
Pointer High Byte and Table Pointer Low Byte
(TBLPTRU:TBLPTRH:TBLPTRL). These three regis-
ters join to form a 22-bit wide pointer. The low-order
21 bits allow the device to address up to 2 Mbytes of
program memory space. The 22nd bit allows access to
the Device ID, the user ID and the Configuration bits.

The Table Pointer, TBLPTR, is used by the TBLRD and
TBLWT instructions. These instructions can update the
TBLPTR in one of four ways based on the table opera-
tion. These operations are shown in Table 7-1. These
operations on the TBLPTR only affect the low-order
21 bits.

7.2.4 TABLE POINTER BOUNDARIES
TBLPTR is used in reads, writes and erases of the
Flash program memory.

When a TBLRD is executed, all 22 bits of the TBLPTR
determine which byte is read from program memory
into TABLAT.

When a TBLWT is executed, the five LSbs of the Table
Pointer register (TBLPTR<4:0>) determine which of
the 32 program memory holding registers is written to.
When the timed write to program memory begins (via
the WR bit), the 16 MSbs of the TBLPTR
(TBLPTR<21:6>) determine which program memory
block of 32 bytes is written to. For more detail, see
Section 7.5 “Writing to Flash Program Memory”.

When an erase of program memory is executed, the
16 MSbs of the Table Pointer register (TBLPTR<21:6>)
point to the 64-byte block that will be erased. The Least
Significant bits (TBLPTR<5:0>) are ignored.

Figure 7-3 describes the relevant boundaries of
TBLPTR based on Flash program memory operations.

TABLE 7-1: TABLE POINTER OPERATIONS WITH TBLRD AND TBLWT INSTRUCTIONS

FIGURE 7-3: TABLE POINTER BOUNDARIES BASED ON OPERATION

Example Operation on Table Pointer

TBLRD*
TBLWT*

TBLPTR is not modified

TBLRD*+
TBLWT*+

TBLPTR is incremented after the read/write

TBLRD*-
TBLWT*-

TBLPTR is decremented after the read/write

TBLRD+*
TBLWT+*

TBLPTR is incremented before the read/write

21 16 15 8 7 0

TABLE ERASE/WRITE TABLE WRITE

TABLE READ – TBLPTR<21:0>

TBLPTRLTBLPTRHTBLPTRU

TBLPTR<5:0>TBLPTR<21:6>
DS39637D-page 104 © 2009 Microchip Technology Inc.

PIC18F2480/2580/4480/4580

Example 9-3 shows the sequence to do a 16 x 16
unsigned multiplication. Equation 9-1 shows the
algorithm that is used. The 32-bit result is stored in four
registers (RES3:RES0).

EQUATION 9-1: 16 x 16 UNSIGNED
MULTIPLICATION
ALGORITHM

EXAMPLE 9-3: 16 x 16 UNSIGNED
MULTIPLY ROUTINE

Example 9-4 shows the sequence to do a 16 x 16
signed multiply. Equation 9-2 shows the algorithm
used. The 32-bit result is stored in four registers
(RES3:RES0). To account for the signed bits of the
arguments, the MSb for each argument pair is tested
and the appropriate subtractions are done.

EQUATION 9-2: 16 x 16 SIGNED
MULTIPLICATION
ALGORITHM

EXAMPLE 9-4: 16 x 16 SIGNED
MULTIPLY ROUTINE

RES3:RES0 = ARG1H:ARG1L • ARG2H:ARG2L
= (ARG1H • ARG2H • 216) +

(ARG1H • ARG2L • 28) +
(ARG1L • ARG2H • 28) +
(ARG1L • ARG2L)

MOVF ARG1L, W
MULWF ARG2L ; ARG1L * ARG2L->

; PRODH:PRODL
MOVFF PRODH, RES1 ;
MOVFF PRODL, RES0 ;

;
MOVF ARG1H, W
MULWF ARG2H ; ARG1H * ARG2H->

; PRODH:PRODL
MOVFF PRODH, RES3 ;
MOVFF PRODL, RES2 ;

;
MOVF ARG1L, W
MULWF ARG2H ; ARG1L * ARG2H->

; PRODH:PRODL
MOVF PRODL, W ;
ADDWF RES1, F ; Add cross
MOVF PRODH, W ; products
ADDWFC RES2, F ;
CLRF WREG ;
ADDWFC RES3, F ;

;
MOVF ARG1H, W ;
MULWF ARG2L ; ARG1H * ARG2L->

; PRODH:PRODL
MOVF PRODL, W ;
ADDWF RES1, F ; Add cross
MOVF PRODH, W ; products
ADDWFC RES2, F ;
CLRF WREG ;
ADDWFC RES3, F ;

RES3:RES0 = ARG1H:ARG1L • ARG2H:ARG2L
= (ARG1H • ARG2H • 216) +

(ARG1H • ARG2L • 28) +
(ARG1L • ARG2H • 28) +
(ARG1L • ARG2L) +
(-1 • ARG2H<7> • ARG1H:ARG1L • 216) +
(-1 • ARG1H<7> • ARG2H:ARG2L • 216)

MOVF ARG1L, W
MULWF ARG2L ; ARG1L * ARG2L ->

; PRODH:PRODL
MOVFF PRODH, RES1 ;
MOVFF PRODL, RES0 ;

;
MOVF ARG1H, W
MULWF ARG2H ; ARG1H * ARG2H ->

; PRODH:PRODL
MOVFF PRODH, RES3 ;
MOVFF PRODL, RES2 ;

;
MOVF ARG1L,W
MULWF ARG2H ; ARG1L * ARG2H ->

; PRODH:PRODL
MOVF PRODL, W ;
ADDWF RES1, F ; Add cross
MOVF PRODH, W ; products
ADDWFC RES2, F ;
CLRF WREG ;
ADDWFC RES3, F ;

;
MOVF ARG1H, W ;
MULWF ARG2L ; ARG1H * ARG2L ->

; PRODH:PRODL
MOVF PRODL, W ;
ADDWF RES1, F ; Add cross
MOVF PRODH, W ; products
ADDWFC RES2, F ;
CLRF WREG ;
ADDWFC RES3, F ;

;
BTFSS ARG2H, 7 ; ARG2H:ARG2L neg?
BRA SIGN_ARG1 ; no, check ARG1
MOVF ARG1L, W ;
SUBWF RES2 ;
MOVF ARG1H, W ;
SUBWFB RES3

;
SIGN_ARG1

BTFSS ARG1H, 7 ; ARG1H:ARG1L neg?
BRA CONT_CODE ; no, done
MOVF ARG2L, W ;
SUBWF RES2 ;
MOVF ARG2H, W ;
SUBWFB RES3

;
CONT_CODE
 :
DS39637D-page 118 © 2009 Microchip Technology Inc.

PIC18F2480/2580/4480/4580

REGISTER 10-3: INTCON3: INTERRUPT CONTROL REGISTER 3

R/W-1 R/W-1 U-0 R/W-0 R/W-0 U-0 R/W-0 R/W-0
INT2IP INT1IP — INT2IE INT1IE — INT2IF INT1IF

bit 7 bit 0

Legend:
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’
-n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown

bit 7 INT2IP: INT2 External Interrupt Priority bit
1 = High priority
0 = Low priority

bit 6 INT1IP: INT1 External Interrupt Priority bit
1 = High priority
0 = Low priority

bit 5 Unimplemented: Read as ‘0’
bit 4 INT2IE: INT2 External Interrupt Enable bit

1 = Enables the INT2 external interrupt
0 = Disables the INT2 external interrupt

bit 3 INT1IE: INT1 External Interrupt Enable bit
1 = Enables the INT1 external interrupt
0 = Disables the INT1 external interrupt

bit 2 Unimplemented: Read as ‘0’
bit 1 INT2IF: INT2 External Interrupt Flag bit

1 = The INT2 external interrupt occurred (must be cleared in software)
0 = The INT2 external interrupt did not occur

bit 0 INT1IF: INT1 External Interrupt Flag bit
1 = The INT1 external interrupt occurred (must be cleared in software)
0 = The INT1 external interrupt did not occur

Note: Interrupt flag bits are set when an interrupt condition occurs regardless of the state of its corresponding
enable bit or the global interrupt enable bit. User software should ensure the appropriate interrupt flag bits
are clear prior to enabling an interrupt. This feature allows for software polling.
© 2009 Microchip Technology Inc. DS39637D-page 123

PIC18F2480/2580/4480/4580

FIGURE 11-3: PARALLEL SLAVE PORT WRITE WAVEFORMS

FIGURE 11-4: PARALLEL SLAVE PORT READ WAVEFORMS

TABLE 11-11: REGISTERS ASSOCIATED WITH PARALLEL SLAVE PORT

Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
Reset
Values

on Page:

PORTD(1) RD7 RD6 RD5 RD4 RD3 RD2 RD1 RD0 58
LATD(1) LATD Output Latch Register 58
TRISD(1) PORTD Data Direction Register 58
PORTE(1) — — — — RE3 RE2 RE1 RE0 58
LATE(1) — — — — — LATE Output Latch Register 58
TRISE(1) IBF OBF IBOV PSPMODE — TRISE2 TRISE1 TRISE0 58
INTCON GIE/GIEH PEIE/GIEL TMR0IE INT0IE RBIE TMR0IF INT0IF RBIF 55
PIR1 PSPIF ADIF RCIF TXIF SSPIF CCP1IF TMR2IF TMR1IF 58
PIE1 PSPIE ADIE RCIE TXIE SSPIE CCP1IE TMR2IE TMR1IE 58
IPR1 PSPIP ADIP RCIP TXIP SSPIP CCP1IP TMR2IP TMR1IP 58
ADCON1 — — VCFG1 VCFG0 PCFG3 PCFG2 PCFG1 PCFG0 56
CMCON(1) C2OUT C1OUT C2INV C1INV CIS CM2 CM1 CM0 57
Legend: — = unimplemented, read as ‘0’. Shaded cells are not used by the Parallel Slave Port.
Note 1: These registers are available on PIC18F4X80 devices only.

Q1 Q2 Q3 Q4

CS

Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4

WR

RD

IBF

OBF

PSPIF

PORTD<7:0>

Q1 Q2 Q3 Q4

CS

Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4

WR

IBF

PSPIF

RD

OBF

PORTD<7:0>
DS39637D-page 150 © 2009 Microchip Technology Inc.

PIC18F2480/2580/4480/4580

FIGURE 18-5: SPI MODE WAVEFORM (SLAVE MODE WITH CKE = 0)

FIGURE 18-6: SPI MODE WAVEFORM (SLAVE MODE WITH CKE = 1)

SCK
(CKP = 1

SCK
(CKP = 0

Input
Sample

SDI
bit 7

SDO bit 7 bit 6 bit 5 bit 4 bit 3 bit 2 bit 1 bit 0

SSPIF
Interrupt

(SMP = 0)

CKE = 0)

CKE = 0)

(SMP = 0)

Write to
SSPBUF

SSPSR to
SSPBUF

SS

Flag

Optional

Next Q4 Cycle
after Q2↓

bit 0

SCK
(CKP = 1

SCK
(CKP = 0

Input
Sample

SDI

bit 7 bit 0

SDO bit 7 bit 6 bit 5 bit 4 bit 3 bit 2 bit 1 bit 0

SSPIF
Interrupt

(SMP = 0)

CKE = 1)

CKE = 1)

(SMP = 0)

Write to
SSPBUF

SSPSR to
SSPBUF

SS

Flag

Not Optional

Next Q4 Cycle
after Q2↓
DS39637D-page 198 © 2009 Microchip Technology Inc.

PIC18F2480/2580/4480/4580

18.4.17.2 Bus Collision During a Repeated

Start Condition
During a Repeated Start condition, a bus collision
occurs if:

a) A low level is sampled on SDA when SCL goes
from a low level to a high level.

b) SCL goes low before SDA is asserted low, indi-
cating that another master is attempting to
transmit a data ‘1’.

When the user deasserts SDA and the pin is allowed to
float high, the BRG is loaded with SSPADD<6:0> and
counts down to 0. The SCL pin is then deasserted and
when sampled high, the SDA pin is sampled.

If SDA is low, a bus collision has occurred (i.e., another
master is attempting to transmit a data ‘0’, see
Figure 18-29). If SDA is sampled high, the BRG is
reloaded and begins counting. If SDA goes from high-to-
low before the BRG times out, no bus collision occurs
because no two masters can assert SDA at exactly the
same time.

If SCL goes from high-to-low before the BRG times out,
and SDA has not already been asserted, a bus collision
occurs. In this case, another master is attempting to
transmit a data ‘1’ during the Repeated Start condition,
see Figure 18-30.

If, at the end of the BRG time-out, both SCL and SDA
are still high, the SDA pin is driven low and the BRG is
reloaded and begins counting. At the end of the count
regardless of the status of the SCL pin, the SCL pin is
driven low and the Repeated Start condition is
complete.

FIGURE 18-29: BUS COLLISION DURING A REPEATED START CONDITION (CASE 1)

FIGURE 18-30: BUS COLLISION DURING REPEATED START CONDITION (CASE 2)

SDA

SCL

RSEN

BCLIF

S

SSPIF

Sample SDA when SCL goes high.
If SDA = 0, set BCLIF and release SDA and SCL.

Cleared in software

‘0’

‘0’

SDA

SCL

BCLIF

RSEN

S

SSPIF

Interrupt cleared
in software

SCL goes low before SDA,
set BCLIF. Release SDA and SCL.

TBRG TBRG

‘0’
DS39637D-page 228 © 2009 Microchip Technology Inc.

PIC18F2480/2580/4480/4580

NOTES:
DS39637D-page 272 © 2009 Microchip Technology Inc.

PIC18F2480/2580/4480/4580

EXAMPLE 24-1: CHANGING TO CONFIGURATION MODE

EXAMPLE 24-2: WIN AND ICODE BITS USAGE IN INTERRUPT SERVICE ROUTINE TO ACCESS
TX/RX BUFFERS

; Request Configuration mode.
MOVLW B’10000000’ ; Set to Configuration Mode.
MOVWF CANCON
; A request to switch to Configuration mode may not be immediately honored.
; Module will wait for CAN bus to be idle before switching to Configuration Mode.
; Request for other modes such as Loopback, Disable etc. may be honored immediately.
; It is always good practice to wait and verify before continuing.

ConfigWait:
MOVF CANSTAT, W ; Read current mode state.
ANDLW B’10000000’ ; Interested in OPMODE bits only.
TSTFSZ WREG ; Is it Configuration mode yet?
BRA ConfigWait ; No. Continue to wait...
; Module is in Configuration mode now.
; Modify configuration registers as required.
; Switch back to Normal mode to be able to communicate.

; Save application required context.
; Poll interrupt flags and determine source of interrupt
; This was found to be CAN interrupt
; TempCANCON and TempCANSTAT are variables defined in Access Bank low
MOVFF CANCON, TempCANCON ; Save CANCON.WIN bits

; This is required to prevent CANCON
; from corrupting CAN buffer access
; in-progress while this interrupt
; occurred

MOVFF CANSTAT, TempCANSTAT ; Save CANSTAT register
; This is required to make sure that
; we use same CANSTAT value rather
; than one changed by another CAN
; interrupt.

MOVF TempCANSTAT, W ; Retrieve ICODE bits
ANDLW B’00001110’
ADDWF PCL, F ; Perform computed GOTO

; to corresponding interrupt cause
BRA NoInterrupt ; 000 = No interrupt
BRA ErrorInterrupt ; 001 = Error interrupt
BRA TXB2Interrupt ; 010 = TXB2 interrupt
BRA TXB1Interrupt ; 011 = TXB1 interrupt
BRA TXB0Interrupt ; 100 = TXB0 interrupt
BRA RXB1Interrupt ; 101 = RXB1 interrupt
BRA RXB0Interrupt ; 110 = RXB0 interrupt

; 111 = Wake-up on interrupt
WakeupInterrupt

BCF PIR3, WAKIF ; Clear the interrupt flag
;
; User code to handle wake-up procedure
;
;
; Continue checking for other interrupt source or return from here
…

NoInterrupt
… ; PC should never vector here. User may

; place a trap such as infinite loop or pin/port
; indication to catch this error.
DS39637D-page 284 © 2009 Microchip Technology Inc.

PIC18F2480/2580/4480/4580

REGISTER 24-4: COMSTAT: COMMUNICATION STATUS REGISTER

Mode 0
R/C-0 R/C-0 R-0 R-0 R-0 R-0 R-0 R-0

RXB0OVFL RXB1OVFL TXBO TXBP RXBP TXWARN RXWARN EWARN

Mode 1
R/C-0 R/C-0 R-0 R-0 R-0 R-0 R-0 R-0

— RXBnOVFL TXB0 TXBP RXBP TXWARN RXWARN EWARN

Mode 2
R/C-0 R/C-0 R-0 R-0 R-0 R-0 R-0 R-0

FIFOEMPTY RXBnOVFL TXBO TXBP RXBP TXWARN RXWARN EWARN
bit 7 bit 0

Legend: C = Clearable bit
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’
-n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown

bit 7 Mode 0:
RXB0OVFL: Receive Buffer 0 Overflow bit
1 = Receive Buffer 0 overflowed
0 = Receive Buffer 0 has not overflowed
Mode 1:
Unimplemented: Read as ‘0’
Mode 2:
FIFOEMPTY: FIFO Not Empty bit
1 = Receive FIFO is not empty
0 = Receive FIFO is empty

bit 6 Mode 0:
RXB1OVFL: Receive Buffer 1 Overflow bit
1 = Receive Buffer 1 overflowed
0 = Receive Buffer 1 has not overflowed
Mode 1, 2:
RXBnOVFL: Receive Buffer n Overflow bit
1 = Receive Buffer n has overflowed
0 = Receive Buffer n has not overflowed

bit 5 TXBO: Transmitter Bus-Off bit
1 = Transmit error counter > 255
0 = Transmit error counter ≤ 255

bit 4 TXBP: Transmitter Bus Passive bit
1 = Transmit error counter > 127
0 = Transmit error counter ≤ 127

bit 3 RXBP: Receiver Bus Passive bit
1 = Receive error counter > 127
0 = Receive error counter ≤ 127

bit 2 TXWARN: Transmitter Warning bit
1 = Transmit error counter > 95
0 = Transmit error counter ≤ 95

bit 1 RXWARN: Receiver Warning bit
1 = 127 ≥ Receive error counter > 95
0 = Receive error counter ≤ 95

bit 0 EWARN: Error Warning bit
This bit is a flag of the RXWARN and TXWARN bits.
1 = The RXWARN or the TXWARN bits are set
0 = Neither the RXWARN or the TXWARN bits are set
© 2009 Microchip Technology Inc. DS39637D-page 287

PIC18F2480/2580/4480/4580

bit 2-0 Mode 0:
FILHIT<2:0>: Filter Hit bits
These bits indicate which acceptance filter enabled the last message reception into Receive Buffer 1.
111 = Reserved
110 = Reserved
101 = Acceptance Filter 5 (RXF5)
100 = Acceptance Filter 4 (RXF4)
011 = Acceptance Filter 3 (RXF3)
010 = Acceptance Filter 2 (RXF2)
001 = Acceptance Filter 1 (RXF1), only possible when RXB0DBEN bit is set
000 = Acceptance Filter 0 (RXF0), only possible when RXB0DBEN bit is set
Mode 1, 2:
FILHIT<2:0> Filter Hit bits <2:0>
These bits, in combination with FILHIT<4:3>, indicate which acceptance filter enabled the message
reception into this receive buffer.
01111 = Acceptance Filter 15 (RXF15)
01110 = Acceptance Filter 14 (RXF14)
...
00000 = Acceptance Filter 0 (RXF0)

REGISTER 24-14: RXB1CON: RECEIVE BUFFER 1 CONTROL REGISTER (CONTINUED)

Note 1: This bit is set by the CAN module upon receiving a message and must be cleared by software after the
buffer is read. As long as RXFUL is set, no new message will be loaded and buffer will be considered full.

REGISTER 24-15: RXBnSIDH: RECEIVE BUFFER n STANDARD IDENTIFIER REGISTERS,
HIGH BYTE [0 ≤ n ≤ 1]

R-x R-x R-x R-x R-x R-x R-x R-x
SID10 SID9 SID8 SID7 SID6 SID5 SID4 SID3

bit 7 bit 0

Legend:
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’
-n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown

bit 7-0 SID<10:3>: Standard Identifier bits (if EXID (RXBnSIDL<3>) = 0)
Extended Identifier bits, EID<28:21> (if EXID = 1).
DS39637D-page 296 © 2009 Microchip Technology Inc.

PIC18F2480/2580/4480/4580

24.2.3.1 Programmable TX/RX and

Auto-RTR Buffers
The ECAN module contains 6 message buffers that can
be programmed as transmit or receive buffers. Any of
these buffers can also be programmed to automatically
handle RTR messages.

Note: These registers are not used in Mode 0.

REGISTER 24-22: BnCON: TX/RX BUFFER n CONTROL REGISTERS IN RECEIVE MODE
[0 ≤ n ≤ 5, TXnEN (BSEL0<n>) = 0](1)

R/W-0 R/W-0 R-0 R-0 R-0 R-0 R-0 R-0
RXFUL(2) RXM1 RXRTRRO FILHIT4 FILHIT3 FILHIT2 FILHIT1 FILHIT0

bit 7 bit 0

Legend:
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’
-n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown

bit 7 RXFUL: Receive Full Status bit(2)

1 = Receive buffer contains a received message
0 = Receive buffer is open to receive a new message

bit 6 RXM1: Receive Buffer Mode bit
1 = Receive all messages including partial and invalid (acceptance filters are ignored)
0 = Receive all valid messages as per acceptance filters

bit 5 RXRTRRO: Read-Only Remote Transmission Request for Received Message bit
1 = Received message is a remote transmission request
0 = Received message is not a remote transmission request

bit 4-0 FILHIT<4:0>: Filter Hit bits
These bits indicate which acceptance filter enabled the last message reception into this buffer.
01111 = Acceptance Filter 15 (RXF15)
01110 = Acceptance Filter 14 (RXF14)
...
00001 = Acceptance Filter 1 (RXF1)
00000 = Acceptance Filter 0 (RXF0)

Note 1: These registers are available in Mode 1 and 2 only.
2: This bit is set by the CAN module upon receiving a message and must be cleared by software after the

buffer is read. As long as RXFUL is set, no new message will be loaded and the buffer will be considered
full.
DS39637D-page 300 © 2009 Microchip Technology Inc.

PIC18F2480/2580/4480/4580

24.2.3.2 Message Acceptance Filters

and Masks
This section describes the message acceptance filters
and masks for the CAN receive buffers.

REGISTER 24-37: RXFnSIDH: RECEIVE ACCEPTANCE FILTER n STANDARD IDENTIFIER FILTER
REGISTERS, HIGH BYTE [0 ≤ n ≤ 15](1)

R/W-x R/W-x R/W-x R/W-x R/W-x R/W-x R/W-x R/W-x
SID10 SID9 SID8 SID7 SID6 SID5 SID4 SID3

bit 7 bit 0

Legend:
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’
-n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown

bit 7-0 SID<10:3>: Standard Identifier Filter bits (if EXIDEN = 0)
Extended Identifier Filter bits, EID<28:21> (if EXIDEN = 1).

Note 1: Registers, RXF6SIDH:RXF15SIDH, are available in Mode 1 and 2 only.

REGISTER 24-38: RXFnSIDL: RECEIVE ACCEPTANCE FILTER n STANDARD IDENTIFIER FILTER
REGISTERS, LOW BYTE [0 ≤ n ≤ 15](1)

R/W-x R/W-x R/W-x U-0 R/W-x U-0 R/W-x R/W-x
SID2 SID1 SID0 — EXIDEN(2) — EID17 EID16

bit 7 bit 0

Legend:
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’
-n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown

bit 7-5 SID<2:0>: Standard Identifier Filter bits (if EXIDEN = 0)
Extended Identifier Filter bits, EID<20:18> (if EXIDEN = 1).

bit 4 Unimplemented: Read as ‘0’
bit 3 EXIDEN: Extended Identifier Filter Enable bit(2)

1 = Filter will only accept extended ID messages
0 = Filter will only accept standard ID messages

bit 2 Unimplemented: Read as ‘0’
bit 1-0 EID<17:16>: Extended Identifier Filter bits

Note 1: Registers, RXF6SIDL:RXF15SIDL, are available in Mode 1 and 2 only.
2: In Mode 0, this bit must be set/cleared as required, irrespective of corresponding mask register value.
DS39637D-page 308 © 2009 Microchip Technology Inc.

PIC18F2480/2580/4480/4580

24.3 CAN Modes of Operation
The PIC18F2480/2580/4480/4580 has six main modes
of operation:

• Configuration mode
• Disable/Sleep mode
• Normal Operation mode
• Listen Only mode
• Loopback mode
• Error Recognition mode

All modes, except Error Recognition, are requested by
setting the REQOP bits (CANCON<7:5>). Error Recog-
nition mode is requested through the RXM bits of the
Receive Buffer register(s). Entry into a mode is
Acknowledged by monitoring the OPMODE bits.

When changing modes, the mode will not actually
change until all pending message transmissions are
complete. Because of this, the user must verify that the
device has actually changed into the requested mode
before further operations are executed.

24.3.1 CONFIGURATION MODE
The CAN module has to be initialized before the
activation. This is only possible if the module is in the
Configuration mode. The Configuration mode is
requested by setting the REQOP2 bit. Only when the
status bit, OPMODE2, has a high level can the initial-
ization be performed. Afterwards, the Configuration
registers, the acceptance mask registers and the
acceptance filter registers can be written. The module
is activated by setting the REQOP control bits to zero.

The module will protect the user from accidentally
violating the CAN protocol through programming
errors. All registers which control the configuration of
the module can not be modified while the module is on-
line. The CAN module will not be allowed to enter the
Configuration mode while a transmission or reception
is taking place. The Configuration mode serves as a
lock to protect the following registers:

• Configuration Registers
• Functional Mode Selection Registers
• Bit Timing Registers
• Identifier Acceptance Filter Registers
• Identifier Acceptance Mask Registers
• Filter and Mask Control Registers
• Mask Selection Registers

In the Configuration mode, the module will not transmit
or receive. The error counters are cleared and the inter-
rupt flags remain unchanged. The programmer will
have access to Configuration registers that are access
restricted in other modes. I/O pins will revert to normal
I/O functions.

24.3.2 DISABLE/SLEEP MODE
In Disable/Sleep mode, the module will not transmit or
receive. The module has the ability to set the WAKIF bit
due to bus activity; however, any pending interrupts will
remain and the error counters will retain their value.

If the REQOP<2:0> bits are set to ‘001’, the module will
enter the module Disable/Sleep mode. This mode is
similar to disabling other peripheral modules by turning
off the module enables. This causes the module
internal clock to stop unless the module is active (i.e.,
receiving or transmitting a message). If the module is
active, the module will wait for 11 recessive bits on the
CAN bus, detect that condition as an Idle bus, then
accept the module Disable/Sleep command.
OPMODE<2:0> = 001 indicates whether the module
successfully went into the module Disable/Sleep mode.

The WAKIF interrupt is the only module interrupt that is
still active in the Disable/Sleep mode. If the WAKDIS is
cleared and WAKIE is set, the processor will receive an
interrupt whenever the module detects recessive to
dominant transition. On wake-up, the module will auto-
matically be set to the previous mode of operation. For
example, if the module was switched from Normal to
Disable/Sleep mode on bus activity wake-up, the
module will automatically enter into Normal mode and
the first message that caused the module to wake-up is
lost. The module will not generate any error frame.
Firmware logic must detect this condition and make
sure that retransmission is requested. If the processor
receives a wake-up interrupt while it is sleeping, more
than one message may get lost. The actual number of
messages lost would depend on the processor
oscillator start-up time and incoming message bit rate.

The TXCAN pin will stay in the recessive state while the
module is in Disable/Sleep mode.

24.3.3 NORMAL MODE
This is the standard operating mode of the
PIC18F2480/2580/4480/4580 devices. In this mode,
the device actively monitors all bus messages and gen-
erates Acknowledge bits, error frames, etc. This is also
the only mode in which the PIC18F2480/2580/4480/
4580 devices will transmit messages over the CAN
bus.
DS39637D-page 330 © 2009 Microchip Technology Inc.

PIC18F2480/2580/4480/4580

REGISTER 25-2: CONFIG2L: CONFIGURATION REGISTER 2 LOW (BYTE ADDRESS 300002h)

U-0 U-0 U-0 R/P-1 R/P-1 R/P-1 R/P-1 R/P-1

— — — BORV1 BORV0 BOREN1(1) BOREN0(1) PWRTEN(1)

bit 7 bit 0

Legend:
R = Readable bit P = Programmable bit U = Unimplemented bit, read as ‘0’
-n = Value when device is unprogrammed u = Unchanged from programmed state

bit 7-5 Unimplemented: Read as ‘0’
bit 4-3 BORV<1:0>: Brown-out Reset Voltage bits

11 = VBOR set to 2.1V
10 = VBOR set to 2.8V
01 = VBOR set to 4.3V
00 = VBOR set to 4.6V

bit 2-1 BOREN<1:0>: Brown-out Reset Enable bits(1)

11 = Brown-out Reset enabled in hardware only (SBOREN is disabled)
10 = Brown-out Reset enabled in hardware only and disabled in Sleep mode (SBOREN is disabled)
01 = Brown-out Reset enabled and controlled by software (SBOREN is enabled)
00 = Brown-out Reset disabled in hardware and software

bit 0 PWRTEN: Power-up Timer Enable bit(1)

1 = PWRT disabled
0 = PWRT enabled

Note 1: The Power-up Timer is decoupled from Brown-out Reset, allowing these features to be independently
controlled.
© 2009 Microchip Technology Inc. DS39637D-page 351

PIC18F2480/2580/4480/4580

BTG Bit Toggle f

Syntax: BTG f, b {,a}

Operands: 0 ≤ f ≤ 255
0 ≤ b < 7
a ∈ [0,1]

Operation: (f) → f

Status Affected: None

Encoding: 0111 bbba ffff ffff

Description: Bit ‘b’ in data memory location ‘f’ is
inverted.
If ‘a’ is ‘0’, the Access Bank is selected.
If ‘a’ is ‘1’, the BSR is used to select the
GPR bank.
If ‘a’ is ‘0’ and the extended instruction
set is enabled, this instruction operates
in Indexed Literal Offset Addressing
mode whenever f ≤ 95 (5Fh). See
Section 26.2.3 “Byte-Oriented and
Bit-Oriented Instructions in Indexed
Literal Offset Mode” for details.

Words: 1

Cycles: 1

Q Cycle Activity:
Q1 Q2 Q3 Q4

Decode Read
register ‘f’

Process
Data

Write
register ‘f’

Example: BTG PORTC, 4, 0

Before Instruction:
PORTC = 0111 0101 [75h]

After Instruction:
PORTC = 0110 0101 [65h]

BOV Branch if Overflow

Syntax: BOV n

Operands: -128 ≤ n ≤ 127

Operation: if Overflow bit is ‘1’,
(PC) + 2 + 2n → PC

Status Affected: None

Encoding: 1110 0100 nnnn nnnn

Description: If the Overflow bit is ‘1’, then the
program will branch.
The 2’s complement number ‘2n’ is
added to the PC. Since the PC will
have incremented to fetch the next
instruction, the new address will be
PC + 2 + 2n. This instruction is then a
two-cycle instruction.

Words: 1

Cycles: 1(2)

Q Cycle Activity:
If Jump:

Q1 Q2 Q3 Q4
Decode Read literal

‘n’
Process

Data
Write to PC

No
operation

No
operation

No
operation

No
operation

If No Jump:
Q1 Q2 Q3 Q4

Decode Read literal
‘n’

Process
Data

No
operation

Example: HERE BOV Jump

Before Instruction
PC = address (HERE)

After Instruction
If Overflow = 1;

PC = address (Jump)
If Overflow = 0;

PC = address (HERE + 2)
© 2009 Microchip Technology Inc. DS39637D-page 381

PIC18F2480/2580/4480/4580

RRNCF Rotate Right f (No Carry)

Syntax: RRNCF f {,d {,a}}

Operands: 0 ≤ f ≤ 255
d ∈ [0,1]
a ∈ [0,1]

Operation: (f<n>) → dest<n – 1>,
(f<0>) → dest<7>

Status Affected: N, Z

Encoding: 0100 00da ffff ffff

Description: The contents of register ‘f’ are rotated
one bit to the right. If ‘d’ is ‘0’, the result
is placed in W. If ‘d’ is ‘1’, the result is
placed back in register ‘f’.
If ‘a’ is ‘0’, the Access Bank will be
selected, overriding the BSR value. If ‘a’
is ‘1’, then the bank will be selected as
per the BSR value.
If ‘a’ is ‘0’ and the extended instruction
set is enabled, this instruction operates
in Indexed Literal Offset Addressing
mode whenever f ≤ 95 (5Fh). See
Section 26.2.3 “Byte-Oriented and
Bit-Oriented Instructions in Indexed
Literal Offset Mode” for details.

Words: 1

Cycles: 1

Q Cycle Activity:
Q1 Q2 Q3 Q4

Decode Read
register ‘f’

Process
Data

Write to
destination

Example 1: RRNCF REG, 1, 0

Before Instruction
REG = 1101 0111

After Instruction
REG = 1110 1011

Example 2: RRNCF REG, 0, 0

Before Instruction
W = ?
REG = 1101 0111

After Instruction
W = 1110 1011
REG = 1101 0111

register f

SETF Set f

Syntax: SETF f {,a}

Operands: 0 ≤ f ≤ 255
a ∈ [0,1]

Operation: FFh → f

Status Affected: None

Encoding: 0110 100a ffff ffff

Description: The contents of the specified register
are set to FFh.
If ‘a’ is ‘0’, the Access Bank is selected.
If ‘a’ is ‘1’, the BSR is used to select the
GPR bank.
If ‘a’ is ‘0’ and the extended instruction
set is enabled, this instruction operates
in Indexed Literal Offset Addressing
mode whenever f ≤ 95 (5Fh). See
Section 26.2.3 “Byte-Oriented and
Bit-Oriented Instructions in Indexed
Literal Offset Mode” for details.

Words: 1

Cycles: 1

Q Cycle Activity:
Q1 Q2 Q3 Q4

Decode Read
register ‘f’

Process
Data

Write
register ‘f’

Example: SETF REG,1

Before Instruction
REG = 5Ah

After Instruction
REG = FFh
© 2009 Microchip Technology Inc. DS39637D-page 401

PIC18F2480/2580/4480/4580

SUBWFB Subtract W from f with Borrow

Syntax: SUBWFB f {,d {,a}}
Operands: 0 ≤ f ≤ 255

d ∈ [0,1]
a ∈ [0,1]

Operation: (f) – (W) – (C) → dest
Status Affected: N, OV, C, DC, Z
Encoding: 0101 10da ffff ffff

Description: Subtract W and the Carry flag (borrow)
from register ‘f’ (2’s complement
method). If ‘d’ is ‘0’, the result is stored
in W. If ‘d’ is ‘1’, the result is stored back
in register ‘f’.
If ‘a’ is ‘0’, the Access Bank is selected.
If ‘a’ is ‘1’, the BSR is used to select the
GPR bank.
If ‘a’ is ‘0’ and the extended instruction
set is enabled, this instruction operates
in Indexed Literal Offset Addressing
mode whenever f ≤ 95 (5Fh). See
Section 26.2.3 “Byte-Oriented and
Bit-Oriented Instructions in Indexed
Literal Offset Mode” for details.

Words: 1
Cycles: 1
Q Cycle Activity:

Q1 Q2 Q3 Q4
Decode Read

register ‘f’
Process

Data
Write to

destination

Example 1: SUBWFB REG, 1, 0

Before Instruction
REG = 19h (0001 1001)
W = 0Dh (0000 1101)
C = 1

After Instruction
REG = 0Ch (0000 1011)
W = 0Dh (0000 1101)
C = 1
Z = 0
N = 0 ; result is positive

Example 2: SUBWFB REG, 0, 0

Before Instruction
REG = 1Bh (0001 1011)
W = 1Ah (0001 1010)
C = 0

After Instruction
REG = 1Bh (0001 1011)
W = 00h
C = 1
Z = 1 ; result is zero
N = 0

Example 3: SUBWFB REG, 1, 0

Before Instruction
REG = 03h (0000 0011)
W = 0Eh (0000 1101)
C = 1

After Instruction
REG = F5h (1111 0100)

; [2’s comp]
W = 0Eh (0000 1101)
C = 0
Z = 0
N = 1 ; result is negative

SWAPF Swap f

Syntax: SWAPF f {,d {,a}}

Operands: 0 ≤ f ≤ 255
d ∈ [0,1]
a ∈ [0,1]

Operation: (f<3:0>) → dest<7:4>,
(f<7:4>) → dest<3:0>

Status Affected: None

Encoding: 0011 10da ffff ffff

Description: The upper and lower nibbles of register
‘f’ are exchanged. If ‘d’ is ‘0’, the result
is placed in W. If ‘d’ is ‘1’, the result is
placed in register ‘f’.
If ‘a’ is ‘0’, the Access Bank is selected.
If ‘a’ is ‘1’, the BSR is used to select the
GPR bank.
If ‘a’ is ‘0’ and the extended instruction
set is enabled, this instruction operates
in Indexed Literal Offset Addressing
mode whenever f ≤ 95 (5Fh). See
Section 26.2.3 “Byte-Oriented and
Bit-Oriented Instructions in Indexed
Literal Offset Mode” for details.

Words: 1

Cycles: 1

Q Cycle Activity:
Q1 Q2 Q3 Q4

Decode Read
register ‘f’

Process
Data

Write to
destination

Example: SWAPF REG, 1, 0

Before Instruction
REG = 53h

After Instruction
REG = 35h
DS39637D-page 404 © 2009 Microchip Technology Inc.

PIC18F2480/2580/4480/4580
27.0 DEVELOPMENT SUPPORT
The PIC® microcontrollers and dsPIC® digital signal
controllers are supported with a full range of software
and hardware development tools:

• Integrated Development Environment
- MPLAB® IDE Software

• Compilers/Assemblers/Linkers
- MPLAB C Compiler for Various Device

Families
- HI-TECH C for Various Device Families
- MPASMTM Assembler
- MPLINKTM Object Linker/

MPLIBTM Object Librarian
- MPLAB Assembler/Linker/Librarian for

Various Device Families
• Simulators

- MPLAB SIM Software Simulator
• Emulators

- MPLAB REAL ICE™ In-Circuit Emulator
• In-Circuit Debuggers

- MPLAB ICD 3
- PICkit™ 3 Debug Express

• Device Programmers
- PICkit™ 2 Programmer
- MPLAB PM3 Device Programmer

• Low-Cost Demonstration/Development Boards,
Evaluation Kits, and Starter Kits

27.1 MPLAB Integrated Development
Environment Software

The MPLAB IDE software brings an ease of software
development previously unseen in the 8/16/32-bit
microcontroller market. The MPLAB IDE is a Windows®

operating system-based application that contains:

• A single graphical interface to all debugging tools
- Simulator
- Programmer (sold separately)
- In-Circuit Emulator (sold separately)
- In-Circuit Debugger (sold separately)

• A full-featured editor with color-coded context
• A multiple project manager
• Customizable data windows with direct edit of

contents
• High-level source code debugging
• Mouse over variable inspection
• Drag and drop variables from source to watch

windows
• Extensive on-line help
• Integration of select third party tools, such as

IAR C Compilers

The MPLAB IDE allows you to:

• Edit your source files (either C or assembly)
• One-touch compile or assemble, and download to

emulator and simulator tools (automatically
updates all project information)

• Debug using:
- Source files (C or assembly)
- Mixed C and assembly
- Machine code

MPLAB IDE supports multiple debugging tools in a
single development paradigm, from the cost-effective
simulators, through low-cost in-circuit debuggers, to
full-featured emulators. This eliminates the learning
curve when upgrading to tools with increased flexibility
and power.
© 2009 Microchip Technology Inc. Advance Information DS39637D-page 417

PIC18F2480/2580/4480/4580
APPENDIX E: MIGRATION FROM
MID-RANGE TO
ENHANCED DEVICES

A detailed discussion of the differences between the
mid-range MCU devices (i.e., PIC16CXXX) and the
enhanced devices (i.e., PIC18FXXX) is provided in
AN716, “Migrating Designs from PIC16C74A/74B to
PIC18C442.” The changes discussed, while device
specific, are generally applicable to all mid-range to
enhanced device migrations.

This Application Note is available as Literature Number
DS00716.

APPENDIX F: MIGRATION FROM
HIGH-END TO
ENHANCED DEVICES

A detailed discussion of the migration pathway and
differences between the high-end MCU devices
(i.e., PIC17CXXX) and the enhanced devices
(i.e., PIC18FXXX) is provided in AN726, “PIC17CXXX
to PIC18CXXX Migration.” This Application Note is
available as Literature Number DS00726.
© 2009 Microchip Technology Inc. DS39637D-page 473

