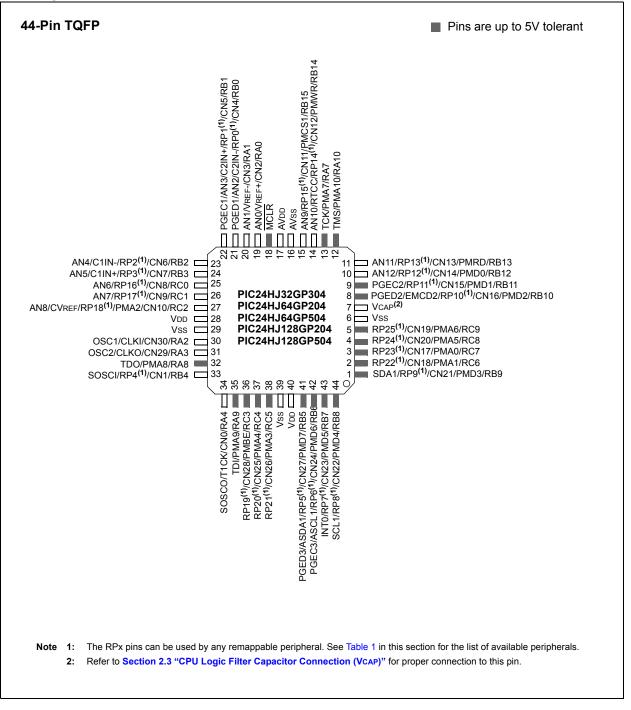


Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

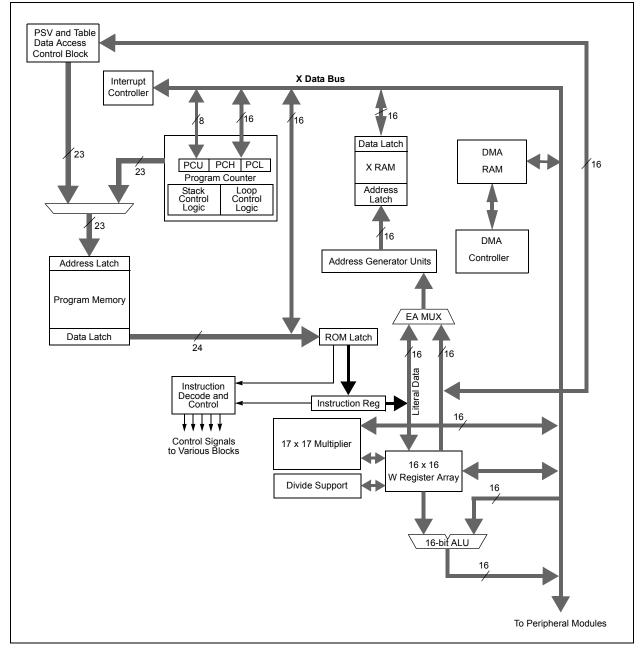

Details

Details	
Product Status	Active
Core Processor	PIC
Core Size	16-Bit
Speed	20 MIPS
Connectivity	CANbus, I ² C, IrDA, LINbus, PMP, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, POR, PWM, WDT
Number of I/O	21
Program Memory Size	128KB (43K x 24)
Program Memory Type	FLASH
EEPROM Size	
RAM Size	8K x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 10x10b/12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 150°C (TA)
Mounting Type	Surface Mount
Package / Case	28-SOIC (0.295", 7.50mm Width)
Supplier Device Package	28-SOIC
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic24hj128gp502-h-so

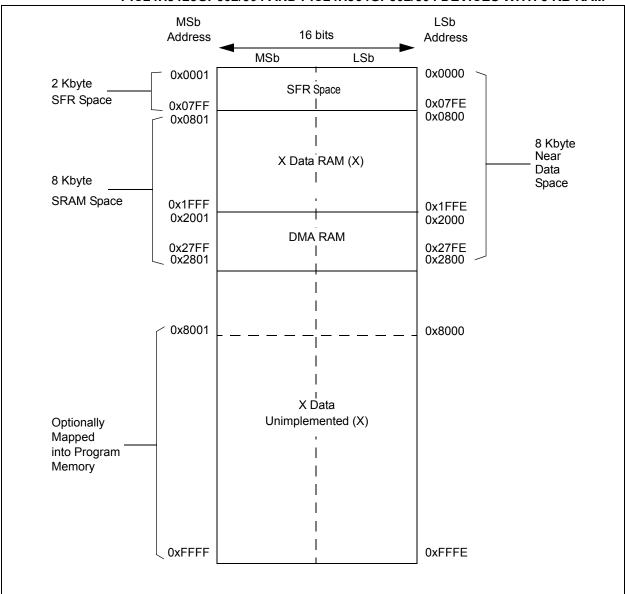
Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Pin Diagrams (Continued)



3.3 Special MCU Features


The PIC24HJ32GP302/304, PIC24HJ64GPX02/X04 and PIC24HJ128GPX02/X04 features a 17-bit by 17bit, single-cycle multiplier. The multiplier can perform signed, unsigned and mixed-sign multiplication. Using a 17-bit by 17-bit multiplier for 16-bit by 16-bit multiplication makes mixed-sign multiplication possible. The PIC24HJ32GP302/304, PIC24HJ64GPX02/X04 and PIC24HJ128GPX02/X04 devices support 16/16 and 32/16 integer divide operations. All divide instructions are iterative operations. They must be executed within a REPEAT loop, resulting in a total execution time of 19 instruction cycles. The divide operation can be interrupted during any of those 19 cycles without loss of data.

A multi-bit data shifter is used to perform up to a 16-bit, left or right shift in a single cycle.

FIGURE 3-1: PIC24HJ32GP302/304, PIC24HJ64GPX02/X04 AND PIC24HJ128GPX02/X04 CPU CORE BLOCK DIAGRAM

FIGURE 4-4: DATA MEMORY MAP FOR PIC24HJ128GP202/204, PIC24HJ64GP202/204, PIC24HJ128GP502/504 AND PIC24HJ64GP502/504 DEVICES WITH 8 KB RAM

4.3 Memory Organization Resources

Many useful resources related to Memory Organization are provided on the main product page of the Microchip web site for the devices listed in this data sheet. This product page, which can be accessed using this link, contains the latest updates and additional information.

Note: In the event you are not able to access the product page using the link above, enter this URL in your browser: http://www.microchip.com/wwwprod-ucts/Devices.aspx?dDoc-Name=en534555

4.3.1 KEY RESOURCES

- Section 4. "Program Memory" (DS70203)
- Code Samples
- Application Notes
- Software Libraries
- Webinars
- All related dsPIC33F/PIC24H Family Reference Manuals Sections
- Development Tools

4.4 Special Function Register Maps

TABLE 4-1: CPU CORE REGISTERS MAP

	T I.																	
SFR Name	SFR Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
WREG0	0000								Working Re	gister 0								0000
WREG1	0002								Working Re	gister 1								0000
WREG2	0004								Working Re	egister 2								0000
WREG3	0006								Working Re	egister 3								0000
WREG4	8000								Working Re	egister 4								0000
WREG5	000A								Working Re	egister 5								0000
WREG6	000C								Working Re	egister 6								0000
WREG7	000E								Working Re	egister 7								0000
WREG8	0010								Working Re	egister 8								0000
WREG9	0012								Working Re	egister 9								0000
WREG10	0014								Working Reg	gister 10								0000
WREG11	0016								Working Reg	gister 11								0000
WREG12	0018								Working Reg	gister 12								0000
WREG13	001A								Working Reg	gister 13								0000
WREG14	001C								Working Reg	gister 14								0000
WREG15	001E								Working Reg	gister 15								0800
SPLIM	0020							Sta	ack Pointer Li	mit Register								XXXX
PCL	002E							Program	m Counter Lo	w Word Regi	ster							0000
PCH	0030	_		—	_	_	_		_			Progra	am Counter	High Byte Re	egister			0000
TBLPAG	0032	_		—	—	_			—			Table	Page Addre	ss Pointer R	egister			0000
PSVPAG	0034	-		—	_	_			_		Prog	ram Memor	y Visibility P	age Address	Pointer Reg	gister		0000
RCOUNT	0036							Rep	eat Loop Cou	unter Register	r							XXXX
SR	0042	_		—	—	_	_		DC	IPL2	IPL1	IPL0	RA	Ν	OV	Z	С	0000
CORCON	0044	_	_	_	—	_	_	_	-	_	_	_	_	IPL3	PSV	_	_	0000
DISICNT	0052	_							Disab	le Interrupts	Counter Re	egister						XXXX

Legend: x = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-15: DMA REGISTER MAP (CONTINUED)

							/											
File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9 B	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
DMA5PAD	03C4								PA	AD<15:0>								0000
DMA5CNT	03C6	_	_	_	_	_	_					CNT	<9:0>					0000
DMA6CON	03C8	CHEN	SIZE	DIR	HALF	NULLW	_	—	—	_	_	AMOD	E<1:0>	_	_	MODE	<1:0>	0000
DMA6REQ	03CA	FORCE	_	_	_	_	_	—	—	_			I	RQSEL<6:0	>			0000
DMA6STA	03CC								S	TA<15:0>								0000
DMA6STB	03CE								ST	TB<15:0>								0000
DMA6PAD	03D0								PA	AD<15:0>								0000
DMA6CNT	03D2	—	_	—	_	_	_					CNT	<9:0>					0000
DMA7CON	03D4	CHEN	SIZE	DIR	HALF	NULLW	_	_	_	_	—	AMOD	E<1:0>	_	_	MODE	<1:0>	0000
DMA7REQ	03D6	FORCE	_	_	_	_	_	—	—	_			I	RQSEL<6:0	>			0000
DMA7STA	03D8								S	TA<15:0>								0000
DMA7STB	03DA								ST	TB<15:0>								0000
DMA7PAD	03DC								PA	AD<15:0>								0000
DMA7CNT	03DE	_	_	_	_	_	_					CNT	<9:0>					0000
DMACS0	03E0	PWCOL7	PWCOL6	PWCOL5	PWCOL4	PWCOL3	PWCOL2	PWCOL1 PW	VCOL0	XWCOL7	XWCOL6	XWCOL5	XWCOL4	XWCOL3	XWCOL2	XWCOL1	XWCOL0	0000
DMACS1	03E2	—	_	—	_		LSTCH	H<3:0>		PPST7	PPST6	PPST5	PPST4	PPST3	PPST2	PPST1	PPST0	0000
DSADR	03E4								DSA	ADR<15:0>								0000

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-24: REAL-TIME CLOCK AND CALENDAR REGISTER MAP

File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
ALRMVAL	0620						Alar	m Value Regis	ter Window ba	ased on AP	TR<1:0>							XXXX
ALCFGRPT	0622	ALRMEN	CHIME		AMASK	<3:0>		ALRMP	[R<1:0>				ARP	T<7:0>				0000
RTCVAL	0624						RTCC	C Value Registe	er Window bas	sed on RTC	PTR<1:0>							XXXX
RCFGCAL	0626	RTCEN	_	RTCWREN	RTCSYNC	HALFSEC	RTCOE	RTCPT	R<1:0>				CAL	.<7:0>				0000
PADCFG1	02FC	_	—	—	_	_	_	—	—	—	—	-	-	_	—	RTSECSEL	PMPTTL	0000

Legend: x = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-25: CRC REGISTER MAP

File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
																		Resels
CRCCON	0640	—	_	CSIDL		N	/WORD<4:0	>		CRCFUL	CRCMPT	_	CRCGO		PLEN	<3:0>		0000
CRCXOR	0642								X<1	5:0>								0000
CRCDAT	0644								CRC Data Ir	nput Register	-							0000
CRCWDAT	0646								CRC Resu	ult Register								0000

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-26: DUAL COMPARATOR REGISTER MAP

File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
CMCON	0630	CMIDL	-	C2EVT	C1EVT	C2EN	C1EN	C2OUTEN	C10UTEN	C2OUT	C10UT	C2INV	C1INV	C2NEG	C2POS	C1NEG	C1POS	0000
CVRCON	0632	_	-	-	_		-	_	_	CVREN	CVROE	CVRR	CVRSS		CVR	<3:0>		0000

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-27: PORTA REGISTER MAP FOR PIC24HJ128GP202/502, PIC24HJ64GP202/502 AND PIC24HJ32GP302

File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
TRISA	02C0	_	—	_	_	—	_	_	_	_	_	_	TRISA4	TRISA3	TRISA2	TRISA1	TRISA0	001F
PORTA	02C2	_	—	_	—	—	_	_	_	-	-	_	RA4	RA3	RA2	RA1	RA0	XXXX
LATA	02C4		_	_		—	_	_	—	—		_	LATA4	LATA3	LATA2	LATA1	LATA0	XXXX
ODCA	02C6	-	_	-	_	—	_	-	_	_	-	-	—	-	-	-	—	0000

Legend: x = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

© 2007-2012 Microchip Technology Inc.

6.9 Configuration Mismatch Reset

To maintain the integrity of the peripheral pin select control registers, they are constantly monitored with shadow registers in hardware. If an unexpected change in any of the registers occur (such as cell disturbances caused by ESD or other external events), a configuration mismatch Reset occurs.

The Configuration Mismatch Flag bit (CM) in the Reset Control register (RCON<9>) is set to indicate the configuration mismatch Reset. Refer to **Section 11.0 "I/O Ports"** for more information on the configuration mismatch Reset.

Note: The configuration mismatch feature and associated reset flag is not available on all devices.

6.10 Illegal Condition Device Reset

An illegal condition device Reset occurs due to the following sources:

- Illegal Opcode Reset
- Uninitialized W Register Reset
- · Security Reset

The Illegal Opcode or Uninitialized W Access Reset Flag bit (IOPUWR) in the Reset Control register (RCON<14>) is set to indicate the illegal condition device Reset.

6.10.1 ILLEGAL OPCODE RESET

A device Reset is generated if the device attempts to execute an illegal opcode value that is fetched from program memory.

The illegal opcode Reset function can prevent the device from executing program memory sections that are used to store constant data. To take advantage of the illegal opcode Reset, use only the lower 16 bits of

each program memory section to store the data values. The upper 8 bits should be programmed with 3Fh, which is an illegal opcode value.

6.10.2 UNINITIALIZED W REGISTER RESET

Any attempts to use the uninitialized W register as an address pointer will Reset the device. The W register array (with the exception of W15) is cleared during all resets and is considered uninitialized until written to.

6.10.3 SECURITY RESET

If a Program Flow Change (PFC) or Vector Flow Change (VFC) targets a restricted location in a protected segment (Boot and Secure Segment), that operation will cause a security Reset.

The PFC occurs when the Program Counter is reloaded as a result of a Call, Jump, Computed Jump, Return, Return from Subroutine, or other form of branch instruction.

The VFC occurs when the Program Counter is reloaded with an Interrupt or Trap vector.

Refer to Section 25.8 "Code Protection and CodeGuard™ Security" for more information on Security Reset.

6.11 Using the RCON Status Bits

The user application can read the Reset Control register (RCON) after any device Reset to determine the cause of the reset.

Note: The status bits in the RCON register should be cleared after they are read so that the next RCON register value after a device Reset will be meaningful.

Table 6-3 provides a summary of the reset flag bit operation.

Flag Bit	Set by:	Cleared by:
TRAPR (RCON<15>)	Trap conflict event	POR, BOR
IOPWR (RCON<14>)	Illegal opcode or uninitialized W register access or Security Reset	POR, BOR
CM (RCON<9>)	Configuration Mismatch	POR, BOR
EXTR (RCON<7>)	MCLR Reset	POR
SWR (RCON<6>)	RESET instruction	POR, BOR
WDTO (RCON<4>)	WDT time-out	PWRSAV instruction, CLRWDT instruction, POR, BOR
SLEEP (RCON<3>)	PWRSAV #SLEEP instruction	POR, BOR
IDLE (RCON<2>)	PWRSAV #IDLE instruction	POR, BOR
BOR (RCON<1>)	POR, BOR	—
POR (RCON<0>)	POR	—

TABLE 6-3: RESET FLAG BIT OPERATION

Note: All Reset flag bits can be set or cleared by user software.

U-0	U-0	U-0	U-0	U-0	R/W-1	R/W-0	R/W-0
0-0	0-0	0-0	0-0	0-0	R/W-I		R/W-0
	—	_		_		DMA1IP<2:0>	
bit 15							bit
U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0
_		AD1IP<2:0>		_		U1TXIP<2:0>	
bit 7					•		bit
Legend:							
R = Readab	ole bit	W = Writable	bit	U = Unimpler	mented bit, rea	d as '0'	
-n = Value a	at POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	iown
bit 15-11	Unimpleme	ented: Read as '	0'				
bit 10-8	DMA1IP<2:	0>: DMA Chann	el 1 Data Tra	nsfer Complete	e Interrupt Prior	ity bits	
	111 = Interr	upt is priority 7 (highest priorit	ty interrupt)			
	•						
	•						
	001 = Interr	upt is priority 1					
		upt source is dis	abled				
bit 7	Unimpleme	nted: Read as '	0'				
bit 6-4	AD1IP<2:0>	-: ADC1 Conver	sion Complet	e Interrupt Prio	rity bits		
		upt is priority 7 (•	•	2		
	•						
	•						
	• 001 = Interr	upt is priority 1					
		upt source is dis	abled				
bit 3		nted: Read as '					
bit 2-0	-)>: UART1 Trans		upt Priority bits			
		upt is priority 7 (
	•		5	,			
	•						
	•						
	001 = Interr	upt is priority 1					

PRIORITY CONTROL REGISTER

001 = Interrupt is priority 1 000 = Interrupt source is disabled

REGISTER 8-2: DMAxREQ: DMA CHANNEL x IRQ SELECT REGIST
--

-							
R/W-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
FORCE ⁽¹⁾	—	—		—			—
bit 15							bit 8
U-0	R/W-0	R/W-0	R/W-0	U-0	U-0	R/W-0	R/W-0
				IRQSEL<6:0>	(2)		
bit 7	•						bit 0
Legend:							
R = Readable	bit	W = Writable I	bit	U = Unimpler	mented bit, read	as '0'	
-n = Value at P	OR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown
bit 15		e DMA Transfe					
		ingle DMA trans DMA transfer					

bit 14-7 Unimplemented: Read as '0'

bit 6-0 IRQSEL<6:0>: DMA Peripheral IRQ Number Select bits⁽²⁾

0000000-1111111 = DMAIRQ0-DMAIRQ127 selected to be Channel DMAREQ

Note 1: The FORCE bit cannot be cleared by the user. The FORCE bit is cleared by hardware when the forced DMA transfer is complete.

2: Refer to Table 7-1 for a complete listing of IRQ numbers for all interrupt sources.

NOTES:

NOTES:

U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
_	_	_	DISSCK	DISSDO	MODE16	SMP	CKE ⁽¹⁾
bit 15							bit
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
SSEN ⁽³⁾	CKP	MSTEN		SPRE<2:0>(2	2)	PPRE-	<1:0> ⁽²⁾
bit 7							bit
Legend:							
R = Readable	e bit	W = Writable	bit	U = Unimpler	nented bit, read	as '0'	
-n = Value at	POR	'1' = Bit is se	t	'0' = Bit is cle	ared	x = Bit is unkr	nown
bit 15-13	Unimpleme	nted: Read as	0'				
oit 12		sable SCKx pin					
		SPI clock is disa		tions as I/O			
-:- 11		SPI clock is ena					
bit 11		sable SDOx pin n is not used by		unctions as I/O)		
		n is controlled b			, ,		
bit 10	MODE16: W	/ord/Byte Comn	nunication Sele	ect bit			
		nication is word					
		nication is byte-					
bit 9		Data Input Sam	ole Phase bit				
	$\frac{\text{Master mode}}{1 = \text{Input dat}}$	<u>e:</u> ta sampled at e	nd of data outr	out time			
		ta sampled at m					
	Slave mode:			-			
		e cleared when		n Slave mode.			
bit 8		Clock Edge Sele		<i>.</i>			
					clock state to Idl ock state to activ		
bit 7		e Select Enable					
		used for Slave	•				
		not used by mo		rolled by port fu	unction		
bit 6	CKP: Clock	Polarity Select	bit				
		e for clock is a h					
		e for clock is a l		e state is a high	n level		
	MSTEN: Ma	ster Mode Enal	ole bit				
bit 5	1 = Master n						

(FRMEN = 1).

- 2: Do not set both Primary and Secondary prescalers to a value of 1:1.
- 3: This bit must be cleared when FRMEN = 1.

REGISTER 18-1: UXMODE: UARTX MODE REGISTER (CONTINUED)

bit 4	URXINV: Receive Polarity Inversion bit
	1 = UxRX Idle state is '0' 0 = UxRX Idle state is '1'
bit 3	BRGH: High Baud Rate Enable bit
	 1 = BRG generates 4 clocks per bit period (4x baud clock, High-Speed mode) 0 = BRG generates 16 clocks per bit period (16x baud clock, Standard mode)
bit 2-1	PDSEL<1:0>: Parity and Data Selection bits
	 11 = 9-bit data, no parity 10 = 8-bit data, odd parity 01 = 8-bit data, even parity 00 = 8-bit data, no parity
bit 0	STSEL: Stop Bit Selection bit 1 = Two Stop bits 0 = One Stop bit

- **Note 1:** Refer to **Section 17. "UART**" (DS70232) in the *"dsPIC33F/PIC24H Family Reference Manual"* for information on enabling the UART module for receive or transmit operation.
 - 2: This feature is only available for the 16x BRG mode (BRGH = 0).

PIC24HJ32GP302/304, PIC24HJ64GPX02/X04 AND PIC24HJ128GPX02/X04

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
		_	—				
bit 15							bit 8
U-0	U-0	U-0	R-0	R-0	R-0	R-0	R-0
					DNCNT<4:0>		
bit 7							bit 0
Legend: C = Writeable bit, but only				0' can be writte	en to clear the b	pit	
R = Readable bit W = Writable bi			bit	U = Unimpler	nented bit, read	d as '0'	
-n = Value at POR (1' = Bit is set			'0' = Bit is cleared x = Bit is unknown		iown		
bit 15-5	Unimplemen	ted: Read as '	כ'				
h:+ 4 0	DNONT			har hita			

bit 4-0	DNCNT<4:0>: DeviceNet [™] Filter Bit Number bits
	10010-11111 = Invalid selection 10001 = Compare up to data byte 3, bit 6 with EID<17>
	•
	•
	•
	00001 = Compare up to data byte 1, bit 7 with EID<0> 00000 = Do not compare data bytes

	n (n =	0-15)					
R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
SID10	SID9	SID8	SID7	SID6	SID5	SID4	SID3
bit 15							bit 8
R/W-x	R/W-x	R/W-x	U-0	R/W-x	U-0	R/W-x	R/W-x
SID2	SID1	SID0	—	EXIDE	—	EID17	EID16
bit 7							bit 0
Legend:		C = Writeable	bit, but only	'0' can be writte	en to clear the b	bit	
R = Readable	e bit	W = Writable	bit	U = Unimpler	nented bit, read	d as '0'	
-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown						nown	
bit 15-5	1 = Message	Standard Identif address bit SII address bit SII	Dx must be '1				
bit 4	bit 4 Unimplemented: Read as '0'						

REGISTER 19-16: CIRXFnSID: ECAN™ ACCEPTANCE FILTER STANDARD IDENTIFIER REGISTER n (n = 0-15)

bit 3 EXIDE: Extended Identifier Enable bi

If MIDE = 1, then:

1 = Match only messages with extended identifier addresses

0 = Match only messages with standard identifier addresses

 $\frac{\text{If MIDE} = 0, \text{ then:}}{\text{Ignore the EXIDE bit.}}$

Unimplemented: Read as '0'

bit 2

bit 1-0 **EID<17:16>:** Extended Identifier bits

1 = Message address bit EIDx must be '1' to match filter

0 = Message address bit EIDx must be '0' to match filter

22.1 RTCC Module Registers

The RTCC module registers are organized into three categories:

- RTCC Control Registers
- RTCC Value Registers
- Alarm Value Registers

22.1.1 REGISTER MAPPING

To limit the register interface, the RTCC Timer and Alarm Time registers are accessed through corresponding register pointers. The RTCC Value register window (RTCVALH and RTCVALL) uses the RTCPTR bits (RCFGCAL<9:8>) to select the desired timer register pair (see Table 22-1).

By writing the RTCVALH byte, the RTCC Pointer value, RTCPTR<1:0> bits, decrement by one until they reach '00'. Once they reach '00', the MINUTES and SECONDS value will be accessible through RTCVALH and RTCVALL until the pointer value is manually changed.

TABLE 22-1: RTCVAL REGISTER MAPPING

RTCPTR	RTCC Value Register Window			
<1:0>	RTCVAL<15:8>	RTCVAL<7:0>		
0 0	MINUTES	SECONDS		
01	WEEKDAY	HOURS		
10	MONTH	DAY		
11	—	YEAR		

The Alarm Value register window (ALRMVALH and ALRMVALL) uses the ALRMPTR bits (ALCFGRPT<9:8>) to select the desired Alarm register pair (see Table 22-2).

By writing the ALRMVALH byte, the Alarm Pointer value, ALRMPTR<1:0> bits, decrement by one until they reach '00'. Once they reach '00', the ALRMMIN and ALRMSEC value will be accessible through ALRMVALH and ALRMVALL until the pointer value is manually changed.

TABLE 22-2: ALRMVAL REGISTER MAPPING

ALRMPTR	Alarm Value Register Window			
<1:0>	ALRMVAL<15:8>	ALRMVAL<7:0>		
00	ALRMMIN	ALRMSEC		
01	ALRMWD	ALRMHR		
10	ALRMMNTH	ALRMDAY		
11	—	—		

Considering that the 16-bit core does not distinguish between 8-bit and 16-bit read operations, the user must be aware that when reading either the ALRMVALH or ALRMVALL bytes will decrement the ALRMPTR<1:0> value. The same applies to the RTCVALH or RTCVALL bytes with the RTCPTR<1:0> being decremented.

Note:	This only applies to read operations and						
	not write operations.						

22.1.2 WRITE LOCK

In order to perform a write to any of the RTCC Timer registers, the RTCWREN bit (RCFGCAL<13>) must be set (refer to Example 22-1).

Note: To avoid accidental writes to the timer, it is recommended that the RTCWREN bit (RCFGCAL<13>) is kept clear at any other time. For the RTCWREN bit to be set, there is only 1 instruction cycle time window allowed between the 55h/AA sequence and the setting of RTCWREN; therefore, it is recommended that code follow the procedure in Example 22-1.

EXAMPLE 22-1: SETTING THE RTCWREN BIT

MOV	#NVMKEY, W1	;move the address of NVMKEY into W1
MOV	#0x55, W2	
MOV	#0xAA, W3	
MOV	W2, [W1]	;start 55/AA sequence
MOV	W3, [W1]	
BSET	RCFGCAL, #13	;set the RTCWREN bit

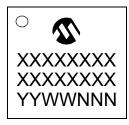
REGISTER 22-1: RCFGCAL: RTCC CALIBRATION AND CONFIGURATION REGISTER⁽¹⁾ (CONTINUED)

bit 7-0	CAL<7:0>: RTC Drift Calibration bits
	11111111 = Minimum negative adjustment; subtracts 4 RTC clock pulses every one minute
	•
	•
	•
	10000000 = Maximum negative adjustment; subtracts 512 RTC clock pulses every one minute 01111111 = Maximum positive adjustment; adds 508 RTC clock pulses every one minute
	•
	•
	•
	00000001 = Minimum positive adjustment; adds 4 RTC clock pulses every one minute 00000000 = No adjustment

Note 1: The RCFGCAL register is only affected by a POR.

- 2: A write to the RTCEN bit is only allowed when RTCWREN = 1.
- 3: This bit is read-only. It is cleared to '0' on a write to the lower half of the MINSEC register.

33.0 PACKAGING INFORMATION


28-Lead SPDIP


28-Lead SOIC (.300")

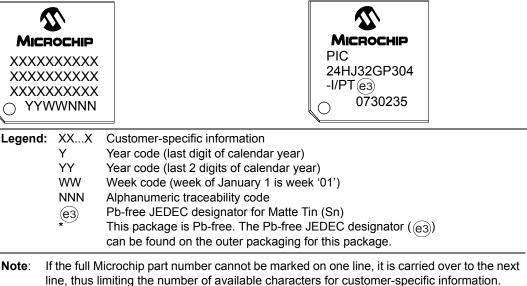
28-Lead QFN-S

44-Lead QFN

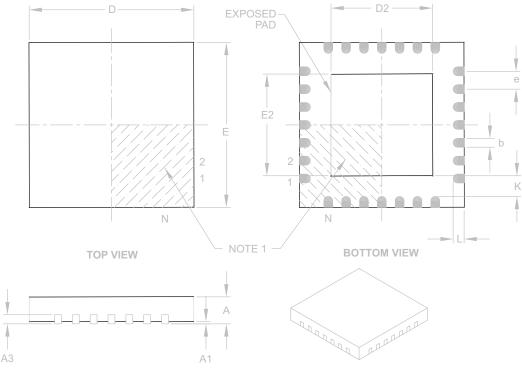
44-Lead TQFP

Example

Example


Example

Example


Example

© 2007-2012 Microchip Technology Inc.

28-Lead Plastic Quad Flat, No Lead Package (MM) – 6x6x0.9 mm Body [QFN-S] with 0.40 mm Contact Length

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	MILLIMETERS				
Dimensio	Dimension Limits		NOM	MAX	
Number of Pins N			28		
Pitch	е	0.65 BSC			
Overall Height	А	0.80	0.90	1.00	
Standoff	A1	0.00	0.02	0.05	
Contact Thickness	A3	0.20 REF			
Overall Width	E 6.00 BSC				
Exposed Pad Width	E2	E2 3.65 3.70 4.70		4.70	
Overall Length	D	6.00 BSC			
Exposed Pad Length	D2	3.65	3.70	4.70	
Contact Width	b	0.23	0.38	0.43	
Contact Length	L	0.30	0.40	0.50	
Contact-to-Exposed Pad		0.20	-	-	

Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

2. Package is saw singulated.

3. Dimensioning and tolerancing per ASME Y14.5M.

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-124B

NOTES: