

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	40MHz
Connectivity	CANbus, I ² C, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, HLVD, POR, PWM, WDT
Number of I/O	36
Program Memory Size	32KB (16K x 16)
Program Memory Type	FLASH
EEPROM Size	256 x 8
RAM Size	1.5K x 8
Voltage - Supply (Vcc/Vdd)	2V ~ 5.5V
Data Converters	A/D 11x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	44-TQFP
Supplier Device Package	44-TQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic18lf4580-i-pt

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

4.0 POWER-MANAGED MODES

PIC18F2480/2580/4480/4580 devices offer a total of seven operating modes for more efficient power management. These modes provide a variety of options for selective power conservation in applications where resources may be limited (i.e., battery-powered devices).

There are three categories of power-managed modes:

- Run modes
- Idle modes
- Sleep mode

These categories define which portions of the device are clocked, and sometimes, what speed. The Run and Idle modes may use any of the three available clock sources (primary, secondary or internal oscillator block); the Sleep mode does not use a clock source.

The power-managed modes include several power-saving features offered on previous PIC[®] devices. One is the clock switching feature, offered in other PIC18 devices, allowing the controller to use the Timer1 oscillator in place of the primary oscillator. Also included is the Sleep mode, offered by all PIC devices, where all device clocks are stopped.

4.1 Selecting Power-Managed Modes

Selecting a power-managed mode requires two decisions: if the CPU is to be clocked or not and the selection of a clock source. The IDLEN bit (OSCCON<7>) controls CPU clocking, while the SCS<1:0> bits (OSCCON<1:0>) select the clock source. The individual modes, bit settings, clock sources and affected modules are summarized in Table 4-1.

4.1.1 CLOCK SOURCES

The SCS<1:0> bits allow the selection of one of three clock sources for power-managed modes. They are:

- The primary clock, as defined by the FOSC<3:0> Configuration bits
- The secondary clock (the Timer1 oscillator)
- The internal oscillator block (for RC modes)

4.1.2 ENTERING POWER-MANAGED MODES

Switching from one power-managed mode to another begins by loading the OSCCON register. The SCS<1:0> bits select the clock source and determine which Run or Idle mode is to be used. Changing these bits causes an immediate switch to the new clock source, assuming that it is running. The switch may also be subject to clock transition delays. These are discussed in **Section 4.1.3 "Clock Transitions and Status Indicators"** and subsequent sections.

Entry to the power-managed Idle or Sleep modes is triggered by the execution of a SLEEP instruction. The actual mode that results depends on the status of the IDLEN bit.

Depending on the current mode and the mode being switched to, a change to a power-managed mode does not always require setting all of these bits. Many transitions may be done by changing the oscillator select bits, or changing the IDLEN bit, prior to issuing a SLEEP instruction. If the IDLEN bit is already configured correctly, it may only be necessary to perform a SLEEP instruction to switch to the desired mode.

IADLE 4-1:	POWER	K-INIANAGED IV	IODE3		
Mada	OSCC	ON<7,1:0>	Modul	e Clocking	Augilable Clask and Ossillator Source
Mode	IDLEN ⁽¹⁾	SCS<1:0>	CPU	Peripherals	Available Clock and Oscillator Source
Sleep	0	N/A	Off	Off	None – All clocks are disabled
PRI_RUN	N/A	00	Clocked	Clocked	Primary – LP, XT, HS, HSPLL, RC, EC, INTRC ⁽²⁾ : This is the normal full-power execution mode.
SEC_RUN	N/A	01	Clocked	Clocked	Secondary – Timer1 Oscillator
RC_RUN	N/A	1x	Clocked	Clocked	Internal Oscillator Block ⁽²⁾
PRI_IDLE	1	00	Off	Clocked	Primary – LP, XT, HS, HSPLL, RC, EC
SEC_IDLE	1	01	Off	Clocked	Secondary – Timer1 Oscillator
RC_IDLE	1	1x	Off	Clocked	Internal Oscillator Block ⁽²⁾

TABLE 4-1: POWER-MANAGED MODES

Note 1: IDLEN reflects its value when the **SLEEP** instruction is executed.

2: Includes INTOSC and INTOSC postscaler, as well as the INTRC source.

File Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Details on Page:
B4D2 ⁽⁸⁾	B4D27	B4D26	B4D25	B4D24	B4D23	B4D22	B4D21	B4D20	XXXX XXXX	63, 305
B4D1 ⁽⁸⁾	B4D17	B4D16	B4D15	B4D14	B4D13	B4D12	B4D11	B4D10	XXXX XXXX	63, 305
B4D0 ⁽⁸⁾	B4D07	B4D06	B4D05	B4D04	B4D03	B4D02	B4D01	B4D00	XXXX XXXX	62, 305
B4DLC ⁽⁸⁾ Receive mode	—	RXRTR	RB1	RB0	DLC3	DLC2	DLC1	DLC0	-xxx xxxx	63, 307
B4DLC ⁽⁸⁾ Transmit mode	—	TXRTR	—	—	DLC3	DLC2	DLC1	DLC0	-x xxxx	63, 307
B4EIDL ⁽⁸⁾	EID7	EID6	EID5	EID4	EID3	EID2	EID1	EID0	XXXX XXXX	63, 305
B4EIDH ⁽⁸⁾	EID15	EID14	EID13	EID12	EID11	EID10	EID9	EID8	XXXX XXXX	63, 304
B4SIDL ⁽⁸⁾ Receive mode	SID2	SID1	SID0	SRR	EXID	—	EID17	EID16	XXXX X-XX	63, 303
B4SIDL ⁽⁸⁾ Transmit mode	SID2	SID1	SID0		EXIDE	—	EID17	EID16	xxx- x-xx	63, 303
B4SIDH ⁽⁸⁾	SID10	SID9	SID8	SID7	SID6	SID5	SID4	SID3	XXXX XXXX	63, 302
B4CON ⁽⁸⁾ Receive mode	RXFUL	RXM1	RXRTRRO	FILHIT4	FILHIT3	FILHIT2	FILHIT1	FILHITO	0000 0000	63, 301
B4CON ⁽⁸⁾ Transmit mode	TXBIF	TXABT	TXLARB	TXERR	TXREQ	RTREN	TXPRI1	TXPRI0	0000 0000	63, 301
B3D7 ⁽⁸⁾	B3D77	B3D76	B3D75	B3D74	B3D73	B3D72	B3D71	B3D70	XXXX XXXX	63, 305
B3D6 ⁽⁸⁾	B3D67	B3D66	B3D65	B3D64	B3D63	B3D62	B3D61	B3D60	XXXX XXXX	63, 305
B3D5 ⁽⁸⁾	B3D57	B3D56	B3D55	B3D54	B3D53	B3D52	B3D51	B3D50	XXXX XXXX	63, 305
B3D4 ⁽⁸⁾	B3D47	B3D46	B3D45	B3D44	B3D43	B3D42	B3D41	B3D40	XXXX XXXX	63, 305
B3D3 ⁽⁸⁾	B3D37	B3D36	B3D35	B3D34	B3D33	B3D32	B3D31	B3D30	XXXX XXXX	63, 305
B3D2 ⁽⁸⁾	B3D27	B3D26	B3D25	B3D24	B3D23	B3D22	B3D21	B3D20	XXXX XXXX	63, 305
B3D1 ⁽⁸⁾	B3D17	B3D16	B3D15	B3D14	B3D13	B3D12	B3D11	B3D10	XXXX XXXX	63, 305
B3D0 ⁽⁸⁾	B3D07	B3D06	B3D05	B3D04	B3D03	B3D02	B3D01	B3D00	XXXX XXXX	63, 305
B3DLC ⁽⁸⁾ Receive mode	_	RXRTR	RB1	RB0	DLC3	DLC2	DLC1	DLC0	-xxx xxxx	63, 307
B3DLC ⁽⁸⁾ Transmit mode	—	TXRTR	—	—	DLC3	DLC2	DLC1	DLC0	-x xxxx	63, 307
B3EIDL ⁽⁸⁾	EID7	EID6	EID5	EID4	EID3	EID2	EID1	EID0	XXXX XXXX	63, 305
B3EIDH ⁽⁸⁾	EID15	EID14	EID13	EID12	EID11	EID10	EID9	EID8	XXXX XXXX	63, 304
B3SIDL ⁽⁸⁾ Receive mode	SID2	SID1	SID0	SRR	EXID	—	EID17	EID16	XXXX X-XX	63, 303
B3SIDL ⁽⁸⁾ Transmit mode	SID2	SID1	SID0	—	EXIDE	—	EID17	EID16	xxx- x-xx	63, 303
B3SIDH ⁽⁸⁾	SID10	SID9	SID8	SID7	SID6	SID5	SID4	SID3	XXXX XXXX	63, 302
B3CON ⁽⁸⁾ Receive mode	RXFUL	RXM1	RXRTRRO	FILHIT4	FILHIT3	FILHIT2	FILHIT1	FILHIT0	0000 0000	63, 301
B3CON ⁽⁸⁾ Transmit mode	TXBIF	TXABT	TXLARB	TXERR	TXREQ	RTREN	TXPRI1	TXPRI0	0000 0000	63, 301
B2D7 ⁽⁸⁾	B2D77	B2D76	B2D75	B2D74	B2D73	B2D72	B2D71	B2D70	XXXX XXXX	63, 305
B2D6 ⁽⁸⁾	B2D67	B2D66	B2D65	B2D64	B2D63	B2D62	B2D61	B2D60	XXXX XXXX	63, 305
B2D5 ⁽⁸⁾	B2D57	B2D56	B2D55	B2D54	B2D53	B2D52	B2D51	B2D50	XXXX XXXX	63, 305

TABLE 6-2:REGISTER FILE SUMMARY (PIC18F2480/2580/4480/4580) (CONTINUED)

Legend: x = unknown, u = unchanged, – = unimplemented, q = value depends on condition

Note 1: Bit 21 of the PC is only available in Test mode and Serial Programming modes.

2: The SBOREN bit is only available when CONFIG2L<1:0> = 01; otherwise, it is disabled and reads as '0'. See Section 5.4 "Brown-out Reset (BOR)".

These registers and/or bits are not implemented on PIC18F2X80 devices and are read as '0'. Reset values are shown for PIC18F4X80 devices; individual unimplemented bits should be interpreted as '—'.

4: The PLLEN bit is only available in specific oscillator configuration; otherwise, it is disabled and reads as '0'. See Section 3.6.4 "PLL in INTOSC Modes".

5: The RE3 bit is only available when Master Clear Reset is disabled (CONFIG3H<7> = 0); otherwise, RE3 reads as '0'. This bit is read-only.

6: RA6/RA7 and their associated latch and direction bits are individually configured as port pins based on various primary oscillator modes. When disabled, these bits read as '0'.

7: CAN bits have multiple functions depending on the selected mode of the CAN module.

8: This register reads all '0's until the ECAN™ technology is set up in Mode 1 or Mode 2.

9: These registers are available on PIC18F4X80 devices only.

R/W-x	R/W-x	U-0	R/W-0	R/W-x	R/W-0	R/S-0	R/S-0
EEPGD	CFGS	—	FREE	WRERR ⁽¹⁾	WREN	WR	RD
bit 7							bit 0
Legend:		S = Settable	oit				
R = Readable	a hit	W = Writable		II = I Inimplen	nented bit, rea	d as 'O'	
-n = Value at		'1' = Bit is set		'0' = Bit is cle		x = Bit is unkr	NWD
					uicu		
bit 7	EEPGD: Fla	ish Program or I	Data EEPROI	M Memory Sele	ct bit		
		Flash program r					
	0 = Access	data EEPROM r	nemory				
bit 6		h Program/Data		Configuration S	Select bit		
		Configuration re		OM momony			
bit 5		Flash program o nted: Read as '		OWITHEITIOLY			
bit 4	-	n Row Erase En					
DIL 4		he program me		Iressed by TRI	PTR on the ne	ext WR comma	nd (cleared by
		tion of erase ope					
	0 = Perform	•					
bit 3	WRERR: FI	ash Program/Da	ta EEPROM	Error Flag bit ⁽¹⁾			
		operation is pre	•	· •	set during self-	timed programr	ning in norma
		on or an imprope te operation con		pt)			
bit 2		sh Program/Data		/rite Enable bit			
		write cycles to F					
		write cycles to F					
bit 1	WR: Write C	Control bit					
		a data EEPRO					
		eration is self-til R bit can only be				e write is compl	ete.
		cle to the EEPF			.)		
bit 0	RD: Read C		I.				
	1 = Initiates	an EEPROM re	ad (Read tak	es one cycle. RI) is cleared in I	nardware. The F	RD bit can only
		not cleared) in s		oit cannot be se	t when EEPGI	D = 1 or CFGS =	= 1.)
	0 = Does n	ot initiate an EE	-ROM read				

REGISTER 8-1: EECON1: DATA EEPROM CONTROL REGISTER 1

Note 1: When a WRERR occurs, the EEPGD and CFGS bits are not cleared. This allows tracing of the error condition.

NOTES:

10.0 INTERRUPTS

The PIC18F2480/2580/4480/4580 devices have multiple interrupt sources and an interrupt priority feature that allows each interrupt source to be assigned a high-priority level or a low-priority level. The high-priority interrupt vector is at 000008h and the low-priority interrupt vector is at 000018h. High-priority interrupts will interrupt any low-priority interrupts that may be in progress.

There are ten registers which are used to control interrupt operation. These registers are:

- RCON
- INTCON
- INTCON2
- INTCON3
- PIR1, PIR2, PIR3
- PIE1, PIE2, PIE3
- IPR1, IPR2, IPR3

It is recommended that the Microchip header files supplied with MPLAB[®] IDE be used for the symbolic bit names in these registers. This allows the assembler/ compiler to automatically take care of the placement of these bits within the specified register.

Each interrupt source has three bits to control its operation. The functions of these bits are:

- Flag bit to indicate that an interrupt event occurred
- Enable bit that allows program execution to branch to the interrupt vector address when the flag bit is set
- Priority bit to select high priority or low priority

The interrupt priority feature is enabled by setting the IPEN bit (RCON<7>). When interrupt priority is enabled, there are two bits which enable interrupts globally. Setting the GIEH bit (INTCON<7>) enables all interrupts that have the priority bit set (high priority). Setting the GIEL bit (INTCON<6>) enables all interrupts that have the priority bit cleared (low priority). When the interrupt flag, enable bit and appropriate global interrupt enable bit are set, the interrupt will vector immediately to address 000008h or 000018h, depending on the priority bit setting. Individual interrupts can be disabled through their corresponding enable bits.

When the IPEN bit is cleared (default state), the interrupt priority feature is disabled and interrupts are compatible with PIC[®] mid-range devices. In Compatibility mode, the interrupt priority bits for each source have no effect. INTCON<6> is the PEIE bit, which enables/disables all peripheral interrupt sources. INT-CON<7> is the GIE bit, which enables/disables all interrupt sources. All interrupts branch to address 000008h in Compatibility mode.

When an interrupt is responded to, the global interrupt enable bit is cleared to disable further interrupts. If the IPEN bit is cleared, this is the GIE bit. If interrupt priority levels are used, this will be either the GIEH or GIEL bit. High-priority interrupt sources can interrupt a lowpriority interrupt. Low-priority interrupts are not processed while high-priority interrupts are in progress.

The return address is pushed onto the stack and the PC is loaded with the interrupt vector address (00008h or 000018h). Once in the Interrupt Service Routine, the source(s) of the interrupt can be determined by polling the interrupt flag bits. The interrupt flag bits must be cleared in software before re-enabling interrupts to avoid recursive interrupts.

The "return from interrupt" instruction, RETFIE, exits the interrupt routine and sets the GIE bit (GIEH or GIEL if priority levels are used), which re-enables interrupts.

For external interrupt events, such as the INTx pins or the PORTB input change interrupt, the interrupt latency will be three to four instruction cycles. The exact latency is the same for one or two-cycle instructions. Individual interrupt flag bits are set, regardless of the status of their corresponding enable bit or the GIE bit.

Note: Do not use the MOVFF instruction to modify any of the Interrupt Control registers while any interrupt is enabled. Doing so may cause erratic microcontroller behavior.

12.3 Prescaler

An 8-bit counter is available as a prescaler for the Timer0 module. The prescaler is not directly readable or writable; its value is set by the PSA and T0PS<2:0> bits (T0CON<3:0>) which determine the prescaler assignment and prescale ratio.

Clearing the PSA bit assigns the prescaler to the Timer0 module. When it is assigned, prescale values from 1:2 through 1:256 in power-of-2 increments are selectable.

When assigned to the Timer0 module, all instructions writing to the TMR0 register (e.g., CLRF TMR0, MOVWF TMR0, BSF TMR0, etc.) clear the prescaler count.

Note: Writing to TMR0 when the prescaler is assigned to Timer0 will clear the prescaler count but will not change the prescaler assignment.

12.3.1 SWITCHING PRESCALER ASSIGNMENT

The prescaler assignment is fully under software control and can be changed "on-the-fly" during program execution.

12.4 Timer0 Interrupt

The TMR0 interrupt is generated when the TMR0 register overflows from FFh to 00h in 8-bit mode, or from FFFFh to 0000h in 16-bit mode. This overflow sets the TMR0IF flag bit. The interrupt can be masked by clearing the TMR0IE bit (INTCON<5>). Before reenabling the interrupt, the TMR0IF bit must be cleared in software by the Interrupt Service Routine.

Since Timer0 is shut down in Sleep mode, the TMR0 interrupt cannot awaken the processor from Sleep.

 TABLE 12-1:
 REGISTERS ASSOCIATED WITH TIMER0

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Reset Values on Page:	
TMR0L	Timer0 Reg	ner0 Register Low Byte								
TMR0H	Timer0 Reg	ister High By	/te						56	
INTCON	GIE/GIEH	PEIE/GIEL	TMR0IE	INT0IE	RBIE	TMR0IF	INT0IF	RBIF	55	
T0CON	TMR00N	T08BIT	TOCS	T0SE	PSA	T0PS2	T0PS1	T0PS0	56	
TRISA	TRISA7 ⁽¹⁾ TRISA6 ⁽¹⁾ PORTA Data Direction Register								58	

Legend: — = unimplemented locations, read as '0'. Shaded cells are not used by Timer0.

Note 1: RA6/RA7 and their associated latch and direction bits are individually configured as port pins based on various primary oscillator modes. When disabled, these bits read as '0'.

NOTES:

17.4.7.1 Auto-Shutdown and Auto-Restart

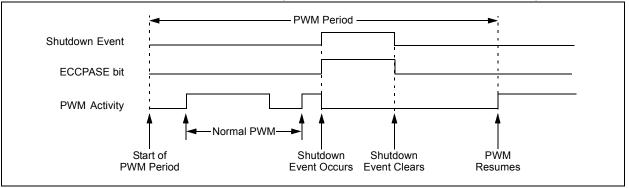
The auto-shutdown feature can be configured to allow automatic restarts of the module following a shutdown event. This is enabled by setting the PRSEN bit of the ECCP1DEL register (ECCP1DEL<7>).

In Shutdown mode with PRSEN = 1 (Figure 17-10), the ECCPASE bit will remain set for as long as the cause of the shutdown continues. When the shutdown condition clears, the ECCP1ASE bit is cleared. If PRSEN = 0 (Figure 17-11), once a shutdown condition occurs, the ECCPASE bit will remain set until it is cleared by firmware. Once ECCPASE is cleared, the Enhanced PWM will resume at the beginning of the next PWM period.

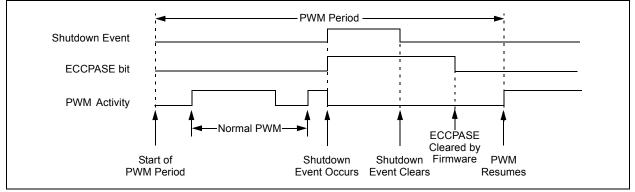
Note:	Writing to the ECCPASE bit is disabled
	while a shutdown condition is active.

Independent of the PRSEN bit setting, if the auto-shutdown source is one of the comparators, the shutdown condition is a level. The ECCPASE bit cannot be cleared as long as the cause of the shutdown persists.

The Auto-Shutdown mode can be forced by writing a '1' to the ECCPASE bit.


17.4.8 START-UP CONSIDERATIONS

When the ECCP module is used in the PWM mode, the application hardware must use the proper external pull-up and/or pull-down resistors on the PWM output pins. When the microcontroller is released from Reset, all of the I/O pins are in the high-impedance state. The external circuits must keep the power switch devices in the off state until the microcontroller drives the I/O pins with the proper signal levels, or activates the PWM output(s).


The CCP1M<1:0> bits (ECCP1CON<1:0>) allow the user to choose whether the PWM output signals are active-high or active-low for each pair of PWM output pins (P1A/P1C and P1B/P1D). The PWM output polarities must be selected before the PWM pins are configured as outputs. Changing the polarity configuration while the PWM pins are configured as outputs is not recommended, since it may result in damage to the application circuits.

The P1A, P1B, P1C and P1D output latches may not be in the proper states when the PWM module is initialized. Enabling the PWM pins for output at the same time as the ECCP module may cause damage to the application circuit. The ECCP module must be enabled in the proper output mode and complete a full PWM cycle before configuring the PWM pins as outputs. The completion of a full PWM cycle is indicated by the TMR2IF bit being set as the second PWM period begins.

FIGURE 17-10: PWM AUTO-SHUTDOWN (PRSEN = 1, AUTO-RESTART ENABLED)

FIGURE 17-11: PWM AUTO-SHUTDOWN (PRSEN = 0, AUTO-RESTART DISABLED)

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
WCOL	SSPOV	SSPEN ⁽¹⁾	CKP	SSPM3 ⁽²⁾	SSPM2 ⁽²⁾	SSPM1 ⁽²⁾	SSPM0 ⁽²⁾
bit 7							bit
Legend:							
R = Readabl		W = Writable I	oit	-	nented bit, reac		
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	IOWN
bit 7	WCOL: Write	e Collision Deteo	ct bit				
		ansmit mode:					
		to the SSPBUF	register wa	s attempted wi	hile the I ² C co	nditions were r	not valid for
		ssion to be starte	ed (must be c	leared in softwa	are)		
	0 = No collis						
	In Slave Train 1 = The SSI software	PBUF register is	written while	e it is still transn	nitting the previ	ous word (mus	t be cleared
	0 = No collis	/					
	<u>In Receive m</u> This is a "do	<u>node (Master or</u> n't care" bit.	Slave modes	<u>s):</u>			
bit 6	SSPOV: Red	ceive Overflow Ir	ndicator bit				
	In Receive m 1 = A byte is software 0 = No over	s received while e)	the SSPBUF	register is still l	holding the prev	rious byte (mus	t be cleared
	<u>In Transmit r</u> This is a "do	<u>mode:</u> n't care" bit in Tr	ansmit mode				
bit 5	SSPEN: Mas	ster Synchronou	s Serial Port	Enable bit ⁽¹⁾			
		the serial port and serial port and				e serial port pins	6
bit 4	CKP: SCK F	Release Control	bit				
	In Slave mod	de:					
	1 = Release						
		ock low (clock st	retch), used i	to ensure data	setup time		
	In Master mo Unused in th						
bit 3-0		: Master Synchro	onous Serial	Port Mode Sele	ect hits(2)		
	$1111 = ^{2}C \le$ $1110 = ^{2}C \le$ $1011 = ^{2}C =$ $1000 = ^{2}C =$ $0111 = ^{2}C \le$	Slave mode, 10- Slave mode, 7-bi Firmware Contro Vlaster mode, clo Slave mode, 10- Slave mode, 7-bi	bit address w it address wit illed Master n ock = Fosc/(4 bit address	rith Start and St h Start and Sto node (slave Idle	op bit interrupts p bit interrupts e)		

REGISTER 18-4: SSPCON1: MSSP CONTROL REGISTER 1 (I²C[™] MODE)

- Note 1: When enabled, the SDA and SCL pins must be properly configured as input or output.
 - 2: Bit combinations not specifically listed here are either reserved or implemented in SPI mode only.

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R-1	R/W-0
CSRC	TX9	TXEN ⁽¹⁾	SYNC	SENDB	BRGH	TRMT	TX9D
bit 7							bit
Legend:							
R = Readab		W = Writable			nented bit, rea		
-n = Value a	t POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unki	nown
bit 7	CSRC: Cloc	k Source Select	bit				
	Asynchrono	us mode:					
	Don't care.						
	<u>Synchronou</u>						
		node (clock gen					
bit 6		ode (clock from ransmit Enable		ce)			
		9-bit transmissio					
		8-bit transmissic					
bit 5	TXEN: Tran	smit Enable bit ⁽¹)				
	1 = Transmi	t enabled					
	0 = Transmi	t disabled					
bit 4	SYNC: EUS	ART Mode Sele	ct bit				
	1 = Synchro						
bit 3	-	onous mode nd Break Chara	otor hit				
DIL S	Asynchrono						
		nc Break on ne	xt transmissio	n (cleared by h	ardware upon	completion)	
		eak transmissior		()	F -	,	
	<u>Synchronou</u>	<u>s mode:</u>					
	Don't care.						
bit 2	-	n Baud Rate Sel	ect bit				
	Asynchrono 1 = High spe						
	0 = Low spe						
	Synchronou						
	Unused in th	nis mode.					
bit 1		smit Shift Regist	er Status bit				
	1 = TSR em						
L:1 0	0 = TSR full		10				
bit 0	Can be add	it of Transmit Da					

REGISTER 19-1: TXSTA: TRANSMIT STATUS AND CONTROL REGISTER

					SYNC	= 0, BRGH	i = 0, BRG	i 16 = 1				
BAUD RATE	Fosc	= 40.000) MHz	Fosc	Fosc = 20.000 MHz			= 10.000) MHz	Fosc = 8.000 MHz		
(K)	Actual Rate (K)	% Error	SPBRG value (decimal)	Actual Rate (K)	% Error	SPBRG value (decimal)	Actual Rate (K)	% Error	SPBRG value (decimal)	Actual Rate (K)	% Error	SPBRG value (decimal)
0.3	0.300	0.00	8332	0.300	0.02	4165	0.300	0.02	2082	0.300	-0.04	1665
1.2	1.200	0.02	2082	1.200	-0.03	1041	1.200	-0.03	520	1.201	-0.16	415
2.4	2.402	0.06	1040	2.399	-0.03	520	2.404	0.16	259	2.403	-0.16	207
9.6	9.615	0.16	259	9.615	0.16	129	9.615	0.16	64	9.615	-0.16	51
19.2	19.231	0.16	129	19.231	0.16	64	19.531	1.73	31	19.230	-0.16	25
57.6	58.140	0.94	42	56.818	-1.36	21	56.818	-1.36	10	55.555	3.55	8
115.2	113.636	-1.36	21	113.636	-1.36	10	125.000	8.51	4	—	_	—

TABLE 19-3: BAUD RATES FOR ASYNCHRONOUS MODES (CONTINUED)

			S	YNC = 0, E	BRGH = (), BRG16 =	1			
BAUD	Foso	= 4.000	MHz	Fos	c = 2.000	MHz	Fosc = 1.000 MHz			
RATE (K)	Actual Rate (K)	% Error	SPBRG value (decimal)	Actual Rate (K)	% Error	SPBRG value (decimal)	Actual Rate (K)	% Error	SPBRG value (decimal)	
0.3	0.300	0.04	832	0.300	-0.16	415	0.300	-0.16	207	
1.2	1.202	0.16	207	1.201	-0.16	103	1.201	-0.16	51	
2.4	2.404	0.16	103	2.403	-0.16	51	2.403	-0.16	25	
9.6	9.615	0.16	25	9.615	-0.16	12	_	_	_	
19.2	19.231	0.16	12	—	_	_	_	_	_	
57.6	62.500	8.51	3	—	_	_	—	_	_	
115.2	125.000	8.51	1	_	_	—	_	_	_	

				SYNC = 0,	, BRGH =	= 1, BRG16	= 1 or SY	NC = 1,	BRG16 = 1			
BAUD RATE	Fosc	= 40.000) MHz	Fosc	= 20.000) MHz	Fosc	= 10.000) MHz	Fosc = 8.000 MHz		
(K)	Actual Rate (K)	% Error	SPBRG value (decimal)									
0.3	0.300	0.00	33332	0.300	0.00	16665	0.300	0.00	8332	0.300	-0.01	6665
1.2	1.200	0.00	8332	1.200	0.02	4165	1.200	0.02	2082	1.200	-0.04	1665
2.4	2.400	0.02	4165	2.400	0.02	2082	2.402	0.06	1040	2.400	-0.04	832
9.6	9.606	0.06	1040	9.596	-0.03	520	9.615	0.16	259	9.615	-0.16	207
19.2	19.193	-0.03	520	19.231	0.16	259	19.231	0.16	129	19.230	-0.16	103
57.6	57.803	0.35	172	57.471	-0.22	86	58.140	0.94	42	57.142	0.79	34
115.2	114.943	-0.22	86	116.279	0.94	42	113.636	-1.36	21	117.647	-2.12	16

		SYN	IC = 0, BR(GH = 1, BF	RG16 = 1	or SYNC =	: 1, BRG1	6 = 1		
BAUD RATE	Foso	c = 4.000	MHz	Fos	c = 2.000	MHz	Fosc = 1.000 MHz			
(K)	Actual Rate (K)	% Error	SPBRG value (decimal)	Actual Rate (K)	% Error	SPBRG value (decimal)	Actual Rate (K)	% Error	SPBRG value (decimal)	
0.3	0.300	0.01	3332	0.300	-0.04	1665	0.300	-0.04	832	
1.2	1.200	0.04	832	1.201	-0.16	415	1.201	-0.16	207	
2.4	2.404	0.16	415	2.403	-0.16	207	2.403	-0.16	103	
9.6	9.615	0.16	103	9.615	-0.16	51	9.615	-0.16	25	
19.2	19.231	0.16	51	19.230	-0.16	25	19.230	-0.16	12	
57.6	58.824	2.12	16	55.555	3.55	8	—	—	—	
115.2	111.111	-3.55	8	_	_	_	_	_	_	

21.0 COMPARATOR MODULE

The analog comparator module contains two comparators that can be configured in a variety of ways. The inputs can be selected from the analog inputs multiplexed with pins, RA0 through RA5, as well as the on-chip voltage reference (see Section 22.0 "Comparator Voltage Reference Module"). The digital outputs (normal or inverted) are available at the pin level and can also be read through the control register.

The CMCON register (Register 21-1) selects the comparator input and output configuration. Block diagrams of the various comparator configurations are shown in Figure 21-1.

REGISTER 21-1: CMCON: COMPARATOR CONTROL REGISTER

R-0	R-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
C2OUT	C1OUT	C2INV	C1INV	CIS	CM2	CM1	CM0
bit 7							bit 0
Legend:							
R = Readabl		W = Writable		•	mented bit, rea		
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown
h:+ 7							
bit 7	When C2INV	nparator 2 Outp					
	1 = C2 VIN+3						
	0 = C2 VIN+	-					
	When C2INV	<u>/ = 1:</u>					
	1 = C2 VIN+	< C2 VIN-					
	0 = C2 VIN+	> C2 VIN-					
bit 6	C1OUT: Com	parator 1 Outp	ut bit				
	When C1INV						
	1 = C1 VIN+ 0 = C1 VIN+						
	When C1INV						
	1 = C1 VIN+						
	0 = C1 VIN+	> C1 VIN-					
bit 5	C2INV: Com	parator 2 Outpu	t Inversion bi	t			
	1 = C2 outpu						
	•	it not inverted					
bit 4		parator 1 Outpu	t Inversion bi	t			
	1 = C1 outpu						
	•	it not inverted					
bit 3	-	ator Input Swite	h bit				
	$\frac{\text{When CM} < 2}{1 - C1 \text{ Vis}}$: <u>0> = 110:</u> connects to RD		LL.			
		connects to RD					
	-	connects to RD					
	C2 VIN-	connects to RD	3/PSP3/C2IN	-			
bit 2-0	CM<2:0>: Co	omparator Mode	e bits				
	Figure 21-1	shows the Com	parator mode	s and the CM<	2:0> bit setting	S.	

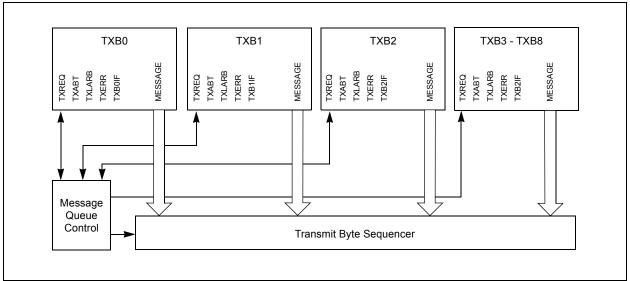
23.0 HIGH/LOW-VOLTAGE DETECT (HLVD)

PIC18F2480/2580/4480/4580 devices have a High/Low-Voltage Detect module (HLVD). This is a programmable circuit that allows the user to specify both a device voltage trip point and the direction of change from that point. If the device experiences an excursion past the trip point in that direction, an interrupt flag is set. If the interrupt is enabled, the program execution will branch to the interrupt vector address and the software can then respond to the interrupt.

The High/Low-Voltage Detect Control register (Register 23-1) completely controls the operation of the HLVD module. This allows the circuitry to be "turned off" by the user under software control, which minimizes the current consumption for the device.

The block diagram for the HLVD module is shown in Figure 23-1.

REGISTER 23-1: HLVDCON: HIGH/LOW-VOLTAGE DETECT CONTROL REGISTER


R/W-0	U-0	R-0	R/W-0	R/W-0	R/W-1	R/W-0	R/W-1
VDIRMAG		IRVST	HLVDEN	HLVDL3 ⁽¹⁾	HLVDL2 ⁽¹⁾	HLVDL1 ⁽¹⁾	HLVDL0 ⁽¹⁾
bit 7							bit 0
							1
Legend:							
R = Readable		W = Writable		-	nented bit, read		
-n = Value at POR		'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown
h:+ 7		altara Directia	. Magaituda (Calaat hit			
bit 7		oltage Direction	-		oint (HLVDL<3:0		
					point (HLVDL<		
bit 6		ted: Read as '				/	
bit 5	IRVST: Interna	al Reference V	oltage Stable	Flag bit			
	1 = Indicates	that the voltag	e detect logic	will generate th	e interrupt flag	at the specified	voltage range
				c will not gener not be enabled	ate the interrup	t flag at the sp	ecified voltage
bit 4	HLVDEN: Hig	h/Low-Voltage	Detect Powe	r Enable bit			
	1 = HLVD en						
	0 = HLVD dis			(1)			
bit 3-0		: High/Low-Vol	•				
	1111 = Extern 1110 = 4.48V	v ,	it is used (inp	ut comes from	the HLVDIN pir	1)	
	1101 = 4.23 V						
	1100 = 4.01V						
	1011 = 3.81V						
	1010 = 3.63V 1001 = 3.46V						
	1000 = 3.31V						
	0111 = 3.05V						
	0110 = 2.82V						
	0101 = 2.72V 0100 = 2.54V						
	0011 = 2.38V						
	0010 = 2.31V						
	0001 = 2.18V	-					
	0000 = 2.12V	-2.22V					

Note 1: HLVDL<3:0> modes that result in a trip point below the valid operating voltage of the device are not tested.

24.6.3 TRANSMIT PRIORITY

Transmit priority is a prioritization within the PIC18F2480/2580/4480/4580 devices of the pending transmittable messages. This is independent from and not related to any prioritization implicit in the message arbitration scheme built into the CAN protocol. Prior to sending the Start-Of-Frame (SOF), the priority of all buffers that are queued for transmission is compared.

The transmit buffer with the highest priority will be sent first. If two buffers have the same priority setting, the buffer with the highest buffer number will be sent first. There are four levels of transmit priority. If the TXP bits for a particular message buffer are set to '11', that buffer has the highest possible priority. If the TXP bits for a particular message buffer are set to '00', that buffer has the lowest possible priority.

REGISTER 25-1: CONFIG1H: CONFIGURATION REGISTER 1 HIGH (BYTE ADDRESS 300001h)

R/P-0	R/P-0	U-0	U-0	R/P-0	R/P-1	R/P-1	R/P-1			
IESO	FCMEN	_	_	FOSC3	FOSC2	FOSC1	FOSC0			
bit 7	·						bit 0			
Legend:										
R = Readab	ole bit	P = Program	nable bit	U = Unimplen	nented bit, read	as '0'				
-n = Value w	vhen device is unp	programmed		u = Unchange	ed from progran	nmed state				
bit 7	IESO: Interna	I/External Osc	illator Switcho	ver bit						
		1 = Oscillator Switchover mode enabled								
	0 = Oscillator	Switchover me	ode disabled							
bit 6	FCMEN: Fail-Safe Clock Monitor Enable bit									
		Clock Monitor								
		Clock Monitor								
bit 5-4	Unimplemen	ted: Read as '	0'							
bit 3-0	FOSC<3:0>: Oscillator Selection bits									
	11xx = External RC oscillator, CLKO function on RA6									
	101x = External RC oscillator, CLKO function on RA6									
		1001 = Internal oscillator block, CLKO function on RA6, port function on RA7								
	1000 = Internal oscillator block, port function on RA6 and RA7 0111 = External RC oscillator, port function on RA6									
				Frequency = 4	x FOSC1)					
	0101 = EC oscillator, port function on RA6									
	0100 = EC oscillator, CLKO function on RA6									
		nal RC oscillat	or, CLKO fund	tion on RA6						
	0010 = HS os 0001 = XT os									
	0001 = XT OS 0000 = LP OS									

25.5.2 DATA EEPROM CODE PROTECTION

The entire data EEPROM is protected from external reads and writes by two bits: CPD and WRTD. CPD inhibits external reads and writes of data EEPROM. WRTD inhibits internal and external writes to data EEPROM. The CPU can continue to read and write data EEPROM regardless of the protection bit settings.

25.5.3 CONFIGURATION REGISTER PROTECTION

The Configuration registers can be write-protected. The WRTC bit controls protection of the Configuration registers. In normal execution mode, the WRTC bit is readable only. WRTC can only be written via ICSP or an external programmer.

25.6 ID Locations

Eight memory locations (20000h-200007h) are designated as ID locations, where the user can store checksum or other code identification numbers. These locations are both readable and writable during normal execution through the TBLRD and TBLWT instructions or during program/verify. The ID locations can be read when the device is code-protected.

25.7 In-Circuit Serial Programming

PIC18F2480/2580/4480/4580 microcontrollers can be serially programmed while in the end application circuit. This is simply done with two lines for clock and data and three other lines for power, ground and the programming voltage. This allows customers to manufacture boards with unprogrammed devices and then program the microcontroller just before shipping the product. This also allows the most recent firmware or a custom firmware to be programmed.

25.8 In-Circuit Debugger

When the DEBUG Configuration bit is programmed to a '0', the In-Circuit Debugger functionality is enabled. This function allows simple debugging functions when used with MPLAB[®] IDE. When the microcontroller has this feature enabled, some resources are not available for general use. Table 25-4 shows which resources are required by the background debugger.

TABLE 25-4: DEBUGGER RESOURCES

I/O pins:	RB6, RB7
Stack:	2 levels
	0

Note: Memory resources listed in MPLAB[®] IDE.

To use the In-Circuit Debugger function of the microcontroller, the design must implement In-Circuit Serial Programming connections to MCLR/VPP/RE3, VDD, Vss, RB7 and RB6. This will interface to the In-Circuit debugger module available from Microchip or one of the third party development tool companies.

25.9 Single-Supply ICSP Programming

The LVP Configuration bit enables Single-Supply ICSP Programming (formerly known as *Low-Voltage ICSP Programming* or *LVP*). When Single-Supply Programming is enabled, the microcontroller can be programmed without requiring high voltage being applied to the MCLR/VPP/RE3 pin, but the RB5/KBI1/ PGM pin is then dedicated to controlling Program mode entry and is not available as a general purpose I/O pin.

While programming using <u>Single-Supply</u> Programming, VDD is applied to the MCLR/VPP/RE3 pin as in normal execution mode. To enter Programming mode, VDD is applied to the PGM pin.

- Note 1: High-voltage programming is always available, regardless of the state of the LVP bit, by applying VIHH to the MCLR pin.
 - 2: While in Low-Voltage ICSP Programming mode, the RB5 pin can no longer be used as a general purpose I/O pin and should be held low during normal operation.
 - 3: When using Low-Voltage ICSP Programming (LVP) and the pull-ups on PORTB are enabled, bit 5 in the TRISB register must be cleared to disable the pull-up on RB5 and ensure the proper operation of the device.
 - 4: If the device Master Clear is disabled, verify that either of the following is done to ensure proper entry into ICSP mode:
 - a) disable Low-Voltage Programming (CONFIG4I<2> = 0); or
 - b) make certain that RB5/PGM is held low during entry into ICSP.

If Single-Supply ICSP Programming mode will not be used, the LVP bit can be cleared. RB5/KB11/PGM then becomes available as the digital I/O pin, RB5. The LVP bit may be set or cleared only when using standard high-voltage programming (VIHH applied to the MCLR/ VPP/RE3 pin). Once LVP has been disabled, only the standard high-voltage programming is available and must be used to program the device.

Memory that is not code-protected can be erased using either a block erase, or erased row by row, then written at any specified VDD. If code-protected memory is to be erased, a block erase is required. If a block erase is to be performed when using Low-Voltage Programming, the device must be supplied with VDD of 4.5V to 5.5V.

втg	6	Bit Toggle	e f		BOV	,	Branch if	Overflow				
Synta	ax:	BTG f, b {,a	1}		Synta	Syntax: BOV n						
Oper	ands:	$0 \leq f \leq 255$			Oper	$\label{eq:operands} Operands: \qquad -128 \leq n \leq 127$						
		0 ≤ b < 7 a ∈ [0,1]	a ∈ [0,1]		Oper	Operation:		if Overflow bit is '1', (PC) + 2 + 2n \rightarrow PC				
Oper	ation:	$(\overline{f}\!\!<\!\!b\!\!>)$ \rightarrow $f\!\!<\!\!b\!\!>$		Statu	Status Affected:							
Statu	is Affected:	None			Enco	ding:	1110	0100 n	nnn nnnn			
	oding: cription:		0111 bbba ffff ffff Bit 'b' in data memory location 'f' is			ription:	If the Over program w	flow bit is '1', ill branch.	then the			
		lf 'a' is '1', ti GPR bank. If 'a' is '0' a	he BSR is use	nk is selected. d to select the ed instruction ction operates			added to th have increation,		the PC will ch the next			
			Literal Offset A	0	Word	IS:	1					
			ever f ≤ 95 (5 . 2.3 "Byte-Or	,	Cycle	es:	1(2)					
			d Instruction		QC	ycle Activity:						
		Literal Offs	set Mode" for	details.	lf Ju							
Word	ds:	1				Q1	Q2	Q3	Q4			
Cycle	es: vcle Activity:	1				Decode	Read literal 'n'	Process Data	Write to PC			
QU	Q1	Q2	Q3	Q4		No	No	No	No			
	Decode	Read	Process	Write	If Nic	operation Jump:	operation	operation	operation			
		register 'f'	Data	register 'f'		Q1	Q2	Q3	Q4			
						Decode	Read literal	Process	No No			
Exan	<u>nple:</u>	BTG P	ORTC, 4, ()		20000	'n'	Data	operation			
	Before Instruct PORTC After Instruction	= 0111 (0101 [75h]		Exan		HERE	BOV Jum	p			
	PORTC	= 0110 0	0101 [65h]			Before Instruct PC After Instruction If Overflor PC If Overflor PC	= ac on ow = 1; = ac ow = 0;	ldress (HER ldress (Jum ldress (HER	p)			

CLRF	Clear f			CLRWDT	Clear Wat	tchdog Tim	er	
Syntax:	CLRF f{,	a}		Syntax:	CLRWDT			
Operands:	$0 \leq f \leq 255$			Operands:	None			
	$a \in [0,1]$			Operation:	$000h \rightarrow Wl$	DT,		
Operation:	$000h \rightarrow f,$				DT postscaler	,		
	$1 \rightarrow Z$				$1 \rightarrow TO,$ $1 \rightarrow PD$			
Status Affected:	Z		Status Affected:	TO, PD				
Encoding:	0110	101a fff	ff ffff	Encoding:		0000 00	00 0100	
Description: Clears the contents of the		contents of the	specified	Ū.				
	register. If 'a' is '0', the Access Bank is selected.			Description:		CLRWDT instruction resets the Watchdog Timer. It also resets the post-		
	,	he BSR is used			•	e WDT. Statu		
	GPR bank.				PD are set.			
If 'a' is '0' and the extended instruct			Words:	1				
	set is enabled, this instruction operates in Indexed Literal Offset Addressing		Cycles:	1				
		never f \leq 95 (5F	•	Q Cycle Activity:				
	Section 26	.2.3 "Byte-Ori	ented and	Q1	Q2	Q3	Q4	
		ed Instructions set Mode" for		Decode	No	Process	No	
Manda.			uetans.		operation	Data	operation	
Words:	1			- .				
Cycles:	1			Example:	CLRWDT			
Q Cycle Activity:				Before Instru WDT C		?		
Q1	Q2	Q3	Q4	After Instruc		!		
Decode	Read register 'f'	Process Data	Write register 'f'		Counter =	00h		
	register i	Data	register i	WDT P TO	ostscaler =	0 1		
Example:	CLRF	FLAG REG,	1	PD	=	1		
Before Instru	ction	—						
FLAG_I		h						
After Instruct		b						
FLAG_I	REG = 00	n						

LFSR		Load FSI	Load FSR						
Synta	ax:	LFSR f, k	LFSR f, k						
Operands:		$\begin{array}{l} 0 \leq f \leq 2 \\ 0 \leq k \leq 408 \end{array}$	$\begin{array}{l} 0 \leq f \leq 2 \\ 0 \leq k \leq 4095 \end{array}$						
Oper	ation:	$k\toFSRf$	$k \rightarrow FSRf$						
Statu	s Affected:	None							
Encoding:		1110 1111	1110 0000						
Description:			The 12-bit literal 'k' is loaded into the file select register pointed to by 'f'.						
Words:		2	2						
Cycles:		2	2						
QC	ycle Activity:								
	Q1	Q2	Q3		Q4				
	Decode	Read literal 'k' MSB	Proce: Data	lit N	Write eral 'k' ISB to ^S SRfH				
	Decode	Read literal 'k' LSB	Proce: Data		ite literal o FSRfL				
<u>Exan</u>	nple: After Instructio FSR2H FSR2L	LFSR 2, on = 03 = AB	ßh						

MOVF	Move f						
Syntax:	MOVF f{	,d {,a}}					
Operands:	$0 \leq f \leq 255$						
	d ∈ [0,1] a ∈ [0,1]						
Operation:	$f \rightarrow dest$						
Status Affected:	N, Z						
Encoding:	0101	00da fff	ff ffff				
Description:	a destination status of 'd' placed in W placed back can be any If 'a' is 'o', t If 'a' is '1', t GPR bank. If 'a' is '0' a set is enable in Indexed	The contents of register 'f' are moved to a destination dependent upon the status of 'd'. If 'd' is '0', the result is placed in W. If 'd' is '1', the result is placed back in register 'f'. Location 'f' can be anywhere in the 256-byte bank. If 'a' is '0', the Access Bank is selected. If 'a' is '1', the BSR is used to select the GPR bank. If 'a' is '0' and the extended instruction set is enabled, this instruction operates in Indexed Literal Offset Addressing					
	Section 26 Bit-Oriente	mode whenever $f \le 95$ (5Fh). See Section 26.2.3 "Byte-Oriented and Bit-Oriented Instructions in Indexed Literal Offset Mode" for details.					
Words:	1						
Cycles:	1						
Q Cycle Activity:							
Q1	Q2	Q3	Q4				
Decode	Read register 'f'	Process Data	Write W				
Example:	MOVF RI	EG, 0, 0					
Before Instruc REG	ction = 22	h					
W	= FF						
After Instructi REG W	on = 22 = 22						

Indexed Literal Offset Addressing Mode	
and Standard PIC18 Instructions	
Indexed Literal Offset Mode	
Indirect Addressing	
INFSNZ	
Initialization Conditions for all Registers	
Instruction Cycle	
Instruction Flow/Pipelining	
Instruction Set	
ADDLW	
ADDWF	
ADDWF (Indexed Literal Offset mode)	
ADDWFC ANDLW	
ANDEW	
BC	
BCF	
BN	
BNC	
BNN	
BNOV	378
BNZ	378
BOV	381
BRA	379
BSF	379
BSF (Indexed Literal Offset mode)	415
BTFSC	380
BTFSS	
BTG	381
BZ	
CALL	
CLRF	
CLRWDT	
COMF	
CPFSEQ	
CPFSGT CPFSLT	
DAW	
DAW DCFSNZ	
DECF	
DECFSZ	
Extended Instructions	
and Using MPLAB Tools	
Considerations when Enabling	
Syntax	
General Format	
GOTO	388
INCF	388
INCFSZ	389
INFSNZ	
IORLW	
IORWF	
LFSR	
MOVF	
MOVFF	
MOVLB	
MOVLW	
MOVWF MULLW	
MULWF	
NEGF	
NOP	
POP	
PUSH	
RCALL	

RESET	397
RETFIE	398
RETLW	398
RETURN	399
RLCF	399
RLNCF	400
RRCF	
RRNCF	
SETF	
SETF (Indexed Literal Offset mode)	
SLEEP	
Standard Instructions	
SUBFWB	
SUBLW	
SUBWF	
SUBWFB	
Summary Table	
SWAPF	
TBLRD	
TBLWT	
TSTFSZ	
XORLW	
XORWF	
INTCON Registers	121
Inter-Integrated Circuit. See I ² C.	
Internal Oscillator Block	
Adjustment	
INTIO Modes	
INTOSC Output Frequency	
OSCTUNE Register	. 32
Internal RC Oscillator	
Use with WDT	358
Internet Address	486
Interrupt Sources	349
A/D Conversion Complete	257
Capture Complete (CCP)	169
Compare Complete (CCP)	
ECAN Module	
Interrupt-on-Change (RB7:RB4)	138
INTx Pin	
PORTB, Interrupt-on-Change	134
TMR0	
TMR0 Overflow	
TMR1 Overflow	155
TMR2 to PR2 Match (PWM) 173,	179
TMR3 Overflow	165
Interrupts	
Logic (diagram)	
INTOSC Frequency Drift	
INTOSC, INTRC. See Internal Oscillator Block.	
IORLW	390
IORWF	
IPR Registers	
	100
L	
LFSR	391
Listen Only Mode	
	500

М

Single-Supply ICSP Programming.