

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

-XF

Product Status	Obsolete
Core Processor	PIC
Core Size	8-Bit
Speed	40MHz
Connectivity	CANbus, I ² C, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, HLVD, POR, PWM, WDT
Number of I/O	25
Program Memory Size	32KB (16K x 16)
Program Memory Type	FLASH
EEPROM Size	256 x 8
RAM Size	1.5K x 8
Voltage - Supply (Vcc/Vdd)	2V ~ 5.5V
Data Converters	A/D 8x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	28-VQFN Exposed Pad
Supplier Device Package	28-QFN (6x6)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic18lf2580t-i-ml

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

6.2 PIC18 Instruction Cycle

6.2.1 CLOCKING SCHEME

The microcontroller clock input, whether from an internal or external source, is internally divided by four to generate four non-overlapping quadrature clocks (Q1, Q2, Q3 and Q4). Internally, the Program Counter (PC) is incremented on every Q1; the instruction is fetched from the program memory and latched into the Instruction Register (IR) during Q4. The instruction is decoded and executed during the following Q1 through Q4. The clocks and instruction execution flow are shown in Figure 6-3.

6.2.2 INSTRUCTION FLOW/PIPELINING

An "Instruction Cycle" consists of four Q cycles: Q1 through Q4. The instruction fetch and execute are pipelined in such a manner that a fetch takes one instruction cycle, while the decode and execute take another instruction cycle. However, due to the pipelining, each instruction effectively executes in one cycle. If an instruction causes the program counter to change (e.g., GOTO), then two cycles are required to complete the instruction (Example 6-3).

A fetch cycle begins with the program counter incrementing in Q1.

In the execution cycle, the fetched instruction is latched into the Instruction Register (IR) in cycle Q1. This instruction is then decoded and executed during the Q2, Q3 and Q4 cycles. Data memory is read during Q2 (operand read) and written during Q4 (destination write).

FIGURE 6-3: CLOCK/INSTRUCTION CYCLE

EXAMPLE 6-3: INSTRUCTION PIPELINE FLOW

Note: All instructions are single cycle, except for any program branches. These take two cycles since the fetch instruction is "flushed" from the pipeline while the new instruction is being fetched and then executed.

7.2.2 TABLAT – TABLE LATCH REGISTER

The Table Latch (TABLAT) is an 8-bit register mapped into the SFR space. The Table Latch register is used to hold 8-bit data during data transfers between program memory and data RAM.

7.2.3 TBLPTR – TABLE POINTER REGISTER

The Table Pointer (TBLPTR) register addresses a byte within the program memory. The TBLPTR is comprised of three SFR registers: Table Pointer Upper Byte, Table Pointer High Byte and Table Pointer Low Byte (TBLPTRU:TBLPTRH:TBLPTRL). These three registers join to form a 22-bit wide pointer. The low-order 21 bits allow the device to address up to 2 Mbytes of program memory space. The 22nd bit allows access to the Device ID, the user ID and the Configuration bits.

The Table Pointer, TBLPTR, is used by the TBLRD and TBLWT instructions. These instructions can update the TBLPTR in one of four ways based on the table operation. These operations are shown in Table 7-1. These operations on the TBLPTR only affect the low-order 21 bits.

7.2.4 TABLE POINTER BOUNDARIES

TBLPTR is used in reads, writes and erases of the Flash program memory.

When a TBLRD is executed, all 22 bits of the TBLPTR determine which byte is read from program memory into TABLAT.

When a TBLWT is executed, the five LSbs of the Table Pointer register (TBLPTR<4:0>) determine which of the 32 program memory holding registers is written to. When the timed write to program memory begins (via the WR bit), the 16 MSbs of the TBLPTR (TBLPTR<21:6>) determine which program memory block of 32 bytes is written to. For more detail, see **Section 7.5 "Writing to Flash Program Memory"**.

When an erase of program memory is executed, the 16 MSbs of the Table Pointer register (TBLPTR<21:6>) point to the 64-byte block that will be erased. The Least Significant bits (TBLPTR<5:0>) are ignored.

Figure 7-3 describes the relevant boundaries of TBLPTR based on Flash program memory operations.

TABLE 7-1: TABLE POINTER OPERATIONS WITH TBLRD AND TBLWT INSTRUCTIONS

Example	Operation on Table Pointer
TBLRD* TBLWT*	TBLPTR is not modified
TBLRD*+ TBLWT*+	TBLPTR is incremented after the read/write
TBLRD*- TBLWT*-	TBLPTR is decremented after the read/write
TBLRD+* TBLWT+*	TBLPTR is incremented before the read/write

FIGURE 7-3: TABLE POINTER BOUNDARIES BASED ON OPERATION

Example 9-3 shows the sequence to do a 16 x 16 unsigned multiplication. Equation 9-1 shows the algorithm that is used. The 32-bit result is stored in four registers (RES3:RES0).

EQUATION 9-1: 16 x 16 UNSIGNED MULTIPLICATION ALGORITHM

RES3:RES0	=	ARG1H:ARG1L • ARG2H:ARG2L
	=	$(ARG1H \bullet ARG2H \bullet 2^{16}) +$
		$(ARG1H \bullet ARG2L \bullet 2^8) +$
		$(ARG1L \bullet ARG2H \bullet 2^8) +$
		$(ARG1L \bullet ARG2L)$

EXAMPLE 9-3: 1

16 x 16 UNSIGNED MULTIPLY ROUTINE

	MOVF	ARG1L, W	Ŵ	
	MULWF	ARG2L	;	ARG1L * ARG2L->
			;	PRODH:PRODL
	MOVFF	PRODH, H	RES1 ;	
	MOVFF	PRODL, H	RESO ;	
;				
	MOVF	ARG1H, W	N	
	MULWF	ARG2H	;	ARG1H * ARG2H->
			;	PRODH:PRODL
	MOVFF	PRODH, H	res3 ;	
	MOVFF	PRODL, H	RES2 ;	
;				
	MOVF	ARG1L, V	N	
	MULWF	ARG2H	;	ARG1L * ARG2H->
			;	PRODH:PRODL
	MOVF	PRODL, W	W ;	
	ADDWF	RES1, F	;	Add cross
	MOVF	PRODH, V	W ;	products
	ADDWFC	RES2, F	;	
	CLRF	WREG	;	
	ADDWFC	RES3, F	;	
;				
	MOVF	ARG1H, W	W ;	
	MULWF	ARG2L	;	ARG1H * ARG2L->
			;	PRODH:PRODL
	MOVF	PRODL, W	W ;	
	ADDWF	RES1, F	;	Add cross
	MOVF	PRODH, V	N ;	products
	ADDWFC	RES2, F	;	
	CLRF	WREG	;	
	ADDWFC	RES3, F	;	

Example 9-4 shows the sequence to do a 16 x 16 signed multiply. Equation 9-2 shows the algorithm used. The 32-bit result is stored in four registers (RES3:RES0). To account for the signed bits of the arguments, the MSb for each argument pair is tested and the appropriate subtractions are done.

EQUATION 9-2: 16 x 16 SIGNED MULTIPLICATION ALGORITHM

RES3:RES0 =	= ARG1H:ARG1L • ARG2H:ARG2L
=	$= (ARG1H \bullet ARG2H \bullet 2^{16}) +$
	$(ARG1H \bullet ARG2L \bullet 2^8) +$
	$(ARG1L \bullet ARG2H \bullet 2^8) +$
	$(ARG1L \bullet ARG2L) +$
	$(-1 \bullet ARG2H < 7 > \bullet ARG1H:ARG1L \bullet 2^{16}) +$
	$(-1 \bullet ARG1H < 7 > \bullet ARG2H: ARG2L \bullet 2^{16})$

EXAMPLE 9-4: 16 x 16 SIGNED MULTIPLY ROUTINE

	MOLUT	ADC11 M		
	MOVE	ARGIL, W		
	MULWF	ARG2L	;	ARGIL * ARG2L ->
			;	PRODH:PRODL
	MOVFF	PRODH, RES1	;	
	MOVFF	PRODL, RESO	;	
;				
,	MOVE	ARC1H W		
	MUTWE	ADC2U		
	MOLWE	AKGZI	<i>'</i> .	ARGIN ~ ARGZN ->
			;	PRODH: PRODL
	MOVF'F'	PRODH, RES3	;	
	MOVFF	PRODL, RES2	;	
;				
	MOVF	ARG1L,W		
	MULWF	ARG2H	;	ARG1L * ARG2H ->
				PRODH · PRODI
	MOVE	DRUDI W	ĺ.	1100011110000
	ADDME	DRO1 P	<i>'</i> .	
	ADDWF	RESI, F	;	Add Cross
	MOVF.	PRODH, W	;	products
	ADDWFC	RES2, F	;	
	CLRF	WREG	;	
	ADDWFC	RES3, F	;	
;				
	MOVE	ARG1H, W	;	
	MULWE	ARG21.	΄.	ARC1H * ARC2L ->
	MOHWE	ANGZI	΄.	
	NOTE	DDODI W	,	PRODE: PRODL
	MOVE	PRODL, W	;	
	ADDWF	RES1, F	;	Add cross
	MOVF	PRODH, W	;	products
	ADDWFC	RES2, F	;	
	CLRF	WREG	;	
	ADDWFC	RES3, F	;	
;				
	BTESS	ARG2H. 7	;	ARG2H:ARG2L neg?
	BRA	STGN ARG1	΄.	no check ARG1
	MOVE	ADC11 W	Ś.	no, encer moi
		ANGIL, W	;	
	SUBWE	RESZ	;	
	MOVE	ARGIH, W	;	
	SUBWFB	RES3		
;				
SIG	N ARG1			
	BTFSS	ARG1H, 7	;	ARG1H:ARG1L neg?
	BRA	CONT CODE	;	no, done
	MOVE	ARG2L. W		-,
	CIIDME	DEG2	΄.	
	NOUT	NEGZ NDCOU M	;	
	MOVF.	AKGZH, W	;	
	SUBWFB	RES3		
;				
CON	T_CODE			
	:			

REGISTER 10-3: INTCON3: INTERRUPT CONTROL REGISTER 3

R/W-1	1 R/W-1	U-0	R/W-0	R/W-0	U-0	R/W-0	R/W-0
INT2I	P INT1IP	—	INT2IE	INT1IE	—	INT2IF	INT1IF
bit 7							bit 0
Legend:							
R = Readable bitW = Writable bitU = Unimplemented bit, read as '0'							
-n = Value	e at POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown
bit 7	INT2IP: INT2	2 External Interr	upt Priority bi	t			
	1 = High pri	ority					
	0 = Low price	brity					
bit 6	INT1IP: INT	1 External Interr	upt Priority bi	t			
	1 = High priv	ority					
bit 5		ntod: Read as '	o '				
bit 4		2 External Interr	∪ unt Enable bi	ł			
	1 = Enables	the INT2 exter	nal interrunt	L			
	0 = Disables	s the INT2 exter	nal interrupt				
bit 3	INT1IE: INT	1 External Interr	upt Enable bi	t			
	1 = Enables	the INT1 exter	nal interrupt				
	0 = Disables	s the INT1 exter	nal interrupt				
bit 2	Unimpleme	nted: Read as '	0'				
bit 1	INT2IF: INT2	2 External Interr	upt Flag bit				
	1 = The INT2 external interrupt occurred (must be cleared in software)						
L:1 0		2 external inter		cur			
DIT U	1 = The INT	i External interr	upt Flag bit	(must be clear	ad in coffwara)		
	0 = The INT	1 external inter	upt occurred	Chiust be clean	eu in soltware)		
	֥						
Notes	Intorrupt flog hits	are est where a	n intorrunt an	ndition and	rogardlass of t	ha atota of ita	orroopending
Note:	enable bit or the o	ale set when a	enable bit. Us	er software sho	ould ensure the	appropriate inte	errupt flag bits
	are clear prior to	enabling an inte	rrupt. This fea	ature allows for	software pollin	g.	

FIGURE 11-4: PARALLEL SLAVE PORT READ WAVEFORMS

TABLE 11-11: REGISTERS ASSOCIATED WITH PARALLEL SLAVE PORT

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Reset Values on Page:
PORTD ⁽¹⁾	RD7	RD6	RD5	RD4	RD3	RD2	RD1	RD0	58
LATD ⁽¹⁾	LATD Outp	ut Latch Regis	ster						58
TRISD ⁽¹⁾	PORTD Da	ta Direction R	egister						58
PORTE ⁽¹⁾	—	_	_	—	RE3	RE2	RE1	RE0	58
LATE ⁽¹⁾	—	—	—	—	—	LATE Output Latch Register			58
TRISE ⁽¹⁾	IBF	OBF	IBOV	PSPMODE	—	TRISE2	TRISE1	TRISE0	58
INTCON	GIE/GIEH	PEIE/GIEL	TMR0IE	INT0IE	RBIE	TMR0IF	INT0IF	RBIF	55
PIR1	PSPIF	ADIF	RCIF	TXIF	SSPIF	CCP1IF	TMR2IF	TMR1IF	58
PIE1	PSPIE	ADIE	RCIE	TXIE	SSPIE	CCP1IE	TMR2IE	TMR1IE	58
IPR1	PSPIP	ADIP	RCIP	TXIP	SSPIP	CCP1IP	TMR2IP	TMR1IP	58
ADCON1	—	—	VCFG1	VCFG0	PCFG3	PCFG2	PCFG1	PCFG0	56
CMCON ⁽¹⁾	C2OUT	C10UT	C2INV	C1INV	CIS	CM2	CM1	CM0	57

Legend: — = unimplemented, read as '0'. Shaded cells are not used by the Parallel Slave Port.

Note 1: These registers are available on PIC18F4X80 devices only.

18.4.17.2 Bus Collision During a Repeated Start Condition

During a Repeated Start condition, a bus collision occurs if:

- a) A low level is sampled on SDA when SCL goes from a low level to a high level.
- b) SCL goes low before SDA is asserted low, indicating that another master is attempting to transmit a data '1'.

When the user deasserts SDA and the pin is allowed to float high, the BRG is loaded with SSPADD<6:0> and counts down to 0. The SCL pin is then deasserted and when sampled high, the SDA pin is sampled.

If SDA is low, a bus collision has occurred (i.e., another master is attempting to transmit a data '0', see Figure 18-29). If SDA is sampled high, the BRG is reloaded and begins counting. If SDA goes from high-to-low before the BRG times out, no bus collision occurs because no two masters can assert SDA at exactly the same time.

If SCL goes from high-to-low before the BRG times out, and SDA has not already been asserted, a bus collision occurs. In this case, another master is attempting to transmit a data '1' during the Repeated Start condition, see Figure 18-30.

If, at the end of the BRG time-out, both SCL and SDA are still high, the SDA pin is driven low and the BRG is reloaded and begins counting. At the end of the count regardless of the status of the SCL pin, the SCL pin is driven low and the Repeated Start condition is complete.

FIGURE 18-29: BUS COLLISION DURING A REPEATED START CONDITION (CASE 1)

FIGURE 18-30: BUS COLLISION DURING REPEATED START CONDITION (CASE 2)

NOTES:

EXAMPLE 24-1: CHANGING TO CONFIGURATION MODE

```
; Request Configuration mode.
   MOVLW B'1000000'
                                       ; Set to Configuration Mode.
   MOVWF CANCON
   ; A request to switch to Configuration mode may not be immediately honored.
   ; Module will wait for CAN bus to be idle before switching to Configuration Mode.
   ; Request for other modes such as Loopback, Disable etc. may be honored immediately.
   ; It is always good practice to wait and verify before continuing.
ConfigWait:
   MOVF CANSTAT, W
                                       ; Read current mode state.
   ANDLW B'10000000'
                                        ; Interested in OPMODE bits only.
   TSTFSZ WREG
                                        ; Is it Configuration mode yet?
   BRA ConfigWait
                                        ; No. Continue to wait...
   ; Module is in Configuration mode now.
   ; Modify configuration registers as required.
   ; Switch back to Normal mode to be able to communicate.
```

EXAMPLE 24-2: WIN AND ICODE BITS USAGE IN INTERRUPT SERVICE ROUTINE TO ACCESS TX/RX BUFFERS

```
; Save application required context.
   ; Poll interrupt flags and determine source of interrupt
   ; This was found to be CAN interrupt
   ; TempCANCON and TempCANSTAT are variables defined in Access Bank low
   MOVFF CANCON, TempCANCON
                                       ; Save CANCON.WIN bits
                                       ; This is required to prevent CANCON
                                       ; from corrupting CAN buffer access
                                       ; in-progress while this interrupt
                                       : occurred
   MOVFF CANSTAT, TempCANSTAT
                                       ; Save CANSTAT register
                                       ; This is required to make sure that
                                       ; we use same CANSTAT value rather
                                       ; than one changed by another CAN
                                       ; interrupt.
   MOVF
         TempCANSTAT, W
                                       ; Retrieve ICODE bits
   ANDLW B'00001110'
                                       ; Perform computed GOTO
   ADDWF PCL, F
                                       ; to corresponding interrupt cause
   BRA
        NoInterrupt
                                      ; 000 = No interrupt
   BRA ErrorInterrupt
                                      ; 001 = Error interrupt
                                      ; 010 = TXB2 interrupt
   BRA TXB2Interrupt
                                      ; 011 = TXB1 interrupt
   BRA
          TXB1Interrupt
                                      ; 100 = TXB0 interrupt
   BRA
          TXB0Interrupt
   BRA
          RXB1Interrupt
                                       ; 101 = RXB1 interrupt
        RXB0Interrupt
   BRA
                                       ; 110 = RXB0 interrupt
                                       ; 111 = Wake-up on interrupt
WakeupInterrupt
   BCF PIR3, WAKIF
                                      ; Clear the interrupt flag
   ; User code to handle wake-up procedure
   :
   ;
   ; Continue checking for other interrupt source or return from here
NoInterrupt
                                       ; PC should never vector here. User may
                                       ; place a trap such as infinite loop or pin/port
                                        ; indication to catch this error.
```

REGISTER 24-4:	COMSTAT: COMMUNICATION STATUS REGISTER
----------------	--

Mode 0	R/C-0	R/C-0	R-0	R-0	R-0	R-0	R-0	R-0
woue u	RXB00VFL	RXB10VFL	ТХВО	TXBP	RXBP	TXWARN	RXWARN	EWARN
	D/0 0	D/0.0	D 0	D 0			D 0	D 0
Mode 1	R/C-0			R-0	K-U			
	—	RABIOVEL	IXBU	IXBP	RYRL	IXWARN	RAWARN	EWARN
	R/C-0	R/C-0	R-0	R-0	R-0	R-0	R-0	R-0
Mode 2	FIFOEMPTY	RXBnOVFL	ТХВО	TXBP	RXBP	TXWARN	RXWARN	EWARN
	bit 7							bit 0
Legend			C = Clearab	le bit				
R = Rea	dable bit		W = Writable	e bit	U = Unimpl	emented bit, r	read as '0'	
-n = Valu	ue at POR		'1' = Bit is se	et	'0' = Bit is c	leared	x = Bit is unk	nown
								-
bit 7	<u>Mode 0:</u> RXB0OVFL:	Receive Buffe	r 0 Overflow	bit				
	1 = Receive 0 = Receive	Buffer 0 overflo Buffer 0 has no	owed ot overflowed	1				
	<u>Mode 1:</u> Unimplemer	nted: Read as	'O'					
	Mode 2:							
	FIFOEMPTY	: FIFO Not Em	pty bit					
	1 = Receive 0 = Receive	FIFO is not em FIFO is empty	pty					
bit 6	Mode 0: RXB10VFL:	Receive Buffe	r 1 Overflow	bit				
	1 = Receive 0 = Receive	Buffer 1 overflo Buffer 1 has no	owed ot overflowed	l				
	<u>Mode 1, 2:</u>							
	RXBnOVFL:	Receive Buffe	r n Overflow	bit				
	1 = Receive 0 = Receive	Buffer n has o\ Buffer n has no	erflowed	I				
bit 5	TXBO: Trans	smitter Bus-Off	bit					
	1 = Transmit 0 = Transmit	error counter a	> 255 ≤ 255					
bit 4	TXBP: Trans	mitter Bus Pas	sive bit					
	1 = Transmit 0 = Transmit	error counter a	> 127 ≤ 127					
bit 3	RXBP: Rece	iver Bus Passi	ve bit					
	1 = Receive error counter > 127 0 = Receive error counter \leq 127							
bit 2	TXWARN: Tr	ransmitter War	ning bit					
	1 = Transmit error counter > 95 0 = Transmit error counter \leq 95							
bit 1	RXWARN: R	eceiver Warnir	ng bit					
	1 = 127 ≥ Re 0 = Receive	eceive error cou error counter ≤	unter > 95 95					
bit 0	EWARN: Err This bit is a f	or Warning bit lag of the RXW	/ARN and T>	WARN bits.				
	1 = The RXV 0 = Neither th	VARN or the T	KWARN bits r the TXWAF	are set RN bits are se	et			

REGISTER 24-14: RXB1CON: RECEIVE BUFFER 1 CONTROL REGISTER (CONTINUED)

bit 2-0 <u>Mode 0:</u>

FILHIT<2:0>: Filter Hit bits

These bits indicate which acceptance filter enabled the last message reception into Receive Buffer 1.

- 111 = Reserved
- 110 = Reserved
- 101 = Acceptance Filter 5 (RXF5)
- 100 = Acceptance Filter 4 (RXF4)
- 011 = Acceptance Filter 3 (RXF3)
- 010 = Acceptance Filter 2 (RXF2)
- 001 = Acceptance Filter 1 (RXF1), only possible when RXB0DBEN bit is set
- 000 = Acceptance Filter 0 (RXF0), only possible when RXB0DBEN bit is set

Mode 1, 2:

FILHIT<2:0> Filter Hit bits <2:0>

These bits, in combination with FILHIT<4:3>, indicate which acceptance filter enabled the message reception into this receive buffer.

01111 = Acceptance Filter 15 (RXF15)

01110 = Acceptance Filter 14 (RXF14)

00000 = Acceptance Filter 0 (RXF0)

Note 1: This bit is set by the CAN module upon receiving a message and must be cleared by software after the buffer is read. As long as RXFUL is set, no new message will be loaded and buffer will be considered full.

REGISTER 24-15: RXBnSIDH: RECEIVE BUFFER n STANDARD IDENTIFIER REGISTERS, HIGH BYTE [0 \leq n \leq 1]

R-x	R-x	R-x	R-x	R-x	R-x	R-x	R-x
SID10	SID9	SID8	SID7	SID6	SID5	SID4	SID3
bit 7							bit 0

Legena:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	1 as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 7-0 **SID<10:3>:** Standard Identifier bits (if EXID (RXBnSIDL<3>) = 0) Extended Identifier bits, EID<28:21> (if EXID = 1).

24.2.3.1 Programmable TX/RX and Auto-RTR Buffers

The ECAN module contains 6 message buffers that can be programmed as transmit or receive buffers. Any of these buffers can also be programmed to automatically handle RTR messages.

Note: These registers are not used in Mode 0.

REGISTER 24-22: BnCON: TX/RX BUFFER n CONTROL REGISTERS IN RECEIVE MODE $[0 \le n \le 5, TXnEN (BSEL0 \le n) = 0]^{(1)}$

R/W-0	R/W-0	R-0	R-0	R-0	R-0	R-0	R-0
RXFUL ⁽²⁾	RXM1	RXRTRRO	FILHIT4	FILHIT3	FILHIT2	FILHIT1	FILHIT0
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit,	read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 7	RXFUL: Receive Full Status bit ⁽²⁾
	1 = Receive buffer contains a received message0 = Receive buffer is open to receive a new message
bit 6	RXM1: Receive Buffer Mode bit
	 1 = Receive all messages including partial and invalid (acceptance filters are ignored) 0 = Receive all valid messages as per acceptance filters
bit 5	RXRTRRO: Read-Only Remote Transmission Request for Received Message bit
	1 = Received message is a remote transmission request
	0 = Received message is not a remote transmission request
bit 4-0	FILHIT<4:0>: Filter Hit bits
	These bits indicate which acceptance filter enabled the last message reception into this buffer.
	01111 = Acceptance Filter 15 (RXF15)
	01110 = Acceptance Filter 14 (RXF14)
	00001 = Acceptance Filter 1 (RXF1)
	00000 = Acceptance Filter U (RXFU)

- **Note 1:** These registers are available in Mode 1 and 2 only.
 - 2: This bit is set by the CAN module upon receiving a message and must be cleared by software after the buffer is read. As long as RXFUL is set, no new message will be loaded and the buffer will be considered full.

24.2.3.2 Message Acceptance Filters and Masks

This section describes the message acceptance filters and masks for the CAN receive buffers.

REGISTER 24-37: RXFnSIDH: RECEIVE ACCEPTANCE FILTER n STANDARD IDENTIFIER FILTER REGISTERS, HIGH BYTE [0 \le n \le 15]⁽¹⁾

| R/W-x |
|-------|-------|-------|-------|-------|-------|-------|-------|
| SID10 | SID9 | SID8 | SID7 | SID6 | SID5 | SID4 | SID3 |
| bit 7 | | | | | | | bit 0 |

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 7-0 SID<10:3>: Standard Identifier Filter bits (if EXIDEN = 0) Extended Identifier Filter bits, EID<28:21> (if EXIDEN = 1).

Note 1: Registers, RXF6SIDH:RXF15SIDH, are available in Mode 1 and 2 only.

REGISTER 24-38: RXFnSIDL: RECEIVE ACCEPTANCE FILTER n STANDARD IDENTIFIER FILTER REGISTERS, LOW BYTE $[0 \le n \le 15]^{(1)}$

R/W-x	R/W-x	R/W-x	U-0	R/W-x	U-0	R/W-x	R/W-x
SID2	SID1	SID0	—	EXIDEN ⁽²⁾	—	EID17	EID16
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	l as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 7-5	SID<2:0>: Standard Identifier Filter bits (if EXIDEN = 0)
	Extended Identifier Filter bits, EID<20:18> (if EXIDEN = 1).
bit 4	Unimplemented: Read as '0'
bit 3	EXIDEN: Extended Identifier Filter Enable bit ⁽²⁾
	1 = Filter will only accept extended ID messages
	0 = Filter will only accept standard ID messages
bit 2	Unimplemented: Read as '0'
bit 1-0	EID<17:16>: Extended Identifier Filter bits

Note 1: Registers, RXF6SIDL:RXF15SIDL, are available in Mode 1 and 2 only.

2: In Mode 0, this bit must be set/cleared as required, irrespective of corresponding mask register value.

24.3 CAN Modes of Operation

The PIC18F2480/2580/4480/4580 has six main modes of operation:

- Configuration mode
- · Disable/Sleep mode
- Normal Operation mode
- · Listen Only mode
- · Loopback mode
- Error Recognition mode

All modes, except Error Recognition, are requested by setting the REQOP bits (CANCON<7:5>). Error Recognition mode is requested through the RXM bits of the Receive Buffer register(s). Entry into a mode is Acknowledged by monitoring the OPMODE bits.

When changing modes, the mode will not actually change until all pending message transmissions are complete. Because of this, the user must verify that the device has actually changed into the requested mode before further operations are executed.

24.3.1 CONFIGURATION MODE

The CAN module has to be initialized before the activation. This is only possible if the module is in the Configuration mode. The Configuration mode is requested by setting the REQOP2 bit. Only when the status bit, OPMODE2, has a high level can the initialization be performed. Afterwards, the Configuration registers, the acceptance mask registers and the acceptance filter registers can be written. The module is activated by setting the REQOP control bits to zero.

The module will protect the user from accidentally violating the CAN protocol through programming errors. All registers which control the configuration of the module can not be modified while the module is online. The CAN module will not be allowed to enter the Configuration mode while a transmission or reception is taking place. The Configuration mode serves as a lock to protect the following registers:

- Configuration Registers
- Functional Mode Selection Registers
- Bit Timing Registers
- Identifier Acceptance Filter Registers
- Identifier Acceptance Mask Registers
- Filter and Mask Control Registers
- Mask Selection Registers

In the Configuration mode, the module will not transmit or receive. The error counters are cleared and the interrupt flags remain unchanged. The programmer will have access to Configuration registers that are access restricted in other modes. I/O pins will revert to normal I/O functions.

24.3.2 DISABLE/SLEEP MODE

In Disable/Sleep mode, the module will not transmit or receive. The module has the ability to set the WAKIF bit due to bus activity; however, any pending interrupts will remain and the error counters will retain their value.

If the REQOP<2:0> bits are set to '001', the module will enter the module Disable/Sleep mode. This mode is similar to disabling other peripheral modules by turning off the module enables. This causes the module internal clock to stop unless the module is active (i.e., receiving or transmitting a message). If the module is active, the module will wait for 11 recessive bits on the CAN bus, detect that condition as an Idle bus, then accept the module Disable/Sleep command. OPMODE<2:0> = 001 indicates whether the module successfully went into the module Disable/Sleep mode.

The WAKIF interrupt is the only module interrupt that is still active in the Disable/Sleep mode. If the WAKDIS is cleared and WAKIE is set, the processor will receive an interrupt whenever the module detects recessive to dominant transition. On wake-up, the module will automatically be set to the previous mode of operation. For example, if the module was switched from Normal to Disable/Sleep mode on bus activity wake-up, the module will automatically enter into Normal mode and the first message that caused the module to wake-up is lost. The module will not generate any error frame. Firmware logic must detect this condition and make sure that retransmission is requested. If the processor receives a wake-up interrupt while it is sleeping, more than one message may get lost. The actual number of messages lost would depend on the processor oscillator start-up time and incoming message bit rate.

The TXCAN pin will stay in the recessive state while the module is in Disable/Sleep mode.

24.3.3 NORMAL MODE

This is the standard operating mode of the PIC18F2480/2580/4480/4580 devices. In this mode, the device actively monitors all bus messages and generates Acknowledge bits, error frames, etc. This is also the only mode in which the PIC18F2480/2580/4480/4580 devices will transmit messages over the CAN bus.

REGISTER 25-2: CONFIG2L: CONFIGURATION REGISTER 2 LOW (BYTE ADDRESS 300002h)

U-0	U-0	U-0	R/P-1	R/P-1	R/P-1	R/P-1	R/P-1
_		_	BORV1	BORV0	BOREN1 ⁽¹⁾	BOREN0 ⁽¹⁾	PWRTEN ⁽¹⁾
bit 7					I		bit 0
Legend:							
R = Readable I	bit	P = Programn	nable bit	U = Unimpler	mented bit, read	as '0'	
-n = Value whe	n device is unp	programmed		u = Unchang	ed from progran	nmed state	
bit 7-5	Unimplemen	ted: Read as ')'				
bit 4-3	BORV<1:0>:	Brown-out Res	et Voltage bit	S			
	11 = VBOR se	t to 2.1V					
	10 = VBOR se	t to 2.8V					
	01 = VBOR Se	t to 4.3V t to 4.6V					
hit 2-1	BOREN<1:0>	Brown-out Re	eset Enable b	_{its} (1)			
5112	11 = Brown-optimizer	ut Reset enabl	ed in hardwa	re only (SBOR	EN is disabled)		
	10 = Brown-o	out Reset enabl	ed in hardwa	re only and dis	abled in Sleep r	node (SBOREI	۱ is disabled)
	01 = Brown-out Reset enabled and controlled by software (SBOREN is enabled)						
	00 = Brown-o	out Reset disab	led in hardwa	re and softwar	e		
bit 0	PWRTEN: Po	wer-up Timer E	Enable bit ⁽¹⁾				
	1 = PWRT dis	sabled					
	0 = PWRI en	abled					

Note 1: The Power-up Timer is decoupled from Brown-out Reset, allowing these features to be independently controlled.

BTG		Bit Toggle f		BO	/	Branch if	Overflow			
Syntax:		BTG f, b {,a	a}		Synta	ax:	BOV n			
Operands:		$0 \le f \le 255$			Oper	ands:	-128 ≤ n ≤ 1	$-128 \le n \le 127$		
	0 ≤ b < 7 a ∈ [0,1]		Oper	Operation:		bit is '1', 2n \rightarrow PC				
Operation:		$(\overline{f} > b) \to f <$:b>		Statu	s Affected:	None			
Status Affect	ed:	None			Enco	dina:	1110	0100 nn	nn nnnn	
Encoding:	ncoding: 0111 bbba ffff ffff		Desc	ription:	If the Overf	low bit is '1', t	hen the			
Description.		inverted.		ation 1 is			The 2's con	n brancn. Inlement num	her '2n' is	
		If 'a' is '0', t If 'a' is '1', t GPR bank.	he Access Ba he BSR is use	nk is selected. In to select the			added to th have incren instruction,	e PC. Since the nented to fetch the new address	he PC will h the next ess will be	
		lf 'a' is ' 0' a	nd the extend	ed instruction			PC + 2 + 2r	n. This instruc	tion is then a	
		set is enab	led, this instru	ction operates			two-cycle in	istruction.		
		mode wher	Literal Oliset / never f < 95 (5	Fh) See	Word	IS:	1			
		Section 26	.2.3 "Byte-Or	iented and	Cycle	es:	1(2)			
		Bit-Oriente	ed Instruction	is in Indexed	QC	ycle Activity:				
		Literal Off	set Mode" for	details.	lf Ju	mp:				
Words:		1				Q1	Q2	Q3	Q4	
Cycles:		1				Decode	Read literal 'n'	Process Data	Write to PC	
Q Cycle Act	ivity:			_		No	No	No	No	
Q	1	Q2	Q3	Q4		operation	operation	operation	operation	
Deco	ode	Read	Process	Write	lf No	o Jump:				
		register i	Dala	register i		Q1	Q2	Q3	Q4	
-				-		Decode	Read literal	Process	No	
Example:		BTG P	ORTC, 4, (J			'n'	Data	operation	
Before PC	Instruc DRTC	ction: = 0111	0101 [75h]		Exan	nple:	HERE	BOV Jump)	
PC	DRTC	= 0110 i	0101 [65h]			Before Instruc	tion			
		0110				PC	= ad	dress (HERE)	
						After Instruction	on			
						If Overflo	w = 1;	drees (Jumo)	
						If Overflo	= 0;	uress (Jump)	
						PC	= ad	dress (HERE	+ 2)	

RR	NCF	F Rotate Right f (No Carry)							
Synt	ax:	RF	RNCF	f {,d	{,a}}				
Ope	rands:	0 ⊴ d ∉ a ∉	≤ f ≤ 25 ≘ [0,1] ≘ [0,1]	5					
Ope	ration:	(f< (f<	n>) → 0>) →	dest∘ dest<	<n –<br=""><7></n>	1>,			
Statu	us Affected:	N,	Z						
Enco	oding:		0100	0 ()da	ffi	f	ffff	
Desc	cription:	Th on is pla is ' se if ' se in mo Se Bit	The contents of register 'f' are rotated one bit to the right. If 'd' is '0', the result is placed in W. If 'd' is '1', the result is placed back in register 'f'. If 'a' is '0', the Access Bank will be selected, overriding the BSR value. If 'a' is '1', then the bank will be selected as per the BSR value. If 'a' is '0' and the extended instruction set is enabled, this instruction operates in Indexed Literal Offset Addressing mode whenever $f \le 95$ (5Fh). See Section 26.2.3 "Byte-Oriented and Bit-Oriented Instructions in Indexed Literal Offset Mode" for details.						
						Sylater	1		
Wor	ds:	1							
Cycl	es:	1							
QC	Cycle Activity:							_	
	Q1	_	Q2		Q	3		Q4	
	Decode	۲eg	lead ister 'f'		Proce Dat	ess a	v des	Vrite to stination	
<u>Exar</u>	<u>mple 1:</u>	RR	NCF	REG	5, 1	, 0			
	Before Instruc REG	tion =	1101	011	1				
	After Instructio	on =	1110	101	1				
Exar	mple 2:	RR	NCF	REG	G , 0	, 0			
	Before Instruc	tion							
	W REG	= =	? 1101	011	1				
	After Instruction	on							
	W REG	=	1110 1101	101 011	⊥ 1				

SET	F	Set f								
Synta	ax:	SETF f{,	SETF f {,a}							
Opera	ands:	0 ≤ f ≤ 255 a ∈ [0,1]	$\begin{array}{l} 0 \leq f \leq 255 \\ a \in [0,1] \end{array}$							
Oper	ation:	$FFh\tof$								
Statu	s Affected:	None								
Enco	ding:	0110	100a	fff	f	ffff				
Desc	ription:	The conten are set to F	ts of the Fh.	specif	ied r	register				
	If 'a' is '0', the Access Bank is selected If 'a' is '1', the BSR is used to select th GPR bank.									
		If 'a' is '0' a set is enab in Indexed	nd the e led, this i Literal O	xtende nstruc ffset A	ed in: tion ddre	struction operates essing				
		mode wher Section 26 Bit-Oriente Literal Offe	everf≤ .2.3 "By d Instru set Mode	95 (5F te-Ori ctions e" for (h). S ente s in detai	See ed and Indexed ils.				
Word	s:	1								
Cycle	es:	1	1							
Q C	vcle Activity:									
-	Q1	Q2	Q2 Q3 Q4							
	Decode	Read register 'f'	Proce Data	ess a	reg	Write gister 'f'				

		register 'f'	Data	register 'f'
Exan	<u>nple:</u>	SETF	REG,1	
	Before Instruc	tion		
	REG	= 54	۹h	
	After Instruction	n		

= FFh

REG

SUBWFB		S	Subtract W from f with Borrow					
Syntax:			SUBWFB f {,d {,a}}					
Operands:		0 d a	$0 \le f \le 255$ $d \in [0,1]$ $a \in [0,1]$					
Ope	ration:	(f)	$(f)-(W)-(\overline{C})\to dest$					
Status Affected:		Ν	N, OV, C, DC, Z					
Encoding:			0101 10da ffff fff			ffff		
Description: Subtract W and the Carry flag (borro from register 'f' (2's complement method). If 'd' is '0', the result is stored ba in v. If 'd' is '1', the result is stored ba in register 'f'. If 'a' is '0', the Access Bank is select If 'a' is '1', the BSR is used to select to GPR bank. If 'a' is '0' and the extended instruction set is enabled, this instruction operal in Indexed Literal Offset Addressing mode whenever f ≤ 95 (5Fh). See Section 26.2.3 "Byte-Oriented and Bit-Oriented Instructions in Indexed						selected. selected. select the struction operates essing See ed and Indexed ils		
Word	ds:	1						
Cvcl	es:	1						
QC	cycle Activity:							
	Q1		Q2	Q3		Q4		
	Decode	re	Read gister 'f'	Process Data	s \ de	Write to estination		
Exar	<u>mple 1:</u>		SUBWFB	REG, 1,	0			
	Before Instruc	tion						
	REG W C	= = =	19h 0Dh 1	(0001 (0000	1001) 1101)			
	After Instructio	n _	0Ch	(0000	1011)			
	W	=	0Dh	(0000	11011)			
	Z	=	1 0					
_	N	=	0	; result i	s positiv	ve		
Exar	<u>npie 2:</u> Roforo Instruc	tion	SUBWFB	REG, 0,	0			
	REG	=	1Bh	(0001	1011)			
	W C	=	1Ah 0	(0001	1010)			
	After Instruction	on =	1Bh	(0001	1011)			
	C Z N	=	1 1 0	; result i	s zero			
Exar	nple 3:	-	SUBWFB	REG, 1.	0			
	Before Instruc	tion		, _,	-			
	REG W C	= = =	03h 0Eh 1	(0000 (0000	0011) 1101)			
	After Instructio	n						
	REG	=	F5h	(1111 : [2's co	0100) npl			
	W C Z	= = =	0Eh 0 0	(0000	1101)			
	Ň	=	ĭ	; result i	s negat	ive		

SWAPF	Swap f						
Syntax:	SWAPF f {,d {,a}}						
Operands:	$\begin{array}{l} 0 \leq f \leq 255 \\ d \in [0,1] \\ a \in [0,1] \end{array}$	$\begin{array}{l} 0 \leq f \leq 255 \\ d \in [0,1] \\ a \in [0,1] \end{array}$					
Operation:	$(f<3:0>) \rightarrow$ $(f<7:4>) \rightarrow$	(f<3:0>) → dest<7:4>, (f<7:4>) → dest<3:0>					
Status Affected:	None	None					
Encoding:	0011	10da :	ffff	ffff			
Description:	The upper a 'f' are excha is placed in placed in re	The upper and lower nibbles of register 'f' are exchanged. If 'd' is '0', the result is placed in W. If 'd' is '1', the result is placed in register 'f'.					
	lf 'a' is '0', t lf 'a' is '1', t GPR bank.	If 'a' is '0', the Access Bank is selected. If 'a' is '1', the BSR is used to select the GPR bank.					
	struction operates essing See ed and Indexed ils.						
Words:	1						
Cycles:	1						
Q Cycle Activity:							
Q1	Q2	Q3		Q4			
Decode	Read register 'f'	Process Data	V des	/rite to stination			
Example:SWAPFREG, 1, 0Before InstructionREG=After InstructionREG=REG=35h							

27.0 DEVELOPMENT SUPPORT

The PIC[®] microcontrollers and dsPIC[®] digital signal controllers are supported with a full range of software and hardware development tools:

- Integrated Development Environment
- MPLAB[®] IDE Software
- Compilers/Assemblers/Linkers
 - MPLAB C Compiler for Various Device Families
 - HI-TECH C for Various Device Families
 - MPASM[™] Assembler
 - MPLINK[™] Object Linker/ MPLIB[™] Object Librarian
 - MPLAB Assembler/Linker/Librarian for Various Device Families
- Simulators
 - MPLAB SIM Software Simulator
- Emulators
 - MPLAB REAL ICE™ In-Circuit Emulator
- In-Circuit Debuggers
 - MPLAB ICD 3
 - PICkit™ 3 Debug Express
- Device Programmers
 - PICkit[™] 2 Programmer
 - MPLAB PM3 Device Programmer
- Low-Cost Demonstration/Development Boards, Evaluation Kits, and Starter Kits

27.1 MPLAB Integrated Development Environment Software

The MPLAB IDE software brings an ease of software development previously unseen in the 8/16/32-bit microcontroller market. The MPLAB IDE is a Windows[®] operating system-based application that contains:

- A single graphical interface to all debugging tools
 - Simulator
 - Programmer (sold separately)
 - In-Circuit Emulator (sold separately)
 - In-Circuit Debugger (sold separately)
- A full-featured editor with color-coded context
- A multiple project manager
- Customizable data windows with direct edit of contents
- · High-level source code debugging
- · Mouse over variable inspection
- Drag and drop variables from source to watch windows
- · Extensive on-line help
- Integration of select third party tools, such as IAR C Compilers

The MPLAB IDE allows you to:

- Edit your source files (either C or assembly)
- One-touch compile or assemble, and download to emulator and simulator tools (automatically updates all project information)
- · Debug using:
 - Source files (C or assembly)
 - Mixed C and assembly
 - Machine code

MPLAB IDE supports multiple debugging tools in a single development paradigm, from the cost-effective simulators, through low-cost in-circuit debuggers, to full-featured emulators. This eliminates the learning curve when upgrading to tools with increased flexibility and power.

APPENDIX E: MIGRATION FROM MID-RANGE TO ENHANCED DEVICES

A detailed discussion of the differences between the mid-range MCU devices (i.e., PIC16CXXX) and the enhanced devices (i.e., PIC18FXXX) is provided in *AN716, "Migrating Designs from PIC16C74A/74B to PIC18C442.*" The changes discussed, while device specific, are generally applicable to all mid-range to enhanced device migrations.

This Application Note is available as Literature Number DS00716.

APPENDIX F: MIGRATION FROM HIGH-END TO ENHANCED DEVICES

A detailed discussion of the migration pathway and differences between the high-end MCU devices (i.e., PIC17CXXX) and the enhanced devices (i.e., PIC18FXXX) is provided in *AN726, "PIC17CXXX to PIC18CXXX Migration.*" This Application Note is available as Literature Number DS00726.