

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

2 0 0 0 0 0 0	
Product Status	Active
Core Processor	PIC
Core Size	16-Bit
Speed	40 MIPs
Connectivity	I ² C, IrDA, LINbus, PMP, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, POR, PWM, WDT
Number of I/O	35
Program Memory Size	128KB (43K x 24)
Program Memory Type	FLASH
EEPROM Size	· ·
RAM Size	8K x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 13x10b/12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	44-TQFP
Supplier Device Package	44-TQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic24hj128gp204-i-pt

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

5.0 FLASH PROGRAM MEMORY

- **Note 1:** This data sheet summarizes the features the PIC24HJ32GP302/304. of PIC24HJ64GPX02/X04 and PIC24HJ128GPX02/X04 families of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 5. "Flash Programming" (DS70191) of the "dsPIC33F/PIC24H Family Reference Manual", which is available from the Microchip web site (www.microchip.com).
 - Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

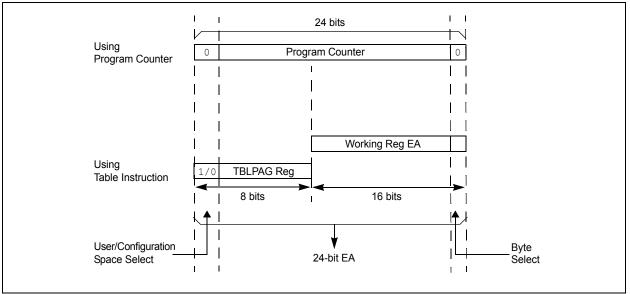
The PIC24HJ32GP302/304, PIC24HJ64GPX02/X04 and PIC24HJ128GPX02/X04 devices contain internal Flash program memory for storing and executing application code. The memory is readable, writable and erasable during normal operation over the entire VDD range.

Flash memory can be programmed in two ways:

- In-Circuit Serial Programming[™] (ICSP[™]) programming capability
- Run-Time Self-Programming (RTSP)

ICSP allows the PIC24HJ32GP302/304, PIC24HJ64GPX02/X04 and PIC24HJ128GPX02/X04 devices to be serially programmed while in the end application circuit. This is done with two lines for programming clock and programming data (one of the alternate programming pin pairs: PGEC1/PGED1, PGEC2/PGED2 or PGEC3/PGED3), and three other lines for power (VDD), ground (VSS) and Master Clear (MCLR). This allows customers to manufacture boards with unprogrammed devices and then program the microcontroller just before shipping the product. This also allows the most recent firmware or a custom firmware to be programmed.

RTSP is accomplished using TBLRD (table read) and TBLWT (table write) instructions. With RTSP, the user application can write program memory data either in blocks or 'rows' of 64 instructions (192 bytes) at a time or a single program memory word, and erase program memory in blocks or 'pages' of 512 instructions (1536 bytes) at a time.


5.1 Table Instructions and Flash Programming

Regardless of the method used, all programming of Flash memory is done with the table read and table write instructions. These allow direct read and write access to the program memory space from the data memory while the device is in normal operating mode. The 24-bit target address in the program memory is formed using bits <7:0> of the TBLPAG register and the Effective Address (EA) from a W register specified in the table instruction, as shown in Figure 5-1.

The TBLRDL and the TBLWTL instructions are used to read or write to bits <15:0> of program memory. TBLRDL and TBLWTL can access program memory in both Word and Byte modes.

The TBLRDH and TBLWTH instructions are used to read or write to bits <23:16> of program memory. TBLRDH and TBLWTH can also access program memory in Word or Byte mode.

FIGURE 5-1: ADDRESSING FOR TABLE REGISTERS

6.0 RESETS

- **Note 1:** This data sheet summarizes the features PIC24HJ32GP302/304. of the PIC24HJ64GPX02/X04 and PIC24HJ128GPX02/X04 families of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 8. "Reset" (DS70192) of the "dsPIC33F/PIC24H Family Reference Manual", which is available from the Microchip web site (www.microchip.com).
 - 2: Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

The Reset module combines all reset sources and controls the device Master Reset Signal, SYSRST. The following is a list of device Reset sources:

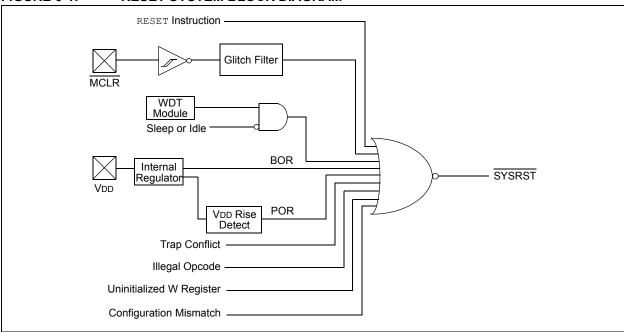
- POR: Power-on Reset
- BOR: Brown-out Reset
- MCLR: Master Clear Pin Reset
- SWR: RESET Instruction
- WDTO: Watchdog Timer Reset
- CM: Configuration Mismatch Reset
- TRAPR: Trap Conflict Reset
- · IOPUWR: Illegal Condition Device Reset
 - Illegal Opcode Reset
 - Uninitialized W Register Reset
 - Security Reset

FIGURE 6-1:

RESET SYSTEM BLOCK DIAGRAM

A simplified block diagram of the Reset module is shown in Figure 6-1.

Any active source of reset will make the SYSRST signal active. On system Reset, some of the registers associated with the CPU and peripherals are forced to a known Reset state and some are unaffected.


Note: Refer to the specific peripheral section or Section 3.0 "CPU" of this manual for register Reset states.

All types of device Reset sets a corresponding status bit in the RCON register to indicate the type of Reset (see Register 6-1).

A POR clears all the bits, except for the POR bit (RCON<0>), that are set. The user application can set or clear any bit at any time during code execution. The RCON bits only serve as status bits. Setting a particular Reset status bit in software does not cause a device Reset to occur.

The RCON register also has other bits associated with the Watchdog Timer and device power-saving states. The function of these bits is discussed in other sections of this manual.

Note: The status bits in the RCON register should be cleared after they are read so that the next RCON register value after a device Reset is meaningful.

6.1 Reset Resources

Many useful resources related to Resets are provided on the main product page of the Microchip web site for the devices listed in this data sheet. This product page, which can be accessed using this link, contains the latest updates and additional information.

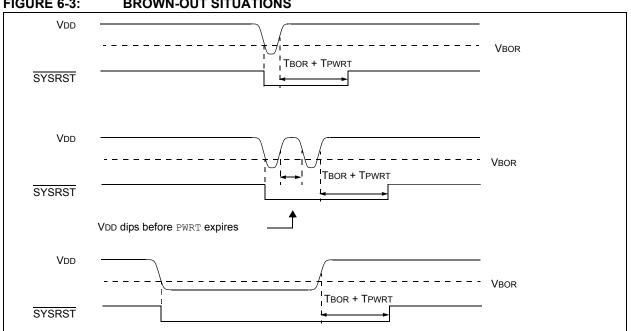
Note:	In the event you are not able to access the product page using the link above, enter this URL in your browser:
	http://www.microchip.com/wwwproducts/ Devices.aspx?dDocName=en534555

6.1.1 KEY RESOURCES

- Section 8. "Resets" (DS70192)
- Code Samples
- Application Notes
- Software Libraries
- · Webinars
- All related dsPIC33F/PIC24H Family Reference Manuals Sections
- Development Tools

6.2 Reset Control Registers

U-0 R/W-0 R/W-0 R/W-0 U-0 U-0 R/W-0 U-0 TRAPR **IOPUWR** CM VREGS bit 15 bit 8 R/W-0 R/W-0 R/W-0 R/W-1 R/W-0 R/W-0 R/W-0 R/W-1 SWDTEN⁽²⁾ EXTR SWR WDTO SLEEP IDLE BOR POR bit 7 bit 0 Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as '0' -n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown bit 15 TRAPR: Trap Reset Flag bit 1 = A Trap Conflict Reset has occurred 0 = A Trap Conflict Reset has not occurred IOPUWR: Illegal Opcode or Uninitialized W Access Reset Flag bit bit 14 1 = An illegal opcode detection, an illegal address mode or uninitialized W register used as an Address Pointer caused a Reset 0 = An illegal opcode or uninitialized W Reset has not occurred Unimplemented: Read as '0' bit 13-10 bit 9 **CM:** Configuration Mismatch Flag bit 1 = A configuration mismatch Reset has occurred. 0 = A configuration mismatch Reset has NOT occurred bit 8 VREGS: Voltage Regulator Standby During Sleep bit 1 = Voltage regulator is active during Sleep 0 = Voltage regulator goes into Standby mode during Sleep bit 7 EXTR: External Reset (MCLR) Pin bit 1 = A Master Clear (pin) Reset has occurred 0 = A Master Clear (pin) Reset has not occurred bit 6 SWR: Software Reset (Instruction) Flag bit 1 = A RESET instruction has been executed 0 = A RESET instruction has not been executed bit 5 SWDTEN: Software Enable/Disable of WDT bit⁽²⁾ 1 = WDT is enabled 0 = WDT is disabled bit 4 WDTO: Watchdog Timer Time-out Flag bit 1 = WDT time-out has occurred 0 = WDT time-out has not occurred bit 3 **SLEEP:** Wake-up from Sleep Flag bit 1 = Device has been in Sleep mode 0 = Device has not been in Sleep mode bit 2 IDLE: Wake-up from Idle Flag bit 1 = Device was in Idle mode 0 = Device was not in Idle mode Note 1: All of the Reset status bits can be set or cleared in software. Setting one of these bits in software does not


REGISTER 6-1: RCON: RESET CONTROL REGISTER⁽¹⁾

Note 1: All of the Reset status bits can be set or cleared in software. Setting one of these bits in software does not cause a device Reset.

2: If the FWDTEN Configuration bit is '1' (unprogrammed), the WDT is always enabled, regardless of the SWDTEN bit setting.

REGISTER 6-1: RCON: RESET CONTROL REGISTER⁽¹⁾ (CONTINUED)

- bit 1BOR: Brown-out Reset Flag bit1 = A Brown-out Reset has occurred0 = A Brown-out Reset has not occurredbit 0POR: Power-on Reset Flag bit
 - 1 = A Power-on Reset has occurred
 0 = A Power-on Reset has not occurred
- **Note 1:** All of the Reset status bits can be set or cleared in software. Setting one of these bits in software does not cause a device Reset.
 - 2: If the FWDTEN Configuration bit is '1' (unprogrammed), the WDT is always enabled, regardless of the SWDTEN bit setting.

BROWN-OUT SITUATIONS FIGURE 6-3:

6.5 **External Reset (EXTR)**

The external Reset is generated by driving the MCLR pin low. The MCLR pin is a Schmitt trigger input with an additional glitch filter. Reset pulses that are longer than the minimum pulse width will generate a Reset. Refer to Section 28.0 "Electrical Characteristics" for minimum pulse width specifications. The External Reset (MCLR) Pin (EXTR) bit in the Reset Control (RCON) register is set to indicate the MCLR Reset.

6.5.1 EXTERNAL SUPERVISORY CIRCUIT

Many systems have external supervisory circuits that generate reset signals to reset multiple devices in the system. This external Reset signal can be directly connected to the MCLR pin to reset the device when the rest of system is Reset.

6.5.2 INTERNAL SUPERVISORY CIRCUIT

When using the internal power supervisory circuit to reset the device, the external reset pin (MCLR) should be tied directly or resistively to VDD. In this case, the MCLR pin will not be used to generate a Reset. The external reset pin (MCLR) does not have an internal pull-up and must not be left unconnected.

6.6 Software RESET Instruction (SWR)

Whenever the RESET instruction is executed, the device will assert SYSRST, placing the device in a special Reset state. This Reset state will not reinitialize the clock. The clock source in effect prior to the RESET instruction will remain. SYSRST is released at the next instruction cycle, and the reset vector fetch will commence.

The Software Reset (Instruction) Flag bit (SWR) in the Reset Control register (RCON<6>) is set to indicate the software Reset.

6.7 Watchdog Time-out Reset (WDTO)

Whenever a Watchdog time-out occurs, the device will asynchronously assert SYSRST. The clock source will remain unchanged. A WDT time-out during Sleep or Idle mode will wake-up the processor, but will not reset the processor.

The Watchdog Timer Time-out Flag bit (WDTO) in the Reset Control register (RCON<4>) is set to indicate the Watchdog Reset. Refer to Section 25.4 "Watchdog Timer (WDT)" for more information on Watchdog Reset.

6.8 Trap Conflict Reset

If a lower-priority hard trap occurs while a higher-priority trap is being processed, a hard trap conflict Reset occurs. The hard traps include exceptions of priority level 13 through level 15, inclusive. The address error (level 13) and oscillator error (level 14) traps fall into this category.

The Trap Reset Flag bit (TRAPR) in the Reset Control register (RCON<15>) is set to indicate the Trap Conflict Reset. Refer to Section 7.0 "Interrupt Controller" for more information on trap conflict Resets.

U-0	U-0	U-0	U-0	U-0	R/W-1	R/W-0	R/W-0				
0-0	0-0	0-0	0-0	0-0	R/W-I		R/W-0				
	—	_		_		DMA1IP<2:0>					
bit 15							bit				
U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0				
_		AD1IP<2:0>		_		U1TXIP<2:0>					
bit 7					•		bit				
Legend:											
R = Readab	ole bit	W = Writable	bit	U = Unimpler	mented bit, rea	d as '0'					
-n = Value a	at POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	iown				
bit 15-11	Unimpleme	ented: Read as '	0'								
bit 10-8	8 DMA1IP<2:0>: DMA Channel 1 Data Transfer Complete Interrupt Priority bits										
	111 = Interr	111 = Interrupt is priority 7 (highest priority interrupt)									
	•										
	•										
	001 = Interr	upt is priority 1									
		upt source is dis	abled								
bit 7	Unimpleme	nted: Read as '	0'								
bit 6-4	AD1IP<2:0>	AD1IP<2:0>: ADC1 Conversion Complete Interrupt Priority bits									
		upt is priority 7 (•	•	2						
	•										
	•										
	• 001 = Interr	upt is priority 1									
		upt source is dis	abled								
bit 3		nted: Read as '									
bit 2-0	-)>: UART1 Trans		upt Priority bits							
		upt is priority 7 (
	•		5	,							
	•										
	•										
	001 = Interr	upt is priority 1									

PRIORITY CONTROL REGISTER

001 = Interrupt is priority 1 000 = Interrupt source is disabled

REGISTER 11-23: RPOR8: PERIPHERAL PIN SELECT OUTPUT REGISTERS 8⁽¹⁾

U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
— — — — — — — — — — —							
bit 15							bit 8
U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	_	—			RP16R<4:0	>	
bit 7							bit C
Legend:							
R = Readable	h:+	W = Writable t	.:+		monted hit rea	d aa '0'	
R = Readable	DIL	vv = vvritable t	DIC	0 = 0 nimpler	nented bit, rea	d as 0	
-n = Value at P	= Value at POR (1' = Bit is set (0' = Bit is cleared x = Bit is unknown					nown	

bit 15-13 Unimplemented: Read as '0'

bit 12-8 **RP17R<4:0>:** Peripheral Output Function is Assigned to RP17 Output Pin bits (see Table 11-2 for peripheral function numbers)

bit 7-5 Unimplemented: Read as '0'

bit 4-0 **RP16R<4:0>:** Peripheral Output Function is Assigned to RP16 Output Pin bits (see Table 11-2 for peripheral function numbers)

Note 1: This register is implemented in 44-pin devices only.

REGISTER 11-24: RPOR9: PERIPHERAL PIN SELECT OUTPUT REGISTERS 9⁽¹⁾

U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
_	_	_			RP19R<4:0>	>	
bit 15			•				bit 8
U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
	—	—			RP18R<4:0>	>	
bit 7							bit 0
Legend:							
R = Readab	le bit	W = Writable	bit	U = Unimpler	nented bit, rea	d as '0'	
-n = Value a	It POR	'1' = Bit is set	t	'0' = Bit is cle	ared	x = Bit is unkr	nown
bit 15-13	Unimplemen	ted: Read as	'0'				
bit 12-8		Peripheral Or ction numbers		is Assigned to	RP19 Output	Pin bits (see Tal	ble 11-2 for
bit 7-5	Unimplemen	ted: Read as	ʻ0 '				
bit 4-0	RP18R<4:0>	Peripheral O	utput Function	is Assigned to	RP18 Output	Pin bits (see Tal	ble 11-2 for

bit 4-0 **RP18R<4:0>:** Peripheral Output Function is Assigned to RP18 Output Pin bits (see Table 11-2 for peripheral function numbers)

Note 1: This register is implemented in 44-pin devices only.

15.3 Output Compare Control Registers

REGISTER 15-1: OCxCON: OUTPUT COMPAREX CONTROL REGISTER (x = 1, 2, 3 OR 4)

U-0	U-0	R/W-0	U-0	U-0	U-0	U-0	U-0	
	—	OCSIDL	_	—		—	—	
bit 15							bit 8	
				-				
U-0	U-0	U-0	R-0 HC OCFLT	R/W-0 R/W-0 R/W-0 R/V OCTSEL OCM<2:0> OCM<2:0> OCM<2:0> OCM<2:0				
	OCM<2:0>	1:10						
bit 7							bit 0	
Legend: HC = Cleared in Hardware HS = Set in Hardware								
R = Readab	ole bit	W = Writable bi	t	U = Unimple	mented bit, rea	d as '0'		
-n = Value a	it POR	'1' = Bit is set		'0' = Bit is cle	eared	x = Bit is unki	nown	
bit 13 bit 12-5 bit 4 bit 3	1 = Output Co 0 = Output Co Unimplement OCFLT: PWN 1 = PWM Fac 0 = No PWM (This bit is on OCTSEL: Ou 1 = Timer3 is	p Output Compa ompare x halts in ompare x continent ompare x continent of Fault Condition all condition has Fault condition has Fault condition has up used when Output Compare T the clock source the clock source	n CPU Idle more uses to operate of Status bit occurred (clean nas occurred CM<2:0> = 11 imer Select bit e for Compare	de in CPU Idle m red in hardwa 1) x				
bit 2-0	OCM<2:0>:0 111 = PWM n 110 = PWM n 101 = Initializ 100 = Initializ 011 = Compa 010 = Initializ 001 = Initializ	Output Compare mode on OCx, F mode on OCx, F ze OCx pin low, g are event toggles ze OCx pin high, ze OCx pin low, g t compare chann	Mode Select b ault pin enable ault pin disable generate contir generate single s OCx pin compare event	oits ed huous output p output pulse t forces OCx p	on OCx pin bin low	bin		

REGISTER 18-1: UXMODE: UARTX MODE REGISTER (CONTINUED)

bit 4	URXINV: Receive Polarity Inversion bit
	1 = UxRX Idle state is '0' 0 = UxRX Idle state is '1'
bit 3	BRGH: High Baud Rate Enable bit
	 1 = BRG generates 4 clocks per bit period (4x baud clock, High-Speed mode) 0 = BRG generates 16 clocks per bit period (16x baud clock, Standard mode)
bit 2-1	PDSEL<1:0>: Parity and Data Selection bits
	 11 = 9-bit data, no parity 10 = 8-bit data, odd parity 01 = 8-bit data, even parity 00 = 8-bit data, no parity
bit 0	STSEL: Stop Bit Selection bit 1 = Two Stop bits 0 = One Stop bit

- **Note 1:** Refer to **Section 17. "UART**" (DS70232) in the *"dsPIC33F/PIC24H Family Reference Manual"* for information on enabling the UART module for receive or transmit operation.
 - 2: This feature is only available for the 16x BRG mode (BRGH = 0).

U-0	R/W-x	U-0	U-0	U-0	R/W-x	R/W-x	R/W-x			
_	WAKFIL	_	_	_		SEG2PH<2:0>				
bit 15							bit			
-			-							
R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x			
SEG2PHTS	SAM		SEG1PH<2:0>	>		PRSEG<2:0>				
bit 7							bit			
Legend:										
R = Readable	bit	W = Writable	e bit	U = Unimple	mented bit, re	ad as '0'				
-n = Value at F	POR	'1' = Bit is se	et	'0' = Bit is cle	eared	x = Bit is unkno	own			
bit 15	•	ted: Read as								
bit 14			Line Filter for W	/ake-up bit						
		bus line filter								
L:1 40 44			ot used for wake	e-up						
bit 13-11		ted: Read as								
bit 10-8	SEG2PH<2:0>: Phase Segment 2 bits 111 = Length is 8 x TQ									
	•									
	•									
bit 7	000 = Length		ent 2 Time Sele	ot hit						
	1 = Freely pro									
			hits or Informati	ion Processin	a Time (IPT)	whichever is greate	≥r			
bit 6		e of the CAN b			ge (ii),	inicite for to grout				
bit o				sample point						
	 1 = Bus line is sampled three times at the sample point 0 = Bus line is sampled once at the sample point 									
bit 5-3		-	-							
	SEG1PH<2:0>: Phase Segment 1 bits 111 = Length is 8 x TQ									
	•									
	•									
	•									
	000 = Length	is 1 x Tq								
bit 2-0	•		Time Segmen	t bits						
	111 = Length		0							
	•									
	•									
	•									
	000 = Length	is 1 x Tq								
	5									

20.0 10-BIT/12-BIT ANALOG-TO-DIGITAL CONVERTER (ADC1)

- Note 1: This data sheet summarizes the features PIC24HJ32GP302/304, of the PIC24HJ64GPX02/X04 and PIC24HJ128GPX02/X04 of families devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 16. "Analog-to-Digital Converter (ADC)" (DS70183) of the "dsPIC33F/PIC24H Family Reference Manual", which is available from the Microchip web site (www.microchip.com). 2: Some registers and associated bits
 - described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

The PIC24HJ32GP302/304, PIC24HJ64GPX02/X04 and PIC24HJ128GPX02/X04 devices have up to 13 ADC input channels.

The AD12B bit (AD1CON1<10>) allows each of the ADC modules to be configured by the user as either a 10-bit, 4-sample/hold ADC (default configuration) or a 12-bit, 1-sample/hold ADC.

Note: The ADC module needs to be disabled before modifying the AD12B bit.

20.1 Key Features

The 10-bit ADC configuration has the following key features:

- Successive Approximation (SAR) conversion
- Conversion speeds of up to 1.1 Msps
- Up to 13 analog input pins
- External voltage reference input pins
- Simultaneous sampling of up to four analog input pins
- Automatic Channel Scan mode
- Selectable conversion trigger source
- Selectable Buffer Fill modes
- · Operation during CPU Sleep and Idle modes

The 12-bit ADC configuration supports all the above features, except:

- In the 12-bit configuration, conversion speeds of up to 500 ksps are supported
- There is only one sample/hold amplifier in the 12-bit configuration, so simultaneous sampling of multiple channels is not supported.

Depending on the particular device pinout, the ADC can have up to 13 analog input pins, designated AN0 through AN12. In addition, there are two analog input pins for external voltage reference connections. These voltage reference inputs can be shared with other analog input pins. The actual number of analog input pins and external voltage reference input configuration depends on the specific device.

Block diagrams of the ADC module are shown in Figure 20-1 and Figure 20-2.

20.2 ADC Initialization

The following configuration steps should be performed.

- 1. Configure the ADC module:
 - a) Select port pins as analog inputs (AD1PCFGH<15:0> or AD1PCFGL<15:0>)
 - b) Select voltage reference source to match expected range on analog inputs (AD1CON2<15:13>)
 - c) Select the analog conversion clock to match desired data rate with processor clock (AD1CON3<7:0>)
 - d) Determine how many S/H channels are used (AD1CON2<9:8> and AD1PCFGH<15:0> or AD1PCFGL<15:0>)
 - e) Select the appropriate sample/conversion sequence (AD1CON1<7:5> and AD1CON3<12:8>)
 - f) Select how conversion results are presented in the buffer (AD1CON1<9:8>)
 - g) Turn on ADC module (AD1CON1<15>)
- 2. Configure ADC interrupt (if required):
 - a) Clear the AD1IF bit
 - b) Select ADC interrupt priority

20.3 ADC and DMA

If more than one conversion result needs to be buffered before triggering an interrupt, DMA data transfers can be used. ADC1 can trigger a DMA data transfer. If ADC1 is selected as the DMA IRQ source, a DMA transfer occurs when the AD1IF bit gets set as a result of an ADC1 sample conversion sequence.

The SMPI<3:0> bits (AD1CON2<5:2>) are used to select how often the DMA RAM buffer pointer is incremented.

The ADDMABM bit (AD1CON1<12>) determines how the conversion results are filled in the DMA RAM buffer area being used for ADC. If this bit is set, DMA buffers are written in the order of conversion. The module provides an address to the DMA channel that is the same as the address used for the non-DMA stand-alone buffer. If the ADDMABM bit is cleared, then DMA buffers are written in Scatter/Gather mode. The module provides a scatter/gather address to the DMA channel, based on the index of the analog input and the size of the DMA buffer.

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
ALRMEN	CHIME		AMA	SK<3:0>		ALRMP	TR<1:0>
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			ARP	T<7:0>			
bit 7							bit C
Legend:							
R = Readable	e bit	W = Writable	bit	U = Unimplen	nented bit, read	l as '0'	
-n = Value at	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	iown
bit 15	ALRMEN: A	Alarm Enable bit					
	CHIME	,	ed automatic	ally after an ala	rm event when	ever ARPT<7:()> = 0x00 and
	0 = Alarm is						
bit 14		me Enable bit					
		is enabled; ARP is disabled; ARF				0 to 0xFF	
bit 13-10	AMASK<3:	0>: Alarm Mask	Configuration	n bits			
		erved – do not ι					
		erved – do not ι					
	1001 = Onc 1000 = Onc	e a year (excep	when config	ured for Februa	ry 29th, once e	very 4 years)	
	0111 = Onc						
	0110 = Onc						
	0101 = Eve						
	0100 = Eve 0011 = Eve	ry 10 minutes					
		ry 10 seconds					
	0001 = Eve						
		19 3000110					
	0000 = Eve	ry half second					
bit 9-8			ue Register \	Vindow Pointer	bits		
bit 9-8	ALRMPTR< Points to the	ry half second	Alarm Value re	egisters when re	ading ALRMVA		
bit 9-8	ALRMPTR< Points to the the ALRMP ALRMVAL<	ry half second <1:0>: Alarm Val e corresponding <i>J</i> TR<1:0> value d <u>15:8>:</u>	Alarm Value re	egisters when re	ading ALRMVA		
bit 9-8	ALRMPTR< Points to the the ALRMP ⁻ <u>ALRMVAL<</u> 11 = Unimp	ry half second :1:0>: Alarm Val e corresponding <i>i</i> TR<1:0> value d <u>15:8>:</u> lemented	Alarm Value re	egisters when re	ading ALRMVA		
bit 9-8	ALRMPTR< Points to the the ALRMP <u>ALRMVAL<</u> 11 = Unimp 10 = ALRMI	ry half second (1:0>: Alarm Val corresponding <i>)</i> TR<1:0> value d <u>15:8>:</u> lemented MNTH	Alarm Value re	egisters when re	ading ALRMVA		
bit 9-8	ALRMPTR< Points to the the ALRMP <u>ALRMVAL<</u> 11 = Unimp 10 = ALRMI 01 = ALRMI	ry half second (1:0>: Alarm Val corresponding / TR<1:0> value d <u>15:8>:</u> lemented MNTH WD	Alarm Value re	egisters when re	ading ALRMVA		
bit 9-8	ALRMPTR< Points to the the ALRMP ^T ALRMVAL< 11 = Unimp 10 = ALRMI 01 = ALRMI 00 = ALRMI	ry half second (1:0>: Alarm Val e corresponding / TR<1:0> value d <u>15:8>:</u> lemented MNTH WD MIN	Alarm Value re	egisters when re	ading ALRMVA		
bit 9-8	ALRMPTR< Points to the the ALRMP <u>ALRMVAL<</u> 11 = Unimp 10 = ALRMI 01 = ALRMI	ry half second (1:0>: Alarm Val corresponding / TR<1:0> value d <u>15:8>:</u> lemented MNTH WD MIN <u>7:0>:</u>	Alarm Value re	egisters when re	ading ALRMVA		
bit 9-8	ALRMPTR< Points to the the ALRMPT ALRMVAL< 11 = Unimp 10 = ALRMI 00 = ALRMI ALRMVAL< 11 = Unimp 10 = ALRMI	ry half second (1:0>: Alarm Val corresponding / TR<1:0> value d <u>15:8>:</u> lemented MNTH WD MIN <u>7:0>:</u> lemented DAY	Alarm Value re	egisters when re	ading ALRMVA		
bit 9-8	ALRMPTR< Points to the the ALRMPT ALRMVAL< 11 = Unimp 10 = ALRMI 00 = ALRMI ALRMVAL< 11 = Unimp 10 = ALRMI 01 = ALRMI 01 = ALRMI	ry half second (1:0>: Alarm Val corresponding / TR<1:0> value d <u>15:8>:</u> lemented MNTH WD MIN <u>7:0>:</u> lemented DAY HR	Alarm Value re	egisters when re	ading ALRMVA		
	ALRMPTR< Points to the the ALRMP ALRMVAL< 11 = Unimp 10 = ALRMI 00 = ALRMI ALRMVAL< 11 = Unimp 10 = ALRMI 01 = ALRMI 01 = ALRMI 00 = ALRMI	ry half second (1:0>: Alarm Val corresponding <i>)</i> TR<1:0> value d <u>15:8>:</u> lemented MNTH WD MIN <u>7:0>:</u> lemented DAY HR SEC	Alarm Value re ecrements on	egisters when re every read or w	ading ALRMVA		
bit 9-8 bit 7-0	ALRMPTR< Points to the the ALRMPT ALRMVAL< 11 = Unimp 10 = ALRMM 00 = ALRMM 00 = ALRMM ALRMVAL< 11 = Unimp 10 = ALRMM 01 = ALRMM 00 = ALRMM 00 = ALRMM 00 = ALRMM 00 = ALRMM	ry half second (1:0>: Alarm Val corresponding / TR<1:0> value d <u>15:8>:</u> lemented MNTH WD MIN <u>7:0>:</u> lemented DAY HR SEC : Alarm Repeat	Alarm Value re ecrements on	egisters when re every read or w	ading ALRMVA		
	ALRMPTR< Points to the the ALRMPT ALRMVAL< 11 = Unimp 10 = ALRMM 00 = ALRMM 00 = ALRMM ALRMVAL< 11 = Unimp 10 = ALRMM 01 = ALRMM 00 = ALRMM 00 = ALRMM 00 = ALRMM 00 = ALRMM	ry half second (1:0>: Alarm Val corresponding <i>)</i> TR<1:0> value d <u>15:8>:</u> lemented MNTH WD MIN <u>7:0>:</u> lemented DAY HR SEC	Alarm Value re ecrements on	egisters when re every read or w	ading ALRMVA		
	ALRMPTR< Points to the the ALRMPT ALRMVAL< 11 = Unimp 10 = ALRMM 00 = ALRMM 00 = ALRMM ALRMVAL< 11 = Unimp 10 = ALRMM 01 = ALRMM 00 = ALRMM 00 = ALRMM 00 = ALRMM 00 = ALRMM	ry half second (1:0>: Alarm Val corresponding / TR<1:0> value d <u>15:8>:</u> lemented MNTH WD MIN <u>7:0>:</u> lemented DAY HR SEC : Alarm Repeat	Alarm Value re ecrements on	egisters when re every read or w	ading ALRMVA		
	ALRMPTR< Points to the the ALRMPT ALRMVAL< 11 = Unimp 10 = ALRMI 01 = ALRMI 00 = ALRMI ALRMVAL< 11 = Unimp 10 = ALRMI 01 = ALRMI 00 = ALRMI	ry half second (1:0>: Alarm Val corresponding / TR<1:0> value d <u>15:8>:</u> lemented MNTH WD MIN <u>7:0>:</u> lemented DAY HR SEC : Alarm Repeat = Alarm will repe	Alarm Value re ecrements on Counter Valu at 255 more	egisters when re every read or w	ading ALRMVA		
	ALRMPTR< Points to the the ALRMPT ALRMVAL< 11 = Unimp 10 = ALRMI 01 = ALRMI 00 = ALRMI ALRMVAL< 11 = Unimp 10 = ALRMI 01 = ALRMI 00	ry half second (1:0>: Alarm Val corresponding / TR<1:0> value d <u>15:8>:</u> lemented MNTH WD MIN <u>7:0>:</u> lemented DAY HR SEC : Alarm Repeat	Alarm Value re ecrements on Counter Valu at 255 more	egisters when re every read or w e bits times	ading ALRMVA rite of ALRMVA	LH until it reach	nes '00'.

REGISTER 22-3: ALCFGRPT: ALARM CONFIGURATION REGISTER

TABLE 28-4: DC TEMPERATURE AND VOLTAGE SPECIFICATIONS

DC CHA	ARACTER	ISTICS	Standard Operating Conditions: 3.0V to 3.6V(unless otherwise stated)Operating temperature $-40^{\circ}C \leq TA \leq +85^{\circ}C$ for Industrial $-40^{\circ}C \leq TA \leq +125^{\circ}C$ for Extended							
Param No.	Symbol	Characteristic	Min	Тур ⁽¹⁾	Max	Units	Conditions			
Operati	Operating Voltage									
DC10	Supply V	/oltage								
	Vdd		3.0	_	3.6	V	Industrial and Extended			
DC12	Vdr	RAM Data Retention Voltage ⁽²⁾	1.8	_	_	V	_			
DC16	VPOR	VDD Start Voltage to ensure internal Power-on Reset signal	_	_	Vss	V	_			
DC17	SVDD	VDD Rise Rate to ensure internal Power-on Reset signal	0.03	_	_	V/ms	0-3.0V in 0.1s			

Note 1: Data in "Typ" column is at 3.3V, 25°C unless otherwise stated.

2: This is the limit to which VDD can be lowered without losing RAM data.

DC CH	DC CHARACTERISTICS			rating Co vise state perature	•			
Param No.	Symbol	Characteristic	Min	Typ ⁽¹⁾	Мах	Units	Conditions	
DI60a	licl	Input Low Injection Current	0	_	₋₅ (5,8)	mA	All pins except VDD, Vss, AVDD, AVss, MCLR, VCAP, SOSCI, SOSCO, and RB14	
DI60b	Іісн	Input High Injection Current	0		+5 ^(6,7,8)	mA	All pins except VDD, Vss, AVDD, AVss, MCLR, VCAP, SOSCI, SOSCO, RB14, and digital 5V-tolerant designated pins	
DI60c	∑ист	Total Input Injection Current (sum of all I/O and control pins)	-20 ⁽⁹⁾		+20 ⁽⁹⁾	mA	Absolute instantaneous sum of all ± input injection currents from all I/O pins (IICL + IICH) ≤ <u></u> IICT	

TABLE 28-9: DC CHARACTERISTICS: I/O PIN INPUT SPECIFICATIONS

Note 1: Data in "Typ" column is at 3.3V, 25°C unless otherwise stated.

2: The leakage current on the MCLR pin is strongly dependent on the applied voltage level. The specified levels represent normal operating conditions. Higher leakage current can be measured at different input voltages.

- **3:** Negative current is defined as current sourced by the pin.
- 4: See "Pin Diagrams" for the 5V tolerant I/O pins.
- 5: VIL source < (Vss 0.3). Characterized but not tested.

6: Non-5V tolerant pins VIH source > (VDD + 0.3), 5V tolerant pins VIH source > 5.5V. Characterized but not tested.

- 7: Digital 5V tolerant pins cannot tolerate any "positive" input injection current from input sources > 5.5V.
- 8: Injection currents > | 0 | can affect the ADC results by approximately 4-6 counts.
- **9:** Any number and/or combination of I/O pins not excluded under IICL or IICH conditions are permitted provided the mathematical "absolute instantaneous" sum of the input injection currents from all pins do not exceed the specified limit. Characterized but not tested.

TABLE 28-11: ELECTRICAL CHARACTERISTICS: BOR

DC CHARACTERISTICS		Standard Operating Conditions: 3.0V to 3.6V(unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial $-40^{\circ}C \le TA \le +125^{\circ}C$ for Extended						
Param No.	Symbol	Character	istic	Min ⁽¹⁾	Тур	Max ⁽¹⁾	Units	Conditions
BO10	VBOR	BOR Event on VDD transition high-to-low		2.40	_	2.55	V	Vdd
Note 1	ate 1. Decemptors are for design guidenes only and are n			t tootod	in monu	footuring		

Note 1: Parameters are for design guidance only and are not tested in manufacturing.

TABLE 28-12: DC CHARACTERISTICS: PROGRAM MEMORY

	Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated)							
DC CHA	•	ng temp		-40°C \leq TA \leq +85°C for Industrial -40°C \leq TA \leq +125°C for Extended				
Param No.	Symbol	Characteristic	Min	Typ ⁽¹⁾	Max	Units	Conditions	
		Program Flash Memory						
D130a	Eр	Cell Endurance	10,000	—	_	E/W	-40° C to +125° C	
D131	Vpr	VDD for Read	VMIN	—	3.6	V	VMIN = Minimum operating voltage	
D132B	VPEW	VDD for Self-Timed Write	VMIN	—	3.6	V	VMIN = Minimum operating voltage	
D134	TRETD	Characteristic Retention	20	—	—	Year	Provided no other specifications are violated	
D135	IDDP	Supply Current during Programming	-	10	—	mA	_	
D136a	Trw	Row Write Time	1.32	—	1.74	ms	Trw = 11064 FRC cycles, Ta = +85°C, See Note 2	
D136b	Trw	Row Write Time	1.28	—	1.79	ms	Trw = 11064 FRC cycles, Ta = +125°C, See Note 2	
D137a	Тре	Page Erase Time	20.1	—	26.5	ms	TPE = 168517 FRC cycles, TA = +85°C, See Note 2	
D137b	TPE	Page Erase Time	19.5	—	27.3	ms	TPE = 168517 FRC cycles, TA = +125°C, See Note 2	
D138a	Tww	Word Write Cycle Time	42.3	—	55.9	μs	Tww = 355 FRC cycles, TA = +85°C, See Note 2	
D138b	Tww	Word Write Cycle Time	41.1	—	57.6	μs	Tww = 355 FRC cycles, TA = +125°C, See Note 2	

Note 1: Data in "Typ" column is at 3.3V, 25°C unless otherwise stated.

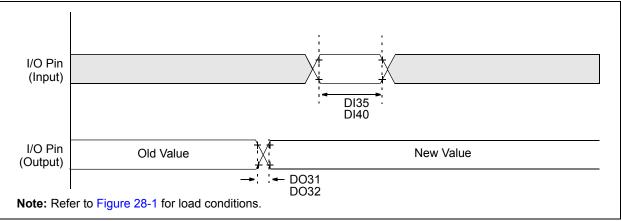

2: Other conditions: FRC = 7.37 MHz, TUN<5:0> = b'011111 (for Min), TUN<5:0> = b'100000 (for Max). This parameter depends on the FRC accuracy (see Table 28-19) and the value of the FRC Oscillator Tuning register (see Register 9-4). For complete details on calculating the Minimum and Maximum time see Section 5.3 "Programming Operations".

TABLE 28-13: INTERNAL VOLTAGE REGULATOR SPECIFICATIONS

Standard Operating Conditions (unless otherwise stated):Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial $-40^{\circ}C \le TA \le +125^{\circ}C$ for Extended							
Param No.	Symbol Characteristics Min Typ Max Units Comments						
_	CEFC	External Filter Capacitor Value ⁽¹⁾	4.7	10	—	μF	Capacitor must be low series resistance (< 5 Ohms)

Note 1: Typical VCAP voltage = 2.5V when VDD \ge VDDMIN.

FIGURE 28-3: CLKO AND I/O TIMING CHARACTERISTICS

TABLE 28-20: I/O TIMING REQUIREMENTS

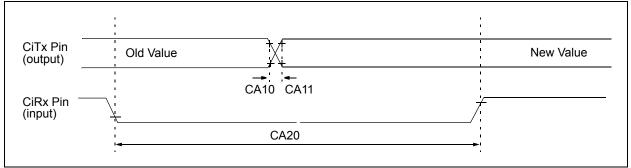
AC CHAR	AC CHARACTERISTICS			rating Co vise state perature	ed) -40°C ≤	Ta ≤+85	3.6V °C for Inc 5°C for E	
Param No.	Symbol	Characteristic		Min	Typ ⁽¹⁾	Max	Units	Conditions
DO31	TioR	Port Output Rise Time			10	25	ns	_
DO32	TIOF	Port Output Fall Time		—	10	25	ns	—
DI35	TINP	INTx Pin High or Low Time (input)		20	_	—	ns	_
DI40	Trbp	CNx High or Low Time (input)		2	_	_	TCY	_

Note 1: Data in "Typ" column is at 3.3V, 25°C unless otherwise stated.

TABLE 28-34:	SPIX SLAVE MODE (FULL-DUPLEX, CKE = 0, CKP = 1, SMP = 0) TIMING
	REQUIREMENTS

АС СНА	AC CHARACTERISTICS			$\begin{array}{l} \mbox{Standard Operating Conditions: 3.0V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industrial} \\ -40^{\circ}C \leq TA \leq +125^{\circ}C \mbox{ for Extended} \end{array}$					
Param No.	Symbol	Characteristic ⁽¹⁾	Min	Тур ⁽²⁾	Мах	Units	Conditions		
SP70	TscP	Maximum SCK Input Frequency	_	_	15	MHz	See Note 3		
SP72	TscF	SCKx Input Fall Time	—	_	_	ns	See parameter DO32 and Note 4		
SP73	TscR	SCKx Input Rise Time	—			ns	See parameter DO31 and Note 4		
SP30	TdoF	SDOx Data Output Fall Time	_		_	ns	See parameter DO32 and Note 4		
SP31	TdoR	SDOx Data Output Rise Time	_			ns	See parameter DO31 and Note 4		
SP35	TscH2doV, TscL2doV	SDOx Data Output Valid after SCKx Edge	_	6	20	ns	—		
SP36	TdoV2scH, TdoV2scL	SDOx Data Output Setup to First SCKx Edge	30			ns	—		
SP40	TdiV2scH, TdiV2scL	Setup Time of SDIx Data Input to SCKx Edge	30	_	_	ns	—		
SP41	TscH2diL, TscL2diL	Hold Time of SDIx Data Input to SCKx Edge	30	_	_	ns	—		
SP50	TssL2scH, TssL2scL	$\overline{SSx} \downarrow to SCKx \uparrow or SCKx Input$	120	_	_	ns	_		
SP51	TssH2doZ	SSx	10	_	50	ns	-		
SP52	TscH2ssH TscL2ssH	SSx after SCKx Edge	1.5 Tcy + 40			ns	See Note 4		

Note 1: These parameters are characterized, but are not tested in manufacturing.


2: Data in "Typ" column is at 3.3V, 25°C unless otherwise stated.

3: The minimum clock period for SCKx is 66.7 ns. Therefore, the SCK clock generated by the Master must not violate this specification.

4: Assumes 50 pF load on all SPIx pins.

PIC24HJ32GP302/304, PIC24HJ64GPX02/X04 AND PIC24HJ128GPX02/X04

FIGURE 28-21: ECAN™ MODULE I/O TIMING CHARACTERISTICS

TABLE 28-38: ECAN™ MODULE I/O TIMING REQUIREMENTS

AC CHARA	Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial $-40^{\circ}C \le TA \le +125^{\circ}C$ for Extended						
Param No.	Symbol	Characteristic ⁽¹⁾	Min	Typ ⁽²⁾	Max	Units	Conditions
CA10	TioF	Port Output Fall Time	—			ns	See parameter D032
CA11	TioR	Port Output Rise Time	_		_	ns	See parameter D031
CA20	Tcwf	Pulse Width to Trigger CAN Wake-up Filter	120			ns	—

Note 1: These parameters are characterized but not tested in manufacturing.

2: Data in "Typ" column is at 3.3V, 25°C unless otherwise stated. Parameters are for design guidance only and are not tested.

APPENDIX A: REVISION HISTORY

Revision A (September 2007)

Initial release of this document.

Revision B (March 2008)

This revision includes minor typographical and formatting changes throughout the data sheet text. In addition, redundant information was removed that is now available in the respective chapters of the *dsPIC33F/PIC24H Family Reference Manual*, which can be obtained from the Microchip web site (www.microchip.com).

The major changes are referenced by their respective section in the following table.

TABLE A-1: MAJOR SECTION UPDATES

Section Name	Update Description
"High-Performance, 16-bit Microcontrollers"	Note 1 added to all pin diagrams (see "Pin Diagrams")
	Updated the "PIC24HJ32GP302/304, PIC24HJ64GPX02/X04 and PIC24HJ128GPX02/X04 Controller Families " table as follows:
	 PIC24HJ128GP804 changed to PIC24HJ128GP504
	PIC24HJ128GP804 changed to PIC24HJ128GP504
	Added new column: External Interrupts
	Added Note 3
Section 1.0 "Device Overview"	Updated parameters PMA0, PMA1 and PMD0 through PMPD7 (Table 1-1)
Section 6.0 "Interrupt Controller"	IFS0-IFSO4 changed to IFSx (see Section 6.3.2 "IFSx")
	IEC0-IEC4 changed to IECx (see Section 6.3.3 "IECx")
	IPC0-IPC19 changed to IPCx (see Section 6.3.4 "IPCx")
Section 7.0 "Direct Memory Access (DMA)"	Updated parameter PMP (see Table 7-1)
Section 8.0 "Oscillator Configuration"	Updated the third clock source item (External Clock) in Section 8.1.1 "System Clock Sources"
	Updated TUN<5:0> (OSCTUN<5:0>) bit description (see Register 8-4)
Section 19.0 "10-bit/12-bit Analog-to-Digital Converter (ADC1)"	Added Note 2 to Figure 19-3
Section 24.0 "Special Features"	Added Note 2 to Figure 24-1
	Added Note after second paragraph in Section 24.2 "On-Chip Voltage Regulator"