

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Active
Core Processor	PIC
Core Size	16-Bit
Speed	40 MIPs
Connectivity	CANbus, I ² C, IrDA, LINbus, PMP, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, POR, PWM, WDT
Number of I/O	21
Program Memory Size	128KB (43K x 24)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	8K x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 10x10b/12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	28-SOIC (0.295", 7.50mm Width)
Supplier Device Package	28-SOIC
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic24hj128gp502-i-so

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Pin Diagrams (Continued)

The DMA controller features eight identical data transfer channels.

Each channel has its own set of control and status registers. Each DMA channel can be configured to copy data either from buffers stored in dual port DMA RAM to peripheral SFRs, or from peripheral SFRs to buffers in DMA RAM.

The DMA controller supports the following features:

- Eight DMA channels
- Register Indirect with Post-increment Addressing mode
- Register Indirect without Post-increment Addressing mode
- Peripheral Indirect Addressing mode (peripheral generates destination address)
- CPU interrupt after half or full block transfer complete

- Byte or word transfers
- · Fixed priority channel arbitration
- Manual (software) or Automatic (peripheral DMA requests) transfer initiation
- One-Shot or Auto-Repeat block transfer modes
- Ping-Pong mode (automatic switch between two DPSRAM start addresses after each block transfer complete)
- DMA request for each channel can be selected from any supported interrupt source
- · Debug support features

For each DMA channel, a DMA interrupt request is generated when a block transfer is complete. Alternatively, an interrupt can be generated when half of the block has been filled.

FIGURE 8-1: TOP LEVEL SYSTEM ARCHITECTURE USING A DEDICATED TRANSACTION BUS

NOTES:

10.5 Power-Saving Resources

Many useful resources related to power-saving modes are provided on the main product page of the Microchip web site for the devices listed in this data sheet. This product page, which can be accessed using this link, contains the latest updates and additional information.

Note:	In the event you are not able to access the
	product page using the link above, enter
	this URL in your browser:
	http://www.microchip.com/wwwproducts/
	Devices.aspx?dDocName=en532315

10.5.1 KEY RESOURCES

- Section 9. "Watchdog Timer and Power-Saving Modes" (DS70196)
- Code Samples
- Application Notes
- Software Libraries
- Webinars
- All related dsPIC33F/PIC24H Family Reference Manuals Sections
- Development Tools

REGISTER 11-12: RPINR22: PERIPHERAL PIN SELECT INPUT REGISTER 22

U-0 U-0 U-0 R/W-1 R/W-1 R/W-1 R/W-1 F — — — SCK2R<4:0>	2/W-1
— — SCK2R<4:0> bit 15 U-0 U-0 R/W-1 R/W-1 R/W-1 R/W-1 F — — — SDI2R<4:0> SDI2R<4:0> bit 7 Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as '0' -n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown	
bit 15 U-0 U-0 R/W-1 R/W-1 R/W-1 R/W-1 F — — — SDI2R<4:0> SDI2R<4:0> bit 7	
U-0 U-0 U-0 R/W-1 R/W-1 R/W-1 R/W-1 F — — — SDI2R<4:0> SDI2R<4:0> SDI2R<4:0> bit 7	bit 8
U-0 U-0 U-0 R/W-1 R/W-1 R/W-1 F — — — SDI2R<4:0> SDI2R SDI2R	
— — SDI2R<4:0> bit 7	2/W-1
bit 7 Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as '0' -n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown	
Legend:R = Readable bitW = Writable bitU = Unimplemented bit, read as '0'-n = Value at POR'1' = Bit is set'0' = Bit is clearedx = Bit is unknown	bit (
Legend:R = Readable bitW = Writable bitU = Unimplemented bit, read as '0'-n = Value at POR'1' = Bit is set'0' = Bit is clearedx = Bit is unknown	
R = Readable bitW = Writable bitU = Unimplemented bit, read as '0'-n = Value at POR'1' = Bit is set'0' = Bit is clearedx = Bit is unknown	
-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown	
bit 15-13 Unimplemented: Read as '0'	
bit 12-8 SCK2R<4:0>: Assign SPI2 Clock Input (SCK2) to the corresponding RPn pin	
11111 = Input tied to Vss 11001 = Input tied to RP25	
•	
•	
•	
00001 = Input tied to RP1	
00000 = Input tied to RP0	
bit 7-5 Unimplemented: Read as '0'	
bit 4-0 SDI2R<4:0>: Assign SPI2 Data Input (SDI2) to the corresponding RPn pin	
11111 = Input tied to Vss	
11001 = Input field to RP25	
•	
•	
-	
00000 = Input tied to RP0	

NOTES:

REGISTER '	16-2: SPIxC	ON1: SPIx C	ONTROL RE	EGISTER 1				
U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
—	_	—	DISSCK	DISSDO	MODE16	SMP	CKE ⁽¹⁾	
bit 15							bit	
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
SSEN ⁽³⁾	CKP	MSTEN		SPRE<2:0>(2	2)	PPRE<	<1:0> ⁽²⁾	
bit 7	1					1	bit	
Legend:								
R = Readable	e bit	W = Writable	bit	U = Unimpler	mented bit, read	d as '0'		
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown	
hit 15-13	Unimplemen	ited: Read as '	o '					
bit 12	DISSCK: Dis 1 = Internal S 0 = Internal S	able SCKx pin SPI clock is disa	o bit (SPI Maste abled, pin func bled	er modes only) tions as I/O				
bit 11	DISSDO: Dis 1 = SDOx pir 0 = SDOx pir	able SDOx pin is not used by is controlled b	bit module; pin f y the module	unctions as I/C)			
bit 10	MODE16: Word/Byte Communication Select bit 1 = Communication is word-wide (16 bits) 0 = Communication is byte wide (8 bits)							
bit 9	SMP: SPIx D Master mode 1 = Input data 0 = Input data Slave mode: SMP must be	ata Input Samp a sampled at er a sampled at m e cleared when	ble Phase bit nd of data out iddle of data o SPIx is used i	out time output time in Slave mode.				
bit 8	CKE: SPIx C 1 = Serial ou 0 = Serial ou	lock Edge Sele tput data chang tput data chang	ect bit ⁽¹⁾ ges on transitio ges on transitio	on from active	clock state to lo	lle clock state (s	see bit 6) see bit 6)	
bit 7	0 = Serial output data changes on transition from Idle clock state to active clock state (see bit 6) SSEN: Slave Select Enable bit (Slave mode) ⁽³⁾ 1 = \overline{SSx} pin used for Slave mode 0 = \overline{SSx} pin not used by module. Pin controlled by part function							
bit 6	CKP: Clock I 1 = Idle state 0 = Idle state	Polarity Select I for clock is a h for clock is a lo	bit ligh level; activ ow level; active	/e state is a lov e state is a hig	v level h level			
bit 5	MSTEN: Mas 1 = Master m 0 = Slave mo	ster Mode Enat lode lode	ble bit	J				
Note 1: Th	e CKE bit is not	t used in the Fr	amed SPI mo	des. Program t	his bit to '0' for	the Framed SP	l modes	

(FRMEN = 1).

- 2: Do not set both Primary and Secondary prescalers to a value of 1:1.
- 3: This bit must be cleared when FRMEN = 1.

17.2 I²C Resources

Many useful resources related to I^2C are provided on the main product page of the Microchip web site for the devices listed in this data sheet. This product page, which can be accessed using this link, contains the latest updates and additional information.

Note:	In the event you are not able to access the
	product page using the link above, enter
	this URL in your browser:
	http://www.microchip.com/wwwprod-
	ucts/Devices.aspx?dDoc-
	Name=en532315

17.2.1 KEY RESOURCES

- Section 19. "Inter-Integrated Circuit™ (I²C™)" (DS70195)
- Code Samples
- Application Notes
- Software Libraries
- Webinars
- All related dsPIC33F/PIC24H Family Reference Manuals Sections
- Development Tools

17.3 I²C Registers

I2CxCON and I2CxSTAT are control and status registers, respectively. The I2CxCON register is readable and writable. The lower six bits of I2CxSTAT are read-only. The remaining bits of the I2CSTAT are read/write:

- I2CxRSR is the shift register used for shifting data internal to the module and the user application has no access to it
- I2CxRCV is the receive buffer and the register to which data bytes are written, or from which data bytes are read
- I2CxTRN is the transmit register to which bytes are written during a transmit operation
- The I2CxADD register holds the slave address
- A status bit, ADD10, indicates 10-bit Address mode
- The I2CxBRG acts as the Baud Rate Generator (BRG) reload value

In receive operations, I2CxRSR and I2CxRCV together form a double-buffered receiver. When I2CxRSR receives a complete byte, it is transferred to I2CxRCV, and an interrupt pulse is generated.

PIC24HJ32GP302/304, PIC24HJ64GPX02/X04 AND PIC24HJ128GPX02/X04

REGISTER	19-5: CiFIF	FO: ECAN™ FI	FO STATUS	S REGISTER			
U-0	U-0	R-0	R-0	R-0	R-0	R-0	R-0
_	_			FBP	<5:0>		
bit 15							bit 8
11-0	11-0	R-0	R-0	R-0	R-0	R-0	R-0
			110	FNR	3<5:0>	110	110
bit 7					5 0.0		bit (
Legend:		C = Writable I	oit, but only '0	' can be written	to clear the l	bit	
R = Readabl	le bit	W = Writable	bit	U = Unimplen	nented bit, re	ad as '0'	
-n = Value at	t POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkn	own
bit 7-6 bit 5-0	011111 = F 011110 = F 000001 = T 000000 = T Unimpleme FNRB<5:0> 011111 = F 011110 = F	RB1 buffer RB1 buffer RB0 buffer ented: Read as ' FIFO Next Rea RB31 buffer RB30 buffer	0' ad Buffer Poin	iter bits			
	000001 = T 000000 = T	RB1 buffer RB0 buffer					

21.3 Comparator Voltage Reference

21.3.1 CONFIGURING THE COMPARATOR VOLTAGE REFERENCE

The Voltage Reference module is controlled through the CVRCON register (Register 21-2). The comparator voltage reference provides two ranges of output voltage, each with 16 distinct levels. The range to be used is selected by the CVRR bit (CVRCON<5>). The primary difference between the ranges is the size of the steps selected by the CVREF Selection bits (CVR3:CVR0), with one range offering finer resolution. The comparator reference supply voltage can come from either VDD and VSS, or the external VREF+ and VREF-. The voltage source is selected by the CVRSS bit (CVRCON<4>).

The settling time of the comparator voltage reference must be considered when changing the CVREF output.

FIGURE 21-2: COMPARATOR VOLTAGE REFERENCE BLOCK DIAGRAM

24.2 PMP Control Registers

R/W-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0				
PMPEN		PSIDL	ADRMUX1	ADRMUX0	PTBEEN	PTWREN	PTRDEN				
bit 15							bit 8				
		(4)		(4)							
R/W-0	R/W-0	R/W-0 ⁽¹⁾	U-0	R/W-0 ⁽¹⁾	R/W-0	R/W-0	R/W-0				
CSF1	CSF0	ALP	—	CS1P	BEP	WRSP	RDSP				
bit 7	bit 7 bit (
Levend											
Legena: P = P = P = P = P = P = P = P = P = P =											
R = Reauable		vv = vviilable	DIL	0 = 0	nented bit, read	AS U					
	UR	I = DILIS SEL			areu	X - DILISUIKI	IOWII				
bit 15	PMPEN: Para	allel Master Po	t Enable bit								
	1 = PMP ena	bled									
	0 = PMP disa	abled, no off-ch	ip access per	formed							
bit 14	Unimplemen	ted: Read as '	0'								
bit 13	PSIDL: Stop i	n Idle Mode bi	t								
	1 = Discontin	ue module ope module operation	eration when d	levice enters lo de	dle mode						
bit 12-11		DRMIIX0. Add	iress/Data Mul	uc Itinlexina Sele	ction hits(1)						
	11 = Reserve	d									
	10 = All 16 bit	ts of address a	re multiplexed	on PMD<7:0>	> pins						
	01 = Lower 8	bits of addres	ss are multiple	exed on PMD	<7:0> pins, upp	er 3 bits are n	nultiplexed on				
	00 = Address	and data appe	ar on separat	e nins							
bit 10	PTBFFN: Byt	e Enable Port	Enable bit (16	-bit Master mo	ode)						
	1 = PMBE po	rt enabled			(40)						
	0 = PMBE po	rt disabled									
bit 9	PTWREN: Wr	rite Enable Stro	be Port Enab	le bit							
	1 = PMWR/P	MENB port en	abled								
	0 = PMWR/P	MENB port dis	abled								
bit 8	PTRDEN: Re	ad/Write Strob	e Port Enable	bit							
	1 = PMRD/PI 0 = PMRD/PI	MWR port enal	bled								
bit 7-6	CSF1:CSF0:	Chip Select Fu	inction bits								
	11 = Reserve	d									
	10 = PMCS1	functions as ch	nip select								
	0x = PMCS1	functions as ac	ddress bit 14								
bit 5	ALP: Address	s Latch Polarity	bit								
	1 = Active-hig 0 = Active-low	gn <u>(PMALL</u> and w (PMALL and	PMALH)								
bit 4	Unimplemen	ted: Read as '	o'								
bit 3	CS1P: Chip S	Select 1 Polarity	/ bit ⁽¹⁾								
	1 = Active-hig	gh <u>(PMCS1/PM</u>	<u>1CS</u> 1)								
	0 = Active-lo	w (PMCS1/PM	CS1)								

REGISTER 24-1: PMCON: PARALLEL PORT CONTROL REGISTER

Note 1: These bits have no effect when their corresponding pins are used as address lines.

Register 24-		UC: PARALI			SIER			
R-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
BUSY	IRQM	l<1:0>	INC	/I<1:0>	MODE16	MODE	=<1:0>	
bit 15							bit 8	
R/W/-0	R/W/-0	R/W-0	R/W/-0	R/W-0	R/W-0	R/W/-0	R/W/-0	
WAITB	< <u>1.0>(1)</u>	10.00-0	WAIT		10.00-0	WAITE	< <u>1.0>(1)</u>	
bit 7								
Legend:								
R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'								
-n = Value at F	POR	'1' = Bit is set		'0' = Bit is cl	eared	x = Bit is unkr	iown	
bit 15		nit (Mastar ma						
bit 15	1 = Port is bus	sv (not useful v	when the proc	essor stall is a	active)			
	0 = Port is no	t busy						
bit 14-13	IRQM<1:0>:	Interrupt Reque	est Mode bits					
	11 = Interrupt	generated wh	en Read Buffe	er 3 is read or	Write Buffer 3 is	written (Buffere	ed PSP mode)	
	or on a r	ead or write op	eration when	PMA<1:0> =	11 (Addressable	PSP mode on	ly)	
	01 = Interrupt	generated at f	he end of the	read/write cyc	cle			
	00 = No interr	rupt generated						
bit 12-11	INCM<1:0>:	ncrement Mod	e bits					
	11 = PSP rea	d and write bu	ffers auto-incr	ement (Legac	y PSP mode only	y)		
	01 = Increme	nt ADDR<10.	> by 1 every	read/write cyc	e			
	00 = No incre	ment or decrei	ment of addre	SS	-			
bit 10	MODE16: 8/1	6-bit Mode bit						
	1 = 16-bit mod 0 = 8-bit mod	de: data registe e: data registe	er is 16 bits, a r is 8 bits, a re	read or write t ad or write to	to the data registent the data register	er invokes two invokes one 8-	8-bit transfers -bit transfer	
bit 9-8	MODE<1:0>:	Parallel Port N	lode Select b	its				
	11 =Master m	node 1 (PMCS	1, PMRD/PM	WR, PMENB,	PMBE, PMA <x:0< td=""><td>> and PMD<7:</td><td>0>)</td></x:0<>	> and PMD<7:	0>)	
	10 =Master m	node 2 (PMCS) d PSP_control	1, PMRD <u>, PM</u> signals (PMR	WR, PMBE, P	<u>/MA<x< u="">:0> and PM //C.S1_PMD<7:0:</x<></u>	//D<7:0>) > and PMA<1·()>)	
	00 =Legacy F	Parallel Slave F	Port, control si	gnals (PMRD,	PMWR, PMCS1	and PMD<7:0	l>)	
bit 7-6	WAITB<1:0>:	: Data Setup to	Read/Write \	Nait State Cor	figuration bits ⁽¹⁾			
	11 = Data wa	it of 4 Tcy; mu	tiplexed addr	ess phase of 4	TCY			
	10 = Data wa	it of 3 TCY; mul	tiplexed addr	ess phase of 3	B TCY			
	00 = Data wa	it of 1 Tcy; mu	tiplexed addr	ess phase of 2				
bit 5-2	WAITM<3:0>	: Read to Byte	Enable Strob	e Wait State C	configuration bits			
	1111 = Wait c	of additional 15	Тсү					
	•							
	•							
	0001 = Wait o	of additional 1	TCY volgo (operativ	on forced into				
hit 1₋0			or Strobe Wai	t State Config	uration bits(1)			
511 1-0	11 = Wait of 4	TCY						
	10 = Wait of 3	B TCY						
	01 = Wait of 2							
	00 = Wait of 1	IICY						

Register 24-2: PMMODE: PARALLEL PORT MODE REGISTER

Note 1: WAITB and WAITE bits are ignored whenever WAITM3:WAITM0 = 0000.

27.2 MPLAB C Compilers for Various Device Families

The MPLAB C Compiler code development systems are complete ANSI C compilers for Microchip's PIC18, PIC24 and PIC32 families of microcontrollers and the dsPIC30 and dsPIC33 families of digital signal controllers. These compilers provide powerful integration capabilities, superior code optimization and ease of use.

For easy source level debugging, the compilers provide symbol information that is optimized to the MPLAB IDE debugger.

27.3 HI-TECH C for Various Device Families

The HI-TECH C Compiler code development systems are complete ANSI C compilers for Microchip's PIC family of microcontrollers and the dsPIC family of digital signal controllers. These compilers provide powerful integration capabilities, omniscient code generation and ease of use.

For easy source level debugging, the compilers provide symbol information that is optimized to the MPLAB IDE debugger.

The compilers include a macro assembler, linker, preprocessor, and one-step driver, and can run on multiple platforms.

27.4 MPASM Assembler

The MPASM Assembler is a full-featured, universal macro assembler for PIC10/12/16/18 MCUs.

The MPASM Assembler generates relocatable object files for the MPLINK Object Linker, Intel[®] standard HEX files, MAP files to detail memory usage and symbol reference, absolute LST files that contain source lines and generated machine code and COFF files for debugging.

The MPASM Assembler features include:

- Integration into MPLAB IDE projects
- User-defined macros to streamline
 assembly code
- Conditional assembly for multi-purpose source files
- Directives that allow complete control over the assembly process

27.5 MPLINK Object Linker/ MPLIB Object Librarian

The MPLINK Object Linker combines relocatable objects created by the MPASM Assembler and the MPLAB C18 C Compiler. It can link relocatable objects from precompiled libraries, using directives from a linker script.

The MPLIB Object Librarian manages the creation and modification of library files of precompiled code. When a routine from a library is called from a source file, only the modules that contain that routine will be linked in with the application. This allows large libraries to be used efficiently in many different applications.

The object linker/library features include:

- Efficient linking of single libraries instead of many smaller files
- Enhanced code maintainability by grouping related modules together
- Flexible creation of libraries with easy module listing, replacement, deletion and extraction

27.6 MPLAB Assembler, Linker and Librarian for Various Device Families

MPLAB Assembler produces relocatable machine code from symbolic assembly language for PIC24, PIC32 and dsPIC devices. MPLAB C Compiler uses the assembler to produce its object file. The assembler generates relocatable object files that can then be archived or linked with other relocatable object files and archives to create an executable file. Notable features of the assembler include:

- · Support for the entire device instruction set
- · Support for fixed-point and floating-point data
- · Command line interface
- Rich directive set
- Flexible macro language
- MPLAB IDE compatibility

AC CHARA	CTERISTICS		Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated) Operating temperature -40°C ≤TA ≤+85°C for Industrial -40°C ≤TA ≤+125°C for Extended				
Maximum Data Rate	Master Transmit Only (Half-Duplex)	Master Transmit/Receive (Full-Duplex)	Slave Transmit/Receive (Full-Duplex)	CKE	СКР	SMP	
15 MHz	Table 28-29	—	_	0,1	0,1	0,1	
9 MHz	_	Table 28-30	—	1	0,1	1	
9 MHz	_	Table 28-31	—	0	0,1	1	
15 MHz	_	—	Table 28-32	1	0	0	
11 MHz	_	_	Table 28-33	1	1	0	
15 MHz	_	_	Table 28-34	0	1	0	
11 MHz		_	Table 28-35	0	0	0	

TABLE 28-28: SPIx MAXIMUM DATA/CLOCK RATE SUMMARY

FIGURE 28-9: SPIX MASTER MODE (HALF-DUPLEX, TRANSMIT ONLY CKE = 0) TIMING CHARACTERISTICS

FIGURE 28-10: SPIX MASTER MODE (HALF-DUPLEX, TRANSMIT ONLY CKE = 1) TIMING CHARACTERISTICS

PIC24HJ32GP302/304, PIC24HJ64GPX02/X04 AND PIC24HJ128GPX02/X04

FIGURE 28-22: ADC CONVERSION (12-BIT MODE) TIMING CHARACTERISTICS

TABLE 29-4: DC CHARACTERISTICS: POWER-DOWN CURRENT (IPD)

DC CHARACT	ERISTICS		Standard C (unless oth Operating t	Standard Operating Conditions: 3.0V to 3.6V(unless otherwise stated)Operating temperature-40°C ≤TA ≤+150°C for High Temperature				
Parameter No.	Typical	Мах	Units	Conditions				
Power-Down (Current (IPD)							
HDC60e	250	2000	μA	+150°C	3.3V	Base Power-Down Current ^(1,3)		
HDC61c	3	5	μΑ	+150°C 3.3V Watchdog Timer Current: ΔΙωστ ^(2,4)				

Note 1: Base IPD is measured with all peripherals and clocks shut down. All I/Os are configured as inputs and pulled to Vss. WDT, etc., are all switched off, and VREGS (RCON<8>) = 1.

2: The ∆ current is the additional current consumed when the module is enabled. This current should be added to the base IPD current.

3: These currents are measured on the device containing the most memory in this family.

4: These parameters are characterized, but are not tested in manufacturing.

TABLE 29-5: DC CHARACTERISTICS: DOZE CURRENT (IDOZE)

DC CHARA	Standard Operating Conditions: 3.0V to 3.6V(unless otherwise stated)Operating temperature-40°C ≤TA ≤+150°C for High Temperature						
Parameter No.	Typical ⁽¹⁾	Мах	Doze Ratio	Units	Conditions		
HDC72a	39	45	1:2	mA			
HDC72f	18	25	1:64	mA	+150°C	3.3V	20 MIPS
HDC72g	18	25	1:128	mA			

Note 1: Parameters with Doze ratios of 1:2 and 1:64 are characterized, but are not tested in manufacturing.

DC CHARACTERISTICS			Standard Operating Cor (unless otherwise state Operating temperature			nditions: 3.0V to 3.6V d) -40°C ≤TA ≤+150°C for High Temperature		
Param.	Symbol	Characteristic	Min.	Тур.	Max.	Units	Conditions	
		Output Low Voltage I/O Pins: 2x Sink Driver Pins - RA2, RA7- RA10, RB10, RB11, RB7, RB4, RC3-RC9	_	_	0.4	V	lo∟ ≤1.8 mA, VDD = 3.3V See Note 1	
DO10	Vol	Output Low Voltage I/O Pins: 4x Sink Driver Pins - RA0, RA1, RB0-RB3, RB5, RB6, RB8, RB9, RB12-RB15, RC0-RC2	_	_	0.4	V	lo∟ ≤3.6 mA, VDD = 3.3V See Note 1	
		Output Low Voltage I/O Pins: 8x Sink Driver Pins - RA3, RA4	—	_	0.4	V	Io∟ ⊴6 mA, VDD = 3.3V See Note 1	
DO20 Voн	Output High Voltage I/O Pins: 2x Source Driver Pins - RA2, RA7-RA10, RB4, RB7, RB10, RB11, RC3-RC9	2.4	_	_	V	IoL ≥ -1.8 mA, VDD = 3.3V See Note 1		
	Vон	Output High Voltage I/O Pins: 4x Source Driver Pins - RA0, RA1, RB0-RB3, RB5, RB6, RB8, RB9, RB12-RB15, RC0-RC2	2.4	_		V	Io∟ ≥ -3 mA, VDD = 3.3V See Note 1	
		Output High Voltage I/O Pins: 8x Source Driver Pins - RA4, RA3	2.4	_	_	V	Io∟ ≥ -6 mA, VDD = 3.3V See Note 1	
		Output High Voltage I/O Pins:	1.5	_	_		ІОН ≥ -1.9 mA, VDD = 3.3V See Note 1	
		2x Source Driver Pins - RA2, RA7-RA10, RB4, RB7, RB10,	2.0	_	_	V	IOH ≥ -1.85 mA, VDD = 3.3V See Note 1	
		RBTI, RC3-RC9	3.0	-	_		ІОН ≥ -1.4 mA, VDD = 3.3V See Note 1	
		Output High Voltage 4x Source Driver Pins - RA0,	1.5	_	_		IOH ≥ -3.9 mA, VDD = 3.3V See Note 1	
DO20A	VoH1	RA1, RB0-RB3, RB5, RB6, RB8, RB9, RB12-RB15, RC0-RC2	2.0	_	_	V	IOH ≥ -3.7 mA, VDD = 3.3V See Note 1	
			3.0	_	_		IOH ≥ -2 mA, VDD = 3.3V See Note 1	
		Output High Voltage I/O Pins:	1.5	_	_		Іон ≥ -7.5 mA, Voo = 3.3V See Note 1	
		8x Source Driver Pins - RA3, RA4	2.0	_	_	V	IOH ≥ -6.8 mA, VDD = 3.3V See Note 1	
			3.0	_	_		IOH ≥ -3 mA, VDD = 3.3V See Note 1	

TABLE 29-6: DC CHARACTERISTICS: I/O PIN OUTPUT SPECIFICATIONS

Note 1: Parameters are characterized, but not tested.

AC CHARACTERISTICS		Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated) Operating temperature -40°C ≤TA ≤+150°C for High Temperature								
Param No.	Symbol	Characteristic	Min	Тур	Max	Units	Conditions			
Clock Parameters										
HAD50	Tad	ADC Clock Period ⁽¹⁾	147			ns	—			
Conversion Rate										
HAD56	FCNV	Throughput Rate ⁽¹⁾			400	Ksps	_			

TABLE 29-17: ADC CONVERSION (12-BIT MODE) TIMING REQUIREMENTS

Note 1: These parameters are characterized but not tested in manufacturing.

TABLE 29-18: ADC CONVERSION (10-BIT MODE) TIMING REQUIREMENTS

AC CHARACTERISTICS		Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated)Operating temperature-40°C ≤TA ≤+150°C for High Temperature							
Param No.	Symbol	Characteristic	Min	Тур	Max	Units	Conditions		
Clock Parameters									
HAD50	TAD	ADC Clock Period ⁽¹⁾	104	—	—	ns	—		
Conversion Rate									
HAD56	FCNV	Throughput Rate ⁽¹⁾	_	_	800	Ksps			

Note 1: These parameters are characterized but not tested in manufacturing.

