

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	40MHz
Connectivity	CANbus, I ² C, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, HLVD, POR, PWM, WDT
Number of I/O	36
Program Memory Size	16KB (8K x 16)
Program Memory Type	FLASH
EEPROM Size	256 x 8
RAM Size	768 × 8
Voltage - Supply (Vcc/Vdd)	2V ~ 5.5V
Data Converters	A/D 11x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Through Hole
Package / Case	40-DIP (0.600", 15.24mm)
Supplier Device Package	40-PDIP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic18lf4480-i-p

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

2.3 Master Clear (MCLR) Pin

The MCLR pin provides two specific device functions: Device Reset, and Device Programming and Debugging. If programming and debugging are not required in the end application, a direct connection to VDD may be all that is required. The addition of other components, to help increase the application's resistance to spurious Resets from voltage sags, may be beneficial. A typical configuration is shown in Figure 2-1. Other circuit designs may be implemented, depending on the application's requirements.

During programming and debugging, the resistance and capacitance that can be added to the pin must be considered. Device programmers and debuggers drive the MCLR pin. Consequently, specific voltage levels (VIH and VIL) and fast signal transitions must not be adversely affected. Therefore, specific values of R1 and C1 will need to be adjusted based on the application and PCB requirements. For example, it is recommended that the capacitor, C1, be isolated from the MCLR pin during programming and debugging operations by using a jumper (Figure 2-2). The jumper is replaced for normal run-time operations.

Any components associated with the $\overline{\text{MCLR}}$ pin should be placed within 0.25 inch (6 mm) of the pin.

FIGURE 2-2: EXAMPLE OF MCLR PIN CONNECTIONS

2.4 ICSP Pins

The PGC and PGD pins are used for In-Circuit Serial ProgrammingTM (ICSPTM) and debugging purposes. It is recommended to keep the trace length between the ICSP connector and the ICSP pins on the device as short as possible. If the ICSP connector is expected to experience an ESD event, a series resistor is recommended, with the value in the range of a few tens of ohms, not to exceed 100 Ω .

Pull-up resistors, series diodes, and capacitors on the PGC and PGD pins are not recommended as they will interfere with the programmer/debugger communications to the device. If such discrete components are an application requirement, they should be removed from the circuit during programming and debugging. Alternatively, refer to the AC/DC characteristics and timing requirements information in the respective device Flash programming specification for information on capacitive loading limits and pin input voltage high (VIH) and input low (VIL) requirements.

For device emulation, ensure that the "Communication Channel Select" (i.e., PGCx/PGDx pins) programmed into the device matches the physical connections for the ICSP to the Microchip debugger/emulator tool.

For more information on available Microchip development tools connection requirements, refer to **Section 27.0 "Development Support"**.

Register	Арј	plicabl	e Devi	ces	Power-oi Brown-oi	n Reset, ut Reset	MCLR WDT RESET In Stack	Resets, Reset, struction, Resets	Wake-up via WDT or Interrupt	
RXB1SIDH	2480	2580	4480	4580	XXXX	XXXX	սսսս	นนนน	นนนน	นนนน
RXB1CON	2480	2580	4480	4580	000-	0000	000-	0000	uuu-	uuuu
TXB0D7	2480	2580	4480	4580	XXXX	XXXX	սսսս	นนนน	นนนน	นนนน
TXB0D6	2480	2580	4480	4580	XXXX	XXXX	սսսս	uuuu	սսսս	uuuu
TXB0D5	2480	2580	4480	4580	XXXX	XXXX	սսսս	uuuu	սսսս	uuuu
TXB0D4	2480	2580	4480	4580	XXXX	XXXX	սսսս	uuuu	սսսս	uuuu
TXB0D3	2480	2580	4480	4580	XXXX	XXXX	սսսս	uuuu	սսսս	uuuu
TXB0D2	2480	2580	4480	4580	XXXX	XXXX	սսսս	uuuu	սսսս	uuuu
TXB0D1	2480	2580	4480	4580	XXXX	XXXX	սսսս	uuuu	սսսս	uuuu
TXB0D0	2480	2580	4480	4580	XXXX	XXXX	սսսս	uuuu	սսսս	uuuu
TXB0DLC	2480	2580	4480	4580	-x	XXXX	-u	uuuu	-u	uuuu
TXB0EIDL	2480	2580	4480	4580	XXXX	XXXX	սսսս	uuuu	սսսս	uuuu
TXB0EIDH	2480	2580	4480	4580	XXXX	XXXX	սսսս	uuuu	-uuu	uuuu
TXB0SIDL	2480	2580	4480	4580	xxx-	x-xx	uuu-	u-uu	uuu-	u-uu
TXB0SIDH	2480	2580	4480	4580	XXXX	XXXX	սսսս	นนนน	นนนน	นนนน
TXB0CON	2480	2580	4480	4580	0000	0-00	0000	0-00	นนนน	u-uu
TXB1D7	2480	2580	4480	4580	XXXX	XXXX	นนนน	uuuu	սսսս	uuuu
TXB1D6	2480	2580	4480	4580	XXXX	XXXX	սսսս	uuuu	սսսս	uuuu
TXB1D5	2480	2580	4480	4580	XXXX	XXXX	սսսս	uuuu	սսսս	uuuu
TXB1D4	2480	2580	4480	4580	XXXX	XXXX	սսսս	uuuu	սսսս	uuuu
TXB1D3	2480	2580	4480	4580	XXXX	XXXX	սսսս	นนนน	นนนน	นนนน
TXB1D2	2480	2580	4480	4580	XXXX	XXXX	սսսս	uuuu	սսսս	uuuu
TXB1D1	2480	2580	4480	4580	XXXX	XXXX	นนนน	uuuu	սսսս	uuuu
TXB1D0	2480	2580	4480	4580	XXXX	XXXX	սսսս	uuuu	սսսս	uuuu
TXB1DLC	2480	2580	4480	4580	-x	XXXX	-u	uuuu	-u	uuuu
TXB1EIDL	2480	2580	4480	4580	XXXX	XXXX	սսսս	นนนน	սսսս	uuuu
TXB1EIDH	2480	2580	4480	4580	XXXX	XXXX	սսսս	นนนน	นนนน	นนนน
TXB1SIDL	2480	2580	4480	4580	xxx-	x-xx	uuu-	u-uu	uuu-	uu-u
TXB1SIDH	2480	2580	4480	4580	XXXX	xxxx	սսսս	นนนน	-uuu	นนนน
TXB1CON	2480	2580	4480	4580	0000	0-00	0000	0-00	սսսս	u-uu
TXB2D7	2480	2580	4480	4580	XXXX	XXXX	uuuu	uuuu	0uuu	uuuu

TABLE 5-4: INITIALIZATION CONDITIONS FOR ALL REGISTERS (CONTINUED)

Legend: u = unchanged, x = unknown, - = unimplemented bit, read as '0', q = value depends on condition. Shaded cells indicate conditions do not apply for the designated device.

Note 1: One or more bits in the INTCONx or PIRx registers will be affected (to cause wake-up).

2: When the wake-up is due to an interrupt and the GIEL or GIEH bit is set, the PC is loaded with the interrupt vector (0008h or 0018h).

3: When the wake-up is due to an interrupt and the GIEL or GIEH bit is set, the TOSU, TOSH and TOSL are updated with the current value of the PC. The STKPTR is modified to point to the next location in the hardware stack.

4: See Table 5-3 for Reset value for specific condition.

5: Bits 6 and 7 of PORTA, LATA and TRISA are enabled, depending on the oscillator mode selected. When not enabled as PORTA pins, they are disabled and read '0'.

6: This register reads all '0's until ECAN[™] technology is set up in Mode 1 or Mode 2.

Register	Арј	plicabl	e Devi	ces	Power-on Reset, Brown-out Reset	er-on Reset, WDT Resets, WDT Reset, WDT Reset, Wake-up via WD Reset RESET Instruction, or Interrupt Stack Resets	
TXB2D6	2480	2580	4480	4580	XXXX XXXX	นนนน นนนน	0uuu uuuu
TXB2D5	2480	2580	4480	4580	XXXX XXXX	սսսս սսսս	0uuu uuuu
TXB2D4	2480	2580	4480	4580	XXXX XXXX	սսսս սսսս	0uuu uuuu
TXB2D3	2480	2580	4480	4580	XXXX XXXX	սսսս սսսս	0uuu uuuu
TXB2D2	2480	2580	4480	4580	XXXX XXXX	սսսս սսսս	0uuu uuuu
TXB2D1	2480	2580	4480	4580	XXXX XXXX	นนนน นนนน	0uuu uuuu
TXB2D0	2480	2580	4480	4580	XXXX XXXX	นนนน นนนน	0uuu uuuu
TXB2DLC	2480	2580	4480	4580	-x xxxx	-u uuuu	-u uuuu
TXB2EIDL	2480	2580	4480	4580	XXXX XXXX	นนนน นนนน	นนนน นนนน
TXB2EIDH	2480	2580	4480	4580	XXXX XXXX	นนนน นนนน	นนนน นนนน
TXB2SIDL	2480	2580	4480	4580	XXXX X-XX	uuuu u-uu	-นนน นนนน
TXB2SIDH	2480	2580	4480	4580	XXX- X-XX	uuu- u-uu	uuu- u-uu
TXB2CON	2480	2580	4480	4580	0000 0-00	0000 0-00	uuuu u-uu
RXM1EIDL	2480	2580	4480	4580	XXXX XXXX	นนนน นนนน	นนนน นนนน
RXM1EIDH	2480	2580	4480	4580	XXXX XXXX	นนนน นนนน	นนนน นนนน
RXM1SIDL	2480	2580	4480	4580	xxx- x-xx	uuu- u-uu	uuu- u-uu
RXM1SIDH	2480	2580	4480	4580	XXXX XXXX	นนนน นนนน	นนนน นนนน
RXM0EIDL	2480	2580	4480	4580	XXXX XXXX	นนนน นนนน	นนนน นนนน
RXM0EIDH	2480	2580	4480	4580	XXXX XXXX	นนนน นนนน	นนนน นนนน
RXM0SIDL	2480	2580	4480	4580	XXX- X-XX	uuu- u-uu	uuu- u-uu
RXM0SIDH	2480	2580	4480	4580	XXXX XXXX	นนนน นนนน	นนนน นนนน
RXF5EIDL	2480	2580	4480	4580	XXXX XXXX	นนนน นนนน	นนนน นนนน
RXF5EIDH	2480	2580	4480	4580	XXXX XXXX	นนนน นนนน	นนนน นนนน
RXF5SIDL	2480	2580	4480	4580	XXX- X-XX	uuu- u-uu	uuu- u-uu
RXF5SIDH	2480	2580	4480	4580	XXXX XXXX	นนนน นนนน	นนนน นนนน
RXF4EIDL	2480	2580	4480	4580	XXXX XXXX	นนนน นนนน	นนนน นนนน
RXF4EIDH	2480	2580	4480	4580	XXXX XXXX	นนนน นนนน	นนนน นนนน
RXF4SIDL	2480	2580	4480	4580	xxx- x-xx	uuu- u-uu	uuu- u-uu
RXF4SIDH	2480	2580	4480	4580	XXXX XXXX	นนนน นนนน	սսսս սսսս
RXF3EIDL	2480	2580	4480	4580	XXXX XXXX	นนนน นนนน	นนนน นนนน
RXF3EIDH	2480	2580	4480	4580	XXXX XXXX	นนนน นนนน	นนนน นนนน

TABLE 5-4:	INITIALIZATION CONDITIONS FOR ALL REGISTERS (CONTINUED)
------------	---

Legend: u = unchanged, x = unknown, - = unimplemented bit, read as '0', q = value depends on condition. Shaded cells indicate conditions do not apply for the designated device.

Note 1: One or more bits in the INTCONx or PIRx registers will be affected (to cause wake-up).

2: When the wake-up is due to an interrupt and the GIEL or GIEH bit is set, the PC is loaded with the interrupt vector (0008h or 0018h).

3: When the wake-up is due to an interrupt and the GIEL or GIEH bit is set, the TOSU, TOSH and TOSL are updated with the current value of the PC. The STKPTR is modified to point to the next location in the hardware stack.

4: See Table 5-3 for Reset value for specific condition.

5: Bits 6 and 7 of PORTA, LATA and TRISA are enabled, depending on the oscillator mode selected. When not enabled as PORTA pins, they are disabled and read '0'.

6: This register reads all '0's until ECAN[™] technology is set up in Mode 1 or Mode 2.

6.3.4 SPECIAL FUNCTION REGISTERS

The Special Function Registers (SFRs) are registers used by the CPU and peripheral modules for controlling the desired operation of the device. These registers are implemented as static RAM. SFRs start at the top of data memory (FFFh) and extend downward to occupy the top half of Bank 15 (F80h to FFFh). A list of these registers is given in Table 6-1 and Table 6-2.

The SFRs can be classified into two sets: those associated with the "core" device functionality (ALU, Resets and interrupts) and those related to the

peripheral functions. The reset and interrupt registers are described in their respective chapters, while the ALU's STATUS register is described later in this section. Registers related to the operation of a peripheral feature are described in the chapter for that peripheral.

The SFRs are typically distributed among the peripherals whose functions they control. Unused SFR locations are unimplemented and read as '0's.

Address	Name	Address	Name	Address	Name	Address	Name
FFFh	TOSU	FDFh	INDF2 ⁽³⁾	FBFh	ECCPR1H	F9Fh	IPR1
FFEh	TOSH	FDEh	POSTINC2 ⁽³⁾	FBEh	ECCPR1L	F9Eh	PIR1
FFDh	TOSL	FDDh	POSTDEC2 ⁽³⁾	FBDh	CCP1CON	F9Dh	PIE1
FFCh	STKPTR	FDCh	PREINC2 ⁽³⁾	FBCh	CCPR2H ⁽¹⁾	F9Ch	_
FFBh	PCLATU	FDBh	PLUSW2 ⁽³⁾	FBBh	CCPR2L ⁽¹⁾	F9Bh	OSCTUNE
FFAh	PCLATH	FDAh	FSR2H	FBAh	ECCP1CON ⁽¹⁾	F9Ah	_
FF9h	PCL	FD9h	FSR2L	FB9h	_	F99h	_
FF8h	TBLPTRU	FD8h	STATUS	FB8h	BAUDCON	F98h	_
FF7h	TBLPTRH	FD7h	TMR0H	FB7h	ECCP1DEL	F97h	_
FF6h	TBLPTRL	FD6h	TMR0L	FB6h	ECCP1AS ⁽¹⁾	F96h	TRISE ⁽¹⁾
FF5h	TABLAT	FD5h	TOCON	FB5h	CVRCON ⁽¹⁾	F95h	TRISD ⁽¹⁾
FF4h	PRODH	FD4h	_	FB4h	CMCON	F94h	TRISC
FF3h	PRODL	FD3h	OSCCON	FB3h	TMR3H	F93h	TRISB
FF2h	INTCON	FD2h	HLVDCON	FB2h	TMR3L	F92h	TRISA
FF1h	INTCON2	FD1h	WDTCON	FB1h	T3CON	F91h	_
FF0h	INTCON3	FD0h	RCON	FB0h	SPBRGH	F90h	—
FEFh	INDF0 ⁽³⁾	FCFh	TMR1H	FAFh	SPBRG	F8Fh	—
FEEh	POSTINC0 ⁽³⁾	FCEh	TMR1L	FAEh	RCREG	F8Eh	—
FEDh	POSTDEC0 ⁽³⁾	FCDh	T1CON	FADh	TXREG	F8Dh	LATE ⁽¹⁾
FECh	PREINC0 ⁽³⁾	FCCh	TMR2	FACh	TXSTA	F8Ch	LATD ⁽¹⁾
FEBh	PLUSW0 ⁽³⁾	FCBh	PR2	FABh	RCSTA	F8Bh	LATC
FEAh	FSR0H	FCAh	T2CON	FAAh	—	F8Ah	LATB
FE9h	FSR0L	FC9h	SSPBUF	FA9h	EEADR	F89h	LATA
FE8h	WREG	FC8h	SSPADD	FA8h	EEDATA	F88h	—
FE7h	INDF1 ⁽³⁾	FC7h	SSPSTAT	FA7h	EECON2 ⁽³⁾	F87h	—
FE6h	POSTINC1 ⁽³⁾	FC6h	SSPCON1	FA6h	EECON1	F86h	
FE5h	POSTDEC1 ⁽³⁾	FC5h	SSPCON2	FA5h	IPR3	F85h	—
FE4h	PREINC1 ⁽³⁾	FC4h	ADRESH	FA4h	PIR3	F84h	PORTE
FE3h	PLUSW1 ⁽³⁾	FC3h	ADRESL	FA3h	PIE3	F83h	PORTD ⁽¹⁾
FE2h	FSR1H	FC2h	ADCON0	FA2h	IPR2	F82h	PORTC
FE1h	FSR1L	FC1h	ADCON1	FA1h	PIR2	F81h	PORTB
FE0h	BSR	FC0h	ADCON2	FA0h	PIE2	F80h	PORTA

TABLE 6-1:SPECIAL FUNCTION REGISTER MAP FOR
PIC18F2480/2580/4480/4580 DEVICES

Note 1: Registers available only on PIC18F4X80 devices; otherwise, the registers read as '0'.

2: When any TX_ENn bit in RX_TX_SELn is set, then the corresponding bit in this register has transmit properties.

3: This is not a physical register.

13.0 TIMER1 MODULE

The Timer1 timer/counter module incorporates these features:

- Software-selectable operation as a 16-bit timer or counter
- Readable and writable 8-bit registers (TMR1H and TMR1L)
- Selectable clock source (internal or external) with device clock or Timer1 oscillator internal options
- Interrupt-on-overflow
- Module Reset on CCP Special Event Trigger
- Device clock status flag (T1RUN)

A simplified block diagram of the Timer1 module is shown in Figure 13-1. A block diagram of the module's operation in Read/Write mode is shown in Figure 13-2.

The module incorporates its own low-power oscillator to provide an additional clocking option. The Timer1 oscillator can also be used as a low-power clock source for the microcontroller in power-managed operation.

Timer1 can also be used to provide Real-Time Clock (RTC) functionality to applications with only a minimal addition of external components and code overhead.

Timer1 is controlled through the T1CON Control register (Register 13-1). It also contains the Timer1 Oscillator Enable bit (T1OSCEN). Timer1 can be enabled or disabled by setting or clearing control bit, TMR1ON (T1CON<0>).

R/W-0	R-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
RD16	T1RUN	T1CKPS1	T1CKPS0	T1OSCEN	T1SYNC	TMR1CS	TMR10N
bit 7							bit 0

REGISTER 13-1: T1CON: TIMER1 CONTROL REGISTER

Legend:					
R = Readabl	le bit	W = Writable bit	U = Unimplemented bit,	read as '0'	
-n = Value at	t POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown	
bit 7	RD16: 16	-Bit Read/Write Mode Enabl	e bit		
	1 = Enab 0 = Enab	oles register read/write of Tim oles register read/write of Tim	ner1 in one 16-bit operation ner1 in two 8-bit operations		
bit 6	T1RUN:	Timer1 System Clock Status	bit		
	1 = Devie 0 = Devie	ce clock is derived from Time ce clock is derived from anot	er1 oscillator her source		
bit 5-4	T1CKPS	<1:0>: Timer1 Input Clock Pr	rescale Select bits		
	11 = 1:8 10 = 1:4 01 = 1:2 00 = 1:1	Prescale value Prescale value Prescale value Prescale value			
bit 3	T1OSCEI	N: Timer1 Oscillator Enable I	bit		
	1 = Time	r1 oscillator is enabled			
	0 = Time	r1 oscillator is shut off		-4	
h :1 0		ator inverter and reedback re	esistor are turned on to elimin	ate power drain.	
DIL Z	Mhon TM		t Synchronization Select bit		
	1 = Do nc	ot synchronize external clock	input		
	0 = Synch	nronize external clock input			
	When TM	IR1CS = 0:			
	This bit is	ignored. Timer1 uses the in	ternal clock when TMR1CS =	0.	
bit 1	TMR1CS	: Timer1 Clock Source Selec	t bit		
	1 = Exter 0 = Interr	rnal clock from pin RC0/T1O nal clock (Fosc/4)	SO/T13CKI (on the rising edg	le)	
bit 0	TMR10N	: Timer1 On bit			
	1 = Enab	bles Timer1			

NOTES:

18.4.6 MASTER MODE

Master mode is enabled by setting and clearing the appropriate SSPM bits in SSPCON1 and by setting the SSPEN bit. In Master mode, the SCL and SDA lines are manipulated by the MSSP hardware.

Master mode of operation is supported by interrupt generation on the detection of the Start and Stop conditions. The Stop (P) and Start (S) bits are cleared from a Reset or when the MSSP module is disabled. Control of the I^2C bus may be taken when the P bit is set or the bus is Idle, with both the S and P bits clear.

In Firmware Controlled Master mode, user code conducts all I^2C bus operations based on Start and Stop bit conditions.

Once Master mode is enabled, the user has six options.

- 1. Assert a Start condition on SDA and SCL.
- 2. Assert a Repeated Start condition on SDA and SCL.
- 3. Write to the SSPBUF register initiating transmission of data/address.
- 4. Configure the I²C port to receive data.
- 5. Generate an Acknowledge condition at the end of a received byte of data.
- 6. Generate a Stop condition on SDA and SCL.

Note: The MSSP module, when configured in I²C Master mode, does not allow queueing of events. For instance, the user is not allowed to initiate a Start condition and immediately write the SSPBUF register to initiate transmission before the Start condition is complete. In this case, the SSPBUF will not be written to and the WCOL bit will be set, indicating that a write to the SSPBUF did not occur.

The following events will cause the MSSP Interrupt Flag bit, SSPIF, to be set (MSSP interrupt, if enabled):

- · Start condition
- Stop condition
- · Data transfer byte transmitted/received
- · Acknowledge transmitted
- · Repeated Start

18.4.6.1 I²C Master Mode Operation

The master device generates all of the serial clock pulses and the Start and Stop conditions. A transfer is ended with a Stop condition or with a Repeated Start condition. Since the Repeated Start condition is also the beginning of the next serial transfer, the I²C bus will not be released.

In Master Transmitter mode, serial data is output through SDA while SCL outputs the serial clock. The first byte transmitted contains the slave address of the receiving device (7 bits) and the Read/Write (R/W) bit. In this case, the R/W bit will be logic '0'. Serial data is transmitted 8 bits at a time. After each byte is transmitted, an Acknowledge bit is received. Start and Stop conditions are output to indicate the beginning and the end of a serial transfer.

In Master Receive mode, the first byte transmitted contains the slave address of the transmitting device (7 bits) and the R/\overline{W} bit. In this case, the R/\overline{W} bit will be logic '1' Thus, the first byte transmitted is a 7-bit slave address followed by a '1' to indicate the receive bit. Serial data is received via SDA, while SCL outputs the serial clock. Serial data is received 8 bits at a time. After each byte is received, an Acknowledge bit is transmitted. Start and Stop conditions indicate the beginning and end of transmission.

The Baud Rate Generator used for the SPI mode operation is used to set the SCL clock frequency for either 100 kHz, 400 kHz or $1 \text{ MHz} \text{ l}^2\text{C}$ operation. See **Section 18.4.7 "Baud Rate"** for more details. A typical transmit sequence would go as follows:

- 1. The user generates a Start condition by setting the Start Enable bit, SEN (SSPCON2<0>).
- 2. SSPIF is set. The MSSP module will wait the required start time before any other operation takes place.
- 3. The user loads the SSPBUF with the slave address to transmit.
- 4. Address is shifted out the SDA pin until all 8 bits are transmitted.
- 5. The MSSP module shifts in the ACK bit from the slave device and writes its value into the SSPCON2 register (SSPCON2<6>).
- 6. The MSSP module generates an interrupt at the end of the ninth clock cycle by setting the SSPIF bit.
- 7. The user loads the SSPBUF with eight bits of data.
- 8. Data is shifted out the SDA pin until all 8 bits are transmitted.
- The MSSP module shifts in the ACK bit from the slave device and writes its value into the SSPCON2 register (SSPCON2<6>).
- 10. The MSSP module generates an interrupt at the end of the ninth clock cycle by setting the SSPIF bit.
- 11. The user generates a Stop condition by setting the Stop Enable bit, PEN (SSPCON2<2>).
- 12. Interrupt is generated once the Stop condition is complete.

NOTES:

| R/W-x |
|-------|-------|-------|-------|-------|-------|-------|-------|
| EID7 | EID6 | EID5 | EID4 | EID3 | EID2 | EID1 | EID0 |
| bit 7 | | | | | | | bit 0 |
| | | | | | | | |

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 7-0 EID<7:0>: Extended Identifier bits

Note 1: These registers are available in Mode 1 and 2 only.

REGISTER 24-32: BnDm: TX/RX BUFFER n DATA FIELD BYTE m REGISTERS IN RECEIVE MODE $[0 \le n \le 5, 0 \le m \le 7, TXnEN (BSEL < n >) = 0]^{(1)}$

| R-x |
|-------|-------|-------|-------|-------|-------|-------|-------|
| BnDm7 | BnDm6 | BnDm5 | BnDm4 | BnDm3 | BnDm2 | BnDm1 | BnDm0 |
| bit 7 | | | | | | | bit 0 |

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 7-0 BnDm<7:0>: Receive Buffer n Data Field Byte m bits (where 0 ≤ n < 3 and 0 < m < 8) Each receive buffer has an array of registers. For example, Receive Buffer 0 has 7 registers: B0D0 to B0D7.

Note 1: These registers are available in Mode 1 and 2 only.

REGISTER 24-33: BnDm: TX/RX BUFFER n DATA FIELD BYTE m REGISTERS IN TRANSMIT MODE $[0 \le n \le 5, 0 \le m \le 7, TXnEN (BSEL<n>) = 1]^{(1)}$

| R/W-x |
|-------|-------|-------|-------|-------|-------|-------|-------|
| BnDm7 | BnDm6 | BnDm5 | BnDm4 | BnDm3 | BnDm2 | BnDm1 | BnDm0 |
| bit 7 | | | | | | | bit 0 |

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	l as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 7-0BnDm<7:0>: Transmit Buffer n Data Field Byte m bits (where 0 ≤ n < 3 and 0 < m < 8)</th>Each transmit buffer has an array of registers. For example, Transmit Buffer 0 has 7 registers: TXB0D0 to TXB0D7.

Note 1: These registers are available in Mode 1 and 2 only.

24.2.4 CAN BAUD RATE REGISTERS

This section describes the CAN Baud Rate registers.

Note:	These	registers	are	writable	in
	Configu	ration mode	only.		

REGISTER 24-52: BRGCON1: BAUD RATE CONTROL REGISTER 1

| R/W-0 |
|-------|-------|-------|-------|-------|-------|-------|-------|
| SJW1 | SJW0 | BRP5 | BRP4 | BRP3 | BRP2 | BRP1 | BRP0 |
| bit 7 | | | | | | | bit 0 |

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	l as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 7-6	SJW<1:0>: Synchronized Jump Width bits
	11 = Synchronization jump width time = $4 \times TQ$
	10 = Synchronization jump width time = 3 x TQ
	01 = Synchronization jump width time = 2 x TQ
	00 = Synchronization jump width time = 1 x TQ
bit 5-0	BRP<5:0>: Baud Rate Prescaler bits
	111111 = Tq = (2 x 64)/Fosc
	111110 = Tq = (2 x 63)/Fosc
	:
	:
	000001 = Tq = (2 x 2)/Fosc
	000000 = Tq = (2 x 1)/Fosc

REGISTER 24-54: BRGCON3: BAUD RATE CONTROL REGISTER 3

R/W-0	R/W-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	
WAKDIS	WAKFIL	—	_	—	SEG2PH2 ⁽¹⁾	SEG2PH1 ⁽¹⁾	SEG2PH0 ⁽¹⁾	
bit 7							bit 0	
Legend:								
R = Readable	bit	W = Writable b	bit	U = Unimpler	nented bit, read	l as '0'		
-n = Value at P	OR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown	
bit 7	WAKDIS: Wa	ke-up Disable b	bit					
	1 = Disable C	AN bus activity	wake-up feat	ture				
	0 = Enable CA	AN bus activity	wake-up feat	ure				
bit 6	WAKFIL: Sele	ects CAN bus L	ine Filter for \	Wake-up bit				
	1 = Use CAN	bus line filter fo	r wake-up					
	0 = CAN bus I	line filter is not	used for wake	e-up				
bit 5-3	Unimplement	ted: Read as '0	,					
bit 2-0	SEG2PH<2:0	>: Phase Segm	nent 2 Time S	elect bits ⁽¹⁾				
	111 = Phase	Segment 2 time	e = 8 x Tq					
	110 = Phase	Segment 2 time	e = 7 x Tq					
	101 = Phase	Segment 2 time	$e = 6 \times TQ$					
	100 = Prase Segment 2 time = 5 X IQ							
	011 = Phase	Segment 2 time	$e = 3 \times T_0$					
	001 = Phase	Segment 2 time	$e = 2 \times TQ$					
	000 = Phase	Segment 2 time	e = 1 x Tq					

Note 1: Ignored if SEG2PHTS bit (BRGCON2<7>) is '0'.

24.7.3 ENHANCED FIFO MODE

When configured for Mode 2, two of the dedicated receive buffers in combination with one or more programmable transmit/receive buffers, are used to create a maximum of an 8 buffer deep FIFO buffer. In this mode, there is no direct correlation between filters and receive buffer registers. Any filter that has been enabled can generate an acceptance. When a message has been accepted, it is stored in the next available receive buffer register and an internal Write Pointer is incremented. The FIFO can be a maximum of 8 buffers deep. The entire FIFO must consist of contiguous receive buffers. The FIFO head begins at RXB0 buffer and its tail spans toward B5. The maximum length of the FIFO is limited by the presence or absence of the first transmit buffer starting from B0. If a buffer is configured as a transmit buffer, the FIFO length is reduced accordingly. For instance, if B3 is configured as a transmit buffer, the actual FIFO will consist of RXB0, RXB1, B0, B1 and B2, a total of 5 buffers. If B0 is configured as a transmit buffer, the FIFO length will be 2. If none of the programmable buffers are configured as a transmit buffer, the FIFO will be 8 buffers deep. A system that requires more transmit buffers should try to locate transmit buffers at the very end of B0-B5 buffers to maximize available FIFO length.

When a message is received in FIFO mode, the interrupt flag code bits (EICODE<4:0>) in the CANSTAT register will have a value of '10000', indicating the FIFO has received a message. FIFO Pointer bits, FP<3:0> in the CANCON register, point to the buffer that contains data not yet read. The FIFO Pointer bits, in this sense, serve as the FIFO Read Pointer. The user should use FP bits and read corresponding buffer data. When receive data is no longer needed, the RXFUL bit in the current buffer must be cleared, causing FP<3:0> to be updated by the module.

To determine whether FIFO is empty or not, the user may use the FP<3:0> bits to access the RXFUL bit in the current buffer. If RXFUL is cleared, the FIFO is considered to be empty. If it is set, the FIFO may contain one or more messages. In Mode 2, the module also provides a bit called FIFO High Water Mark (FIFOWM) in the ECANCON register. This bit can be used to cause an interrupt whenever the FIFO contains only one or four empty buffers. The FIFO high water mark interrupt can serve as an early warning to a full FIFO condition.

24.7.4 TIME-STAMPING

The CAN module can be programmed to generate a time-stamp for every message that is received. When enabled, the module generates a capture signal for CCP1, which in turn captures the value of either Timer1 or Timer3. This value can be used as the message time-stamp.

To use the time-stamp capability, the CANCAP bit (CIOCON<4>) must be set. This replaces the capture input for CCP1 with the signal generated from the CAN module. In addition, CCP1CON<3:0> must be set to '0011' to enable the CCP Special Event Trigger for CAN events.

24.8 Message Acceptance Filters and Masks

The message acceptance filters and masks are used to determine if a message in the Message Assembly Buffer should be loaded into any of the receive buffers. Once a valid message has been received into the MAB, the identifier fields of the message are compared to the filter values. If there is a match, that message will be loaded into the appropriate receive buffer. The filter masks are used to determine which bits in the identifier are examined with the filters. A truth table is shown below in Table 24-2 that indicates how each bit in the identifier is compared to the masks and filters to determine if a message should be loaded into a receive buffer. The mask essentially determines which bits to apply the acceptance filters to. If any mask bit is set to a zero, then that bit will automatically be accepted regardless of the filter bit.

TABLE 24-2:	FILTER/MASK TRUTH TABLE
-------------	-------------------------

Mask bit n	Filter bit n	Message Identifier bit n001	Accept or Reject bit n
0	Х	х	Accept
1	0	0	Accept
1	0	1	Reject
1	1	0	Reject
1	1	1	Accept

Legend: x = don't care

In Mode 0, acceptance filters, RXF0 and RXF1, and filter mask, RXM0, are associated with RXB0. Filters, RXF2, RXF3, RXF4 and RXF5, and mask, RXM1, are associated with RXB1.

24.11 Programming Time Segments

Some requirements for programming of the time segments:

- Prop_Seg + Phase_Seg 1 \geq Phase_Seg 2
- Phase_Seg $2 \ge$ Sync Jump Width.

For example, assume that a 125 kHz CAN baud rate is desired, using 20 MHz for Fosc. With a Tosc of 50 ns, a baud rate prescaler value of 04h gives a TQ of 500 ns. To obtain a Nominal Bit Rate of 125 kHz, the Nominal Bit Time must be 8 μ s or 16 TQ.

Using 1 TQ for the Sync_Seg, 2 TQ for the Prop_Seg and 7 TQ for Phase Segment 1 would place the sample point at 10 TQ after the transition. This leaves 6 TQ for Phase Segment 2. By the rules above, the Sync Jump Width could be the maximum of 4 Tq. However, normally a large SJW is only necessary when the clock generation of the different nodes is inaccurate or unstable, such as using ceramic resonators. Typically, an SJW of 1 is enough.

24.12 Oscillator Tolerance

As a rule of thumb, the bit timing requirements allow ceramic resonators to be used in applications with transmission rates of up to 125 Kbit/sec. For the full bus speed range of the CAN protocol, a quartz oscillator is required. Refer to ISO11898-1 for oscillator tolerance requirements.

25.4.3 FSCM INTERRUPTS IN POWER-MANAGED MODES

By entering a power-managed mode, the clock multiplexer selects the clock source selected by the OSCCON register. Fail-Safe Clock Monitoring of the power-managed clock source resumes in the power-managed mode.

If an oscillator failure occurs during power-managed operation, the subsequent events depend on whether or not the oscillator failure interrupt is enabled. If enabled (OSCFIF = 1), code execution will be clocked by the INTOSC multiplexer. An automatic transition back to the failed clock source will not occur.

If the interrupt is disabled, subsequent interrupts while in Idle mode will cause the CPU to begin executing instructions while being clocked by the INTOSC source.

25.4.4 POR OR WAKE-UP FROM SLEEP

The FSCM is designed to detect oscillator failure at any point after the device has exited Power-on Reset (POR) or low-power Sleep mode. When the primary device clock is EC, RC or INTRC modes, monitoring can begin immediately following these events. For oscillator modes involving a crystal or resonator (HS, HSPLL, LP or XT), the situation is somewhat different. Since the oscillator may require a start-up time considerably longer than the FCSM sample clock time, a false clock failure may be detected. To prevent this, the internal oscillator block is automatically configured as the device clock and functions until the primary clock is stable (the OST and PLL timers have timed out). This is identical to Two-Speed Start-up mode. Once the primary clock is stable, the INTRC returns to its role as the FSCM source.

Note: The same logic that prevents false oscillator failure interrupts on POR, or wake from Sleep, will also prevent the detection of the oscillator's failure to start at all following these events. This can be avoided by monitoring the OSTS bit and using a timing routine to determine if the oscillator is taking too long to start. Even so, no oscillator failure interrupt will be flagged.

As noted in Section 25.3.1 "Special Considerations for Using Two-Speed Start-up", it is also possible to select another clock configuration and enter an alternate power-managed mode while waiting for the primary clock to become stable. When the new power-managed mode is selected, the primary clock is disabled.

RE1	URN	Return fro	om Subrouti	ne	RLC	CF	Rotate Le	eft f through	Carry	
Synt	ax:	RETURN	{s}		Synt	tax:	RLCF f	{,d {,a}}		
Ope	rands:	$s \in [0,1]$			Ope	rands:	$0 \le f \le 255$			
Ope	ration:	$(TOS) \rightarrow PO$	С;				$d \in [0,1]$			
		if $s = 1$,			0.55	ration	a ∈ [0,1] (f) → d	aaten 1 12		
		$(WS) \rightarrow W,$ (STATUSS)	\rightarrow STATUS.		Ope	ration:	$(f < n >) \rightarrow 0$ $(f < 7 >) \rightarrow C$	est <n +="" 1="">,</n>		
		$(BSRS) \rightarrow I$	BSR,				$(C) \rightarrow dest$	<0>		
		PCLATU, P	CLATH are un	ichanged	State	us Affected:	C, N, Z			
Statu	us Affected:	None	None		Enco	oding:	0011 01da ffff ffff			
Enco	oding:	0000	0000 000	001s	Des	cription:	The conten	ts of register "	f' are rotated	
Desc	cription:	Return from	subroutine. T	he stack is			one bit to th	ne left through	the Carry	
		is loaded in	to the program	counter. If			W. If 'd' is '	1'. the result	s stored back	
		's'= 1, the c	ontents of the	shadow			in register '	f.		
		registers, W	S, STATUSS	and BSRS,			lf 'a' is '0', t	the Access Ba	nk is	
		registers, W	, STATUS and	d BSR. If			selected. If	'a' is '1', the B SPR bank	SR is used to	
		's' = 0, no u	pdate of these	e registers			If 'a' is '0' a	nd the extend	ed instruction	
		occurs.					set is enab	led, this instru	ction	
Wor	ds:	1					operates in	Indexed Liter	al Offset	
Cycl	es:	2					$f \le 95 (5Fh)$). See Section	26.2.3	
QC	Sycle Activity:						"Byte-Orie	nted and Bit-	Oriented	
	Q1	Q2	Q3	Q4			Instruction Mode" for	is in Indexed I details	Literal Offset	
	Decode	N0 operation	Process Data	POP PC from stack					<i>r.f.</i>	
	No	No	No	No			L	Tegiste		
	operation	operation	operation	operation	Wor	ds:	1			
					Cycl	es:	1			
_					QC	Cycle Activity:				
Exar	<u>npie:</u>	RETURN				Q1	Q2	Q3	Q4	
	PC = T	os				Decode	Read	Process	Write to	
							register f	Data	destination	
					Exa	mple:	RLCF	REG, 0,	0	
						Before Instruc	tion			
						REG	= 1110 0 = 0	110		
						After Instruction	n – U			
						REG	= 1110 0	110		
						č	= 1	100		

44-Lead Plastic Thin Quad Flatpack (PT) – 10x10x1 mm Body, 2.00 mm [TQFP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

		MILLIMETERS	6	
Dim	nension Limits	MIN	NOM	MAX
Number of Leads	N		44	
Lead Pitch	е		0.80 BSC	
Overall Height	А	-	-	1.20
Molded Package Thickness	A2	0.95	1.00	1.05
Standoff	A1	0.05	-	0.15
Foot Length	L	0.45	0.60	0.75
Footprint	L1	1.00 REF		
Foot Angle	φ	0°	3.5°	7°
Overall Width	E		12.00 BSC	
Overall Length	D		12.00 BSC	
Molded Package Width	E1		10.00 BSC	
Molded Package Length	D1	10.00 BSC		
Lead Thickness	С	0.09	-	0.20
Lead Width	b	0.30	0.37	0.45
Mold Draft Angle Top	α	11° 12° 13°		
Mold Draft Angle Bottom	β	11°	12°	13°

Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

2. Chamfers at corners are optional; size may vary.

3. Dimensions D1 and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed 0.25 mm per side.

4. Dimensioning and tolerancing per ASME Y14.5M.

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-076B