

#### Welcome to E-XFL.COM

### What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

### Details

·XF

| Product Status             | Active                                                                         |
|----------------------------|--------------------------------------------------------------------------------|
| Core Processor             | PIC                                                                            |
| Core Size                  | 16-Bit                                                                         |
| Speed                      | 40 MIPs                                                                        |
| Connectivity               | CANbus, I <sup>2</sup> C, IrDA, LINbus, PMP, SPI, UART/USART                   |
| Peripherals                | Brown-out Detect/Reset, DMA, POR, PWM, WDT                                     |
| Number of I/O              | 21                                                                             |
| Program Memory Size        | 128KB (43K x 24)                                                               |
| Program Memory Type        | FLASH                                                                          |
| EEPROM Size                | -                                                                              |
| RAM Size                   | 8K x 8                                                                         |
| Voltage - Supply (Vcc/Vdd) | 3V ~ 3.6V                                                                      |
| Data Converters            | A/D 10x10b/12b                                                                 |
| Oscillator Type            | Internal                                                                       |
| Operating Temperature      | -40°C ~ 85°C (TA)                                                              |
| Mounting Type              | Through Hole                                                                   |
| Package / Case             | 28-DIP (0.300", 7.62mm)                                                        |
| Supplier Device Package    | 28-SPDIP                                                                       |
| Purchase URL               | https://www.e-xfl.com/product-detail/microchip-technology/pic24hj128gp502-i-sp |

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

# PIC24HJ32GP302/304, PIC24HJ64GPX02/X04 AND PIC24HJ128GPX02/X04 PRODUCT FAMILIES

The device names, pin counts, memory sizes and peripheral availability of each device are listed below. The following pages show their pinout diagrams.

# TABLE 1:PIC24HJ32GP302/304, PIC24HJ64GPX02/X04 AND PIC24HJ128GPX02/X04<br/>CONTROLLER FAMILIES

|                 |      |                                 |                            |                 | Re                          | ma            | ppable                         | Per  | iphe | ral    |                                    |      |                    |                      |                                 | JL)                                              |                                               |          |                        |
|-----------------|------|---------------------------------|----------------------------|-----------------|-----------------------------|---------------|--------------------------------|------|------|--------|------------------------------------|------|--------------------|----------------------|---------------------------------|--------------------------------------------------|-----------------------------------------------|----------|------------------------|
| Device          | Pins | Program Flash Memory<br>(Kbyte) | RAM (Kbyte) <sup>(1)</sup> | Remappable Pins | 16-bit Timer <sup>(2)</sup> | Input Capture | Output Compare<br>Standard PWM | NART | IdS  | ECANTM | External Interrupts <sup>(3)</sup> | RTCC | I <sup>2</sup> C ™ | <b>CRC Generator</b> | 10-bit/12-bit ADC<br>(Channels) | Analog Comparator<br>(2 Channels/Voltage Regulat | 8-bit Parallel Master Port<br>(Address Lines) | I/O Pins | Packages               |
| PIC24HJ128GP504 | 44   | 128                             | 8                          | 26              | 5                           | 4             | 4                              | 2    | 2    | 1      | 3                                  | 1    | 1                  | 1                    | 13                              | 1/1                                              | 11                                            | 35       | QFN<br>TQFP            |
| PIC24HJ128GP502 | 28   | 128                             | 8                          | 16              | 5                           | 4             | 4                              | 2    | 2    | 1      | 3                                  | 1    | 1                  | 1                    | 10                              | 1/0                                              | 2                                             | 21       | SPDIP<br>SOIC<br>QFN-S |
| PIC24HJ128GP204 | 44   | 128                             | 8                          | 26              | 5                           | 4             | 4                              | 2    | 2    | 0      | 3                                  | 1    | 1                  | 1                    | 13                              | 1/1                                              | 11                                            | 35       | QFN<br>TQFP            |
| PIC24HJ128GP202 | 28   | 128                             | 8                          | 16              | 5                           | 4             | 4                              | 2    | 2    | 0      | 3                                  | 1    | 1                  | 1                    | 10                              | 1/0                                              | 2                                             | 21       | SPDIP<br>SOIC<br>QFN-S |
| PIC24HJ64GP504  | 44   | 64                              | 8                          | 26              | 5                           | 4             | 4                              | 2    | 2    | 1      | 3                                  | 1    | 1                  | 1                    | 13                              | 1/1                                              | 11                                            | 35       | QFN<br>TQFP            |
| PIC24HJ64GP502  | 28   | 64                              | 8                          | 16              | 5                           | 4             | 4                              | 2    | 2    | 1      | 3                                  | 1    | 1                  | 1                    | 10                              | 1/0                                              | 2                                             | 21       | SPDIP<br>SOIC<br>QFN-S |
| PIC24HJ64GP204  | 44   | 64                              | 8                          | 26              | 5                           | 4             | 4                              | 2    | 2    | 0      | 3                                  | 1    | 1                  | 1                    | 13                              | 1/1                                              | 11                                            | 35       | QFN<br>TQFP            |
| PIC24HJ64GP202  | 28   | 64                              | 8                          | 16              | 5                           | 4             | 4                              | 2    | 2    | 0      | 3                                  | 1    | 1                  | 1                    | 10                              | 1/0                                              | 2                                             | 21       | SPDIP<br>SOIC<br>QFN-S |
| PIC24HJ32GP304  | 44   | 32                              | 4                          | 26              | 5                           | 4             | 4                              | 2    | 2    | 0      | 3                                  | 1    | 1                  | 1                    | 13                              | 1/1                                              | 11                                            | 35       | QFN<br>TQFP            |
| PIC24HJ32GP302  | 28   | 32                              | 4                          | 16              | 5                           | 4             | 4                              | 2    | 2    | 0      | 3                                  | 1    | 1                  | 1                    | 10                              | 1/0                                              | 2                                             | 21       | SPDIP<br>SOIC<br>QFN-S |

Note 1: RAM size is inclusive of 2 Kbytes of DMA RAM for all devices except PIC24HJ32GP302/304, which include 1 Kbyte of DMA RAM.

**2:** Only four out of five timers are remappable.

**3:** Only two out of three interrupts are remappable.

# PIC24HJ32GP302/304, PIC24HJ64GPX02/X04 AND PIC24HJ128GPX02/X04

## Pin Diagrams



# 3.0 CPU

- Note 1: This data sheet summarizes the features of the PIC24HJ32GP302/304, PIC24HJ64GPX02/X04 and PIC24HJ128GPX02/X04 families of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 2. "CPU" (DS70204) of the "dsPIC33F/PIC24H Family Reference Manual", which is available from the Microchip web site (www.microchip.com).
  - Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

# 3.1 Overview

The PIC24HJ32GP302/304, PIC24HJ64GPX02/X04 and PIC24HJ128GPX02/X04 CPU module has a 16-bit (data) modified Harvard architecture with an enhanced instruction set and addressing modes. The CPU has a 24-bit instruction word with a variable length opcode field. The Program Counter (PC) is 23 bits wide and addresses up to 4M x 24 bits of user program memory space. The actual amount of program memory implemented varies by device. A single-cycle instruction prefetch mechanism is used to help maintain throughput and provides predictable execution. All instructions execute in a single cycle, with the exception of instructions that change the program flow, the double word move (MOV.D) instruction and the table instructions. Overhead-free, single-cycle program loop constructs are supported using the REPEAT instruction, which is interruptible at any point.

The PIC24HJ32GP302/304, PIC24HJ64GPX02/X04 and PIC24HJ128GPX02/X04 devices have sixteen, 16-bit working registers in the programmer's model. Each of the working registers can serve as a data, address or address offset register. The 16th working register (W15) operates as a software Stack Pointer (SP) for interrupts and calls.

The PIC24HJ32GP302/304, PIC24HJ64GPX02/X04 and PIC24HJ128GPX02/X04 instruction set includes many addressing modes and is designed for optimum C compiler efficiency. For most instructions, the PIC24HJ32GP302/304, PIC24HJ64GPX02/X04 and PIC24HJ128GPX02/X04 is capable of executing a data (or program data) memory read, a working register (data) read, a data memory write and a program (instruction) memory read per instruction cycle. As a result, three parameter instructions can be supported, allowing A + B = C operations to be executed in a single cycle.

A block diagram of the CPU is shown in Figure 3-1, and the programmer's model for the PIC24HJ32GP302/ 304, PIC24HJ64GPX02/X04 and PIC24HJ128GPX02/ X04 is shown in Figure 3-2.

# 3.2 Data Addressing Overview

The data space can be linearly addressed as 32K words or 64 Kbytes using an Address Generation Unit (AGU). The upper 32 Kbytes of the data space memory map can optionally be mapped into program space at any 16K program word boundary defined by the 8-bit Program Space Visibility Page (PSVPAG) register. The program to data space mapping feature lets any instruction access program space as if it were data space.

The data space also includes 2 Kbytes of DMA RAM, which is primarily used for DMA data transfers, but may be used as general purpose RAM.

# 4.2 Data Address Space

The PIC24HJ32GP302/304, PIC24HJ64GPX02/X04 and PIC24HJ128GPX02/X04 CPU has a separate 16-bit wide data memory space. The data space is accessed using separate Address Generation Units (AGUs) for read and write operations. The data memory maps are shown in Figure 4-3 and Figure 4-4.

All Effective Addresses (EAs) in the data memory space are 16 bits wide and point to bytes within the data space. This arrangement gives a data space address range of 64 Kbytes or 32K words. The lower half of the data memory space (that is, when EA<15> = 0) is used for implemented memory addresses, while the upper half (EA<15> = 1) is reserved for the Program Space Visibility area (see Section 4.6.3 "Reading Data from Program Memory Using Program Space Visibility").

PIC24HJ32GP302/304, PIC24HJ64GPX02/X04 and PIC24HJ128GPX02/X04 devices implement up to 8 Kbytes of data memory. Should an EA point to a location outside of this area, an all-zero word or byte is returned.

# 4.2.1 DATA SPACE WIDTH

The data memory space is organized in byte addressable, 16-bit wide blocks. Data is aligned in data memory and registers as 16-bit words, but all data space EAs resolve to bytes. The Least Significant Bytes (LSBs) of each word have even addresses, while the Most Significant Bytes (MSBs) have odd addresses.

## 4.2.2 DATA MEMORY ORGANIZATION AND ALIGNMENT

To maintain backward compatibility with PIC<sup>®</sup> MCU devices and improve data space memory usage efficiency, the PIC24HJ32GP302/304, PIC24HJ64GPX02/X04 and PIC24HJ128GPX02/X04 instruction set supports both word and byte operations. As a consequence of byte accessibility, all effective address calculations are internally scaled to step through word-aligned memory. For example, the core recognizes that Post-Modified Register Indirect Addressing mode [Ws++] results in a value of Ws + 1 for byte operations and Ws + 2 for word operations.

A data byte read, reads the complete word that contains the byte, using the LSB of any EA to determine which byte to select. The selected byte is placed onto the LSB of the data path. That is, data memory and registers are organized as two parallel byte-wide entities with shared (word) address decode but separate write lines. Data byte writes only write to the corresponding side of the array or register that matches the byte address. All word accesses must be aligned to an even address. Misaligned word data fetches are not supported, so care must be taken when mixing byte and word operations, or translating from 8-bit MCU code. If a misaligned read or write is attempted, an address error trap is generated. If the error occurred on a read, the instruction underway is completed. If the error occurred on a write, the instruction is executed but the write does not occur. In either case, a trap is then executed, allowing the system and/or user application to examine the machine state prior to execution of the address Fault.

All byte loads into any W register are loaded into the Least Significant Byte. The Most Significant Byte is not modified.

A sign-extend instruction (SE) is provided to allow user applications to translate 8-bit signed data to 16-bit signed values. Alternatively, for 16-bit unsigned data, user applications can clear the MSB of any W register by executing a zero-extend (ZE) instruction on the appropriate address.

# 4.2.3 SFR SPACE

The first 2 Kbytes of the Near Data Space, from 0x0000 to 0x07FF, is primarily occupied by Special Function Registers (SFRs). These are used by the PIC24HJ32GP302/304, PIC24HJ64GPX02/X04 and PIC24HJ128GPX02/X04 core and peripheral modules for controlling the operation of the device.

SFRs are distributed among the modules that they control, and are generally grouped together by module. Much of the SFR space contains unused addresses; these are read as '0'.

**Note:** The actual set of peripheral features and interrupts varies by the device. Refer to the corresponding device tables and pinout diagrams for device-specific information.

# 4.2.4 NEAR DATA SPACE

The 8 Kbyte area between 0x0000 and 0x1FFF is referred to as the near data space. Locations in this space are directly addressable via a 13-bit absolute address field within all memory direct instructions. Additionally, the whole data space is addressable using MOV instructions, which support Memory Direct Addressing mode with a 16-bit address field, or by using Indirect Addressing mode using a working register as an address pointer.

| File Name | Addr | Bit 15 | Bit 14 | Bit 13 | Bit 12 | Bit 11 | Bit 10 | Bit 9 | Bit 8 | Bit 7 | Bit 6 | Bit 5 | Bit 4 | Bit 3 | Bit 2  | Bit 1  | Bit 0  | All<br>Resets |
|-----------|------|--------|--------|--------|--------|--------|--------|-------|-------|-------|-------|-------|-------|-------|--------|--------|--------|---------------|
| BSRAM     | 0750 | _      | _      |        | —      | —      | _      | —     | —     | -     | —     | —     | _     |       | IW_BSR | IR_BSR | RL_BSR | 0000          |
| SSRAM     | 0752 | —      | _      | —      | —      | —      | —      | —     | —     | —     | —     | —     | —     | —     | IW_SSR | IR_SSR | RL_SSR | 0000          |

Legend: x = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note 1: This register is not present in devices with 32K Flash (PIC24HJ32GP302/304).

## TABLE 4-33: NVM REGISTER MAP

| File Name | Addr | Bit 15 | Bit 14 | Bit 13 | Bit 12 | Bit 11 | Bit 10 | Bit 9 | Bit 8 | Bit 7 | Bit 6 | Bit 5 | Bit 4 | Bit 3  | Bit 2 | Bit 1  | Bit 0 | All<br>Resets |
|-----------|------|--------|--------|--------|--------|--------|--------|-------|-------|-------|-------|-------|-------|--------|-------|--------|-------|---------------|
| NVMCON    | 0760 | WR     | WREN   | WRERR  | -      | —      | —      | -     | —     | -     | ERASE | -     | -     |        | NVMO  | P<3:0> |       | 0000          |
| NVMKEY    | 0766 | _      | _      | _      | _      | _      | _      | _     | _     |       |       |       | NVMKE | Y<7:0> |       |        |       | 0000          |

Legend: x = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

### TABLE 4-34: PMD REGISTER MAP

|         | -       |        |        |        |        |        |        |        |       |        |       |       |        |        |       |       |       |               |
|---------|---------|--------|--------|--------|--------|--------|--------|--------|-------|--------|-------|-------|--------|--------|-------|-------|-------|---------------|
| File Na | me Addr | Bit 15 | Bit 14 | Bit 13 | Bit 12 | Bit 11 | Bit 10 | Bit 9  | Bit 8 | Bit 7  | Bit 6 | Bit 5 | Bit 4  | Bit 3  | Bit 2 | Bit 1 | Bit 0 | All<br>Resets |
| PMD1    | 0770    | T5MD   | T4MD   | T3MD   | T2MD   | T1MD   |        | _      | —     | I2C1MD | U2MD  | U1MD  | SPI2MD | SPI1MD | —     | C1MD  | AD1MD | 0000          |
| PMD2    | 0772    | IC8MD  | IC7MD  | _      | _      | _      | _      | IC2MD  | IC1MD | _      | _     | _     | _      | OC4MD  | OC3MD | OC2MD | OC1MD | 0000          |
| PMD3    | 0774    | _      | _      | _      | _      | _      | CMPMD  | RTCCMD | PMPMD | CRCMD  |       |       | _      | _      | _     | _     | _     | 0000          |

Legend: x = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

NVMCON: FLASH MEMORY CONTROL REGISTER

# 5.6 Flash Memory Control Registers

**REGISTER 5-1:** 

| R/SO-0 <sup>(1)</sup> | R/W-0 <sup>(1)</sup>  | R/W-0 <sup>(1)</sup>               | U-0             | U-0                  | U-0                  | U-0                  | U-0                  |
|-----------------------|-----------------------|------------------------------------|-----------------|----------------------|----------------------|----------------------|----------------------|
| WR                    | WREN                  | WRERR                              | —               | —                    | —                    |                      | —                    |
| bit 15                |                       |                                    |                 |                      |                      |                      | bit 8                |
|                       |                       |                                    |                 |                      |                      |                      |                      |
| U-0                   | R/W-0 <sup>(1)</sup>  | U-0                                | U-0             | R/W-0 <sup>(1)</sup> | R/W-0 <sup>(1)</sup> | R/W-0 <sup>(1)</sup> | R/W-0 <sup>(1)</sup> |
|                       | ERASE                 | —                                  | —               |                      | NVMOP                | ><3:0>(2)            |                      |
| bit 7                 |                       |                                    |                 |                      |                      |                      | bit 0                |
| Legend:               |                       | SO = Settal                        | ole only bit    |                      |                      |                      |                      |
| R = Readable          | bit                   | W = Writabl                        | e bit           | U = Unimple          | mented bit, read     | l as '0'             |                      |
| -n = Value at P       | POR                   | '1' = Bit is s                     | et              | '0' = Bit is cle     | eared                | x = Bit is unkr      | nown                 |
|                       |                       |                                    |                 |                      |                      |                      |                      |
| bit 15                | WR: Write Cont        | rol bit                            |                 |                      |                      |                      |                      |
|                       | 1 = Initiates a F     | lash memor                         | y program or    | erase operation      | on. The operation    | on is self-timed     | and the bit is       |
|                       | cleared by l          | hardware on                        | ce operation i  | s complete           | 0                    |                      |                      |
| hit 14                | WREN: Write Fi        | nahle hit                          |                 |                      | C                    |                      |                      |
| bit 14                | 1 = Enable Flas       | sh program/e                       | rase operatio   | ns                   |                      |                      |                      |
|                       | 0 = Inhibit Flash     | n program/er                       | ase operation   | IS                   |                      |                      |                      |
| bit 13                | WRERR: Write          | Sequence E                         | ror Flag bit    |                      |                      |                      |                      |
|                       | 1 = An imprope        | r program or                       | erase seque     | nce attempt or       | termination has      | occurred (bit i      | s set                |
|                       | automatical           | lly on any se                      | attempt of th   | e WR bit)            |                      |                      |                      |
| bit 10 7              | 0 = The program       | m or erase o                       | ,               | pleted normally      | y                    |                      |                      |
| bit 6                 |                       | <b>u.</b> Redu ds (<br>Program Ena | )<br>hle hit    |                      |                      |                      |                      |
| Sit 0                 | 1 = Perform the       | erase opera                        | ation specified | by NVMOP<            | 3.0> on the next     | WR command           | 1                    |
|                       | 0 = Perform the       | e program op                       | eration specif  | ied by NVMO          | P<3:0> on the n      | ext WR comma         | and                  |
| bit 5-4               | Unimplemente          | d: Read as '                       | )'              |                      |                      |                      |                      |
| bit 3-0               | NVMOP<3:0>:           | NVM Operati                        | on Select bits  | <sub>3</sub> (2)     |                      |                      |                      |
|                       | If ERASE = 1:         |                                    |                 |                      |                      |                      |                      |
|                       | 1111 = Memory         | v bulk erase o                     | operation       |                      |                      |                      |                      |
|                       | 1101 = Erase G        | eneral Seon                        | nent            |                      |                      |                      |                      |
|                       | 1100 = Erase S        | ecure Segm                         | ent             |                      |                      |                      |                      |
|                       | 1011 = Reserve        | ed                                 |                 |                      |                      |                      |                      |
|                       | 0011 = No oper        | ation<br>v nage erase              | operation       |                      |                      |                      |                      |
|                       | 0001 = No oper        | ation                              | operation       |                      |                      |                      |                      |
|                       | 0000 <b>= Erase a</b> | single Confi                       | guration regis  | ter byte             |                      |                      |                      |
|                       | If ERASE = 0:         |                                    |                 |                      |                      |                      |                      |
|                       | 1111 = No oper        | ation                              |                 |                      |                      |                      |                      |
|                       | 1110 = Reserve        | ed                                 |                 |                      |                      |                      |                      |
|                       | 1101 = No oper        | ation                              |                 |                      |                      |                      |                      |
|                       | 1011 = Reserve        | ed                                 |                 |                      |                      |                      |                      |
|                       | 0011 = Memory         | word progra                        | m operation     |                      |                      |                      |                      |
|                       | 0010 = No oper        | ation                              |                 |                      |                      |                      |                      |
|                       | 0001 = Memory         | row program                        | n operation     | aister hvte          |                      |                      |                      |
|                       |                       |                                    | mguration ie    | gister byte          |                      |                      |                      |
| Note 1: The           | ese bits can only b   | be reset on a                      | POR.            |                      |                      |                      |                      |

2: All other combinations of NVMOP<3:0> are unimplemented.

# REGISTER 7-8: IFS3: INTERRUPT FLAG STATUS REGISTER 3

| U-0             | R/W-0                                                         | R/W-0            | U-0            | U-0              | U-0              | U-0             | U-0   |  |
|-----------------|---------------------------------------------------------------|------------------|----------------|------------------|------------------|-----------------|-------|--|
|                 | RTCIF                                                         | DMA5IF           | _              | _                | —                | —               | _     |  |
| bit 15          |                                                               |                  |                |                  |                  |                 | bit 8 |  |
|                 |                                                               |                  |                |                  |                  |                 |       |  |
| U-0             | U-0                                                           | U-0              | U-0            | U-0              | U-0              | U-0             | U-0   |  |
| —               | —                                                             | —                | —              | —                | —                | —               | —     |  |
| bit 7           |                                                               |                  |                |                  |                  |                 | bit 0 |  |
|                 |                                                               |                  |                |                  |                  |                 |       |  |
| Legend:         |                                                               |                  |                |                  |                  |                 |       |  |
| R = Readable    | bit                                                           | W = Writable     | bit            | U = Unimpler     | mented bit, read | as '0'          |       |  |
| -n = Value at F | POR                                                           | '1' = Bit is set |                | '0' = Bit is cle | ared             | x = Bit is unkr | iown  |  |
|                 |                                                               |                  |                |                  |                  |                 |       |  |
| bit 15          | Unimplemen                                                    | ted: Read as '   | O'             |                  |                  |                 |       |  |
| bit 14          | RTCIF: Real-Time Clock and Calendar Interrupt Flag Status bit |                  |                |                  |                  |                 |       |  |
|                 | 1 = Interrupt r                                               | equest has occ   | curred         |                  |                  |                 |       |  |
|                 | 0 = Interrupt r                                               | equest has not   | t occurred     |                  |                  |                 |       |  |
| bit 13          | DMA5IF: DM                                                    | A Channel 5 Da   | ata Transfer C | omplete Interr   | upt Flag Status  | bit             |       |  |

- 1 = Interrupt request has occurred
  - 0 = Interrupt request has not occurred
- bit 12-0 Unimplemented: Read as '0'

| U-0          | R/W-1                        | R/W-0                                         | R/W-0          | U-0             | R/W-1                       | R/W-0           | R/W-0 |
|--------------|------------------------------|-----------------------------------------------|----------------|-----------------|-----------------------------|-----------------|-------|
| _            |                              | C1IP<2:0> <sup>(1)</sup>                      |                |                 |                             | C1RXIP<2:0>(1)  |       |
| oit 15       |                              |                                               |                |                 |                             |                 | bit   |
|              |                              |                                               |                |                 |                             |                 |       |
| U-0          | R/W-1                        | R/W-0                                         | R/W-0          | U-0             | R/W-1                       | R/W-0           | R/W-0 |
| —            |                              | SPI2IP<2:0>                                   |                | —               |                             | SPI2EIP<2:0>    |       |
| oit 7        |                              |                                               |                |                 |                             |                 | bit   |
| Legend:      |                              |                                               |                |                 |                             |                 |       |
| R = Readab   | le bit                       | W = Writable b                                | bit            | U = Unimple     | emented bit, re             | ad as '0'       |       |
| -n = Value a | t POR                        | '1' = Bit is set                              |                | '0' = Bit is cl | eared                       | x = Bit is unkr | iown  |
|              |                              |                                               |                |                 |                             |                 |       |
| oit 15       | Unimpleme                    | nted: Read as '0                              | ,              | (1)             |                             |                 |       |
| oit 14-12    | C1IP<2:0>:                   | ECAN1 Event In                                | terrupt Prior  | ity bits(")     |                             |                 |       |
|              | 111 = Interr                 | upt is priority 7 (n                          | lignest priori | ty interrupt)   |                             |                 |       |
|              | •                            |                                               |                |                 |                             |                 |       |
|              | •                            |                                               |                |                 |                             |                 |       |
|              | 001 = Interr<br>000 = Interr | upt is priority 1<br>upt source is disa       | abled          |                 |                             |                 |       |
| bit 11       | Unimpleme                    | nted: Read as '0                              | ,              |                 |                             |                 |       |
| bit 10-8     | C1RXIP<2:0                   | >: ECAN1 Rece                                 | ive Data Re    | ady Interrupt P | riority bits <sup>(1)</sup> |                 |       |
|              | 111 = Interr                 | upt is priority 7 (h                          | ighest priori  | ty interrupt)   |                             |                 |       |
|              | •                            |                                               |                |                 |                             |                 |       |
|              | •                            |                                               |                |                 |                             |                 |       |
|              | 001 = Interr                 | upt is priority 1                             |                |                 |                             |                 |       |
|              | 000 <b>= Interr</b>          | upt source is disa                            | abled          |                 |                             |                 |       |
| bit 7        | Unimpleme                    | nted: Read as '0                              | ,              |                 |                             |                 |       |
| bit 6-4      | SPI2IP<2:0                   | SPI2 Event Interpreter SPI2 Event Interpreter | errupt Priori  | ty bits         |                             |                 |       |
|              | 111 = Interr                 | upt is priority 7 (h                          | ighest priori  | ty interrupt)   |                             |                 |       |
|              | •                            |                                               |                |                 |                             |                 |       |
|              | •                            |                                               |                |                 |                             |                 |       |
|              | 001 = Interr                 | upt is priority 1                             |                |                 |                             |                 |       |
|              | 000 <b>= Interr</b>          | upt source is disa                            | abled          |                 |                             |                 |       |
| pit 3        | Unimpleme                    | nted: Read as '0                              | ,              |                 |                             |                 |       |
| oit 2-0      | SPI2EIP<2:                   | 0>: SPI2 Error In                             | terrupt Prior  | ity bits        |                             |                 |       |
|              | 111 = Interr                 | upt is priority 7 (h                          | lighest priori | ty interrupt)   |                             |                 |       |
|              | •                            |                                               |                |                 |                             |                 |       |
|              | •                            |                                               |                |                 |                             |                 |       |
|              | 001 = Interr                 | upt is priority 1                             |                |                 |                             |                 |       |

# 000 = Interrupt source is disabled

Note 1: Interrupts disabled on devices without ECAN<sup>™</sup> modules.

#### 11.0 **I/O PORTS**

- Note 1: This data sheet summarizes the features of the PIC24HJ32GP302/304. PIC24HJ64GPX02/X04 and PIC24HJ128GPX02/X04 of families devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet. refer to Section 10. "I/O Ports" (DS70193) of the "dsPIC33F/PIC24H Family Reference Manual", which is available from the Microchip web site (www.microchip.com).
  - 2: Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

All of the device pins (except VDD, VSS, MCLR and OSC1/CLKI) are shared among the peripherals and the parallel I/O ports. All I/O input ports feature Schmitt Trigger inputs for improved noise immunity.

#### 11.1 Parallel I/O (PIO) Ports

Generally a parallel I/O port that shares a pin with a peripheral is subservient to the peripheral. The peripheral's output buffer data and control signals are provided to a pair of multiplexers. The multiplexers select whether the peripheral or the associated port has ownership of the output data and control signals of the I/O pin. The logic also prevents "loop through", in which a port's digital output can drive the input of a peripheral that shares the same pin. Figure 11-1 shows how ports are shared with other peripherals and the associated I/O pin to which they are connected.

When a peripheral is enabled and the peripheral is actively driving an associated pin, the use of the pin as a general purpose output pin is disabled. The I/O pin can be read, but the output driver for the parallel port bit is disabled. If a peripheral is enabled, but the peripheral is not actively driving a pin, that pin can be driven by a port.

All port pins have three registers directly associated with their operation as digital I/O. The data direction register (TRISx) determines whether the pin is an input or an output. If the data direction bit is a '1', then the pin is an input. All port pins are defined as inputs after a Reset. Reads from the latch (LATx) read the latch. Writes to the latch write the latch. Reads from the port (PORTx) read the port pins, while writes to the port pins write the latch.

Any bit and its associated data and control registers that are not valid for a particular device is disabled. This means the corresponding LATx and TRISx registers and the port pin are read as zeros.

When a pin is shared with another peripheral or function that is defined as an input only, it is nevertheless regarded as a dedicated port because there is no other competing source of outputs.



#### FIGURE 11-1: **BLOCK DIAGRAM OF A TYPICAL SHARED PORT STRUCTURE**

# 16.0 SERIAL PERIPHERAL INTERFACE (SPI)

- Note 1: This data sheet summarizes the features PIC24HJ32GP302/304, of the PIC24HJ64GPX02/X04 and PIC24HJ128GPX02/X04 families of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 18. "Serial Peripheral Interface (SPI)" (DS70206) of the "dsPIC33F/PIC24H Family Reference Manual", which is available from the Microchip web site (www.microchip.com).
  - 2: Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

The Serial Peripheral Interface (SPI) module is a synchronous serial interface useful for communicating with other peripheral or microcontroller devices. These peripheral devices can be serial EEPROMs, shift registers, display drivers, analog-to-digital converters, etc. The SPI module is compatible with Motorola<sup>®</sup> SPI and SIOP.

Each SPI module consists of a 16-bit shift register, SPIxSR (where x = 1 or 2), used for shifting data in and out, and a buffer register, SPIxBUF. A control register, SPIxCON, configures the module. Additionally, a status register, SPIxSTAT, indicates status conditions.

The serial interface consists of 4 pins:

- · SDIx (serial data input)
- SDOx (serial data output)
- <u>SCKx</u> (shift clock input or output)
- SSx (active-low slave select)

In Master mode operation, SCK is a clock output. In Slave mode, it is a clock input.



## FIGURE 16-1: SPI MODULE BLOCK DIAGRAM

| REGISTER 18-2: UXSTA: UARTX STATUS AND CONTROL REGIST |
|-------------------------------------------------------|
|-------------------------------------------------------|

| RW-0       RW-0       RW-0       RW-0       RW-0       RW-0       R-0       R-1         UTXISEL1       UTXINV       UTXISEL0       -       UTXBRK       UTXBRK       UTXBF       TRMT         bit 15       bit 5       bit 8       bit 8       bit 8       bit 8         RW-0       RW-0       R-1       R-0       R-0       R/C-0       R-0         URXISEL<1:0>       ADDEN       RIDLE       PERR       FERR       OERR       URXDA         bit 7       bit 0       Unimplemented bit, read as 0'                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                     |                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                      |                                                                                                                          |                                                                                                |                                                                    |                                                           |                                                  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|--------------------------------------------------------------------|-----------------------------------------------------------|--------------------------------------------------|
| UTXISEL1       UTXINV       UTXISEL0       —       UTXBRK       UTXEN <sup>(1)</sup> UTXBF       TRMT         bit 15       bit 8       bit 8       bit 8         RW-0       RW-0       R-1       R-0       R-0       R/C-0       R-0         URXISEL<(1:0>       ADDEN       RIDLE       PERR       FERR       OERR       URXDA         bit 7       bit 0       bit 0       bit 0       bit 0       bit 0         Lagand:       HC = Hardware cleared       C = Clear only bit       read as '0', n = Value at POR       '1' = Bit is set       '0' = Bit is cleared       x = Bit is unknown         bit 15,13       UTXISEL       OTXISEL       o the transmit shift Register, and as a result, the transmit biffer becomes empty       1 = Interrupt when a character is transferred to the Transmit Shift Register, and as a result, the transmit buffer becomes empty       1 = Interrupt when a character is transferred to the Transmit Shift Register (this implies there is at least one character open in the transmit buffer)       bit 14       UTXINV: Transmit Polarity Inversion bit         ff IREN = 0;       1 = UTXINV Ide state is '0'       0 = UXTX Ide state is '1'       0 = Transmit Buffer Full Status bit (read-only)       1 = Transmit meabled. UXTX                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | R/W-0               | R/W-0                                                                                                                                                                                                                                                              | R/W-0                                                                                                                                                                                                                                                | U-0                                                                                                                      | R/W-0 HC                                                                                       | R/W-0                                                              | R-0                                                       | R-1                                              |
| bit 15 bit 8           bit 15         bit 8           RW-0         RW-0         R-1         R-0         R/C-0         R-0           URXISEL<1.0>         ADDEN         RIDLE         PERR         FERR         OERR         URXDA           bit 7         bit 0         bit 0         bit 0         bit 0           Logend:         HC = Hardware cleared         C = Clear only bit         R = Readable bit         W = Writable bit         U = Unimplemented bit, read as '0'           -n = Value at POR         '1' = Bit is set         '0' = Bit is cleared         x = Bit is unknown           bit 15,13         UTXISEL<1:0>: Transmission Interrupt Mode Selection bits         11 = Reserved; do not use         10 = Interrupt when a character is transferred to the Transmit Shift Register, and as a result, the transmit buffer becomes enpity         01 = Interrupt when a character is shifted out of the Transmit Shift Register, all transmit operations are completed bit on entracter open in the transmit buffer becames enpity         01 = Interrupt when a character is transferred to the Transmit Shift Register (this implies there is at least one character open in the transmit buffer becames enpity         01 = IntraNet encoded UXTX Kide state is '1'           0 = URTX Vide state is '1'         1 = UTXIN VIC state state is '1'         0 = UXTX Kide state is '1'           1 = UTXA® encoded UXTX Kide state is '1'         0 = UXTX Kide state is '1'         0 = UXTX Kide state is '1'           1 =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | UTXISEL1            | UTXINV                                                                                                                                                                                                                                                             | UTXISEL0                                                                                                                                                                                                                                             | —                                                                                                                        | UTXBRK                                                                                         | UTXEN <sup>(1)</sup>                                               | UTXBF                                                     | TRMT                                             |
| RW-0       R/W-0       R-1       R-0       R-0       R/C-0       R-0         URXISEL<1:0>       ADDEN       RIDLE       PERR       FERR       OERR       URXDA         bit 7       bit 0       bit 0       bit 0       bit 0       bit 0         Legend:       HC = Hardware cleared       C = Clear only bit       R       Readable bit       W = Writable bit       U = Unimplemented bit, read as '0'         -n = Value at POR       '1' = Bit is set       '0' = Bit is cleared       x = Bit is unknown         bit 15.13       UTXISEL<1:0>: Transmission Interrupt Mode Selection bits       11 = Reserved; do not use       10 = Interrupt when a character is transferred to the Transmit Shift Register, and as a result, the transmit buffer becomes empty         01 = Interrupt when a character is transferred to the Transmit Shift Register (this implies there is at least one character open in the transmit buffer)       00 = Interrupt when a character is transferred to the Transmit Shift Register (this implies there is at least one character open in the transmit buffer)         bit 14       UTXINV: Transmit Polarity Inversion bit       If IREN = 0;       1       I = IrDA® encoded UXTX Idle state is '1'       0 = UXTX Idle state is '0'       1       I = UTA® encoded UXTX Idle state is '1'       0 = IrDA® encoded UXTX Idle state is '0'       1       State at transmission disabled or completion         0       Sync Break transmission disable                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | bit 15              |                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                      |                                                                                                                          |                                                                                                |                                                                    |                                                           | bit 8                                            |
| RW-0       RW-0       R-1       R-0       R-0       R/C-0       R-0         URXISEL<1:0>       ADDEN       RIDLE       PERR       FERR       OERR       URXDA         bit7       bit0       bit0       bit0       bit0       bit0         Legend:       HC = Hardware cleared       C = Clear only bit       R       Readable bit       W = Writable bit       U = Unimplemented bit, read as '0'                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     |                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                      |                                                                                                                          |                                                                                                |                                                                    |                                                           |                                                  |
| URXISEL<1:0>         ADDEN         RIDLE         PERR         FERR         OERR         URXDA<br>bit 0           Legend:         HC = Hardware cleared         C = Clear only bit         Bit 0           Legend:         HC = Hardware cleared         C = Clear only bit         R = Readable bit         W = Writable bit         U = Unimplemented bit, read as '0'<br>-n = Value at POR         '1' = Bit is set         '0' = Bit is cleared         x = Bit is unknown           bit 15,13         UTXISEL<1:0>: Transmission Interrupt Mode Selection bits         11 = Reserved; do not use         10 = Interrupt when a character is shifted out of the Transmit Shift Register, and as a result, the<br>transmit buffer becomes empty         01 = Interrupt when the clast character is shifted out of the Transmit Shift Register; all transmit<br>operations are completed         00 = Interrupt when the acharacter is shifted out of the Transmit Shift Register; all transmit<br>operations are completed         00 = Interrupt when the acharacter open in the transmit buffer)           bit 14         UTXINV: Transmit Polarity Inversion bit<br>If IREN = 0;<br>1 = UxTX Idle state is '0'         0 = UxTX Idle state is '1'         1 = InD <sup>2</sup><br>0 = UxTX Idle state is '0'           bit 12         Unimplemented: Read as '0'         1 = Transmit Buffer Polarity Inversion disabled or completed           bit 11         UTXBRK: Transmit Brakek bit         1 = Send Syne Break on next transmission – Start bit, followed by twelve '0' bits, followed by Stop bit;<br>cleared by hardware upon completein           0 = Sy                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | R/W-0               | R/W-0                                                                                                                                                                                                                                                              | R/W-0                                                                                                                                                                                                                                                | R-1                                                                                                                      | R-0                                                                                            | R-0                                                                | R/C-0                                                     | R-0                                              |
| bit 7 bit 0 bit 7 bit 7 bit 0 bit 7 bit 7 bit 0 bit 1 bit 7 bit 0 bit 1 bit 2 bit 4                                                                                                    | URXISI              | EL<1:0>                                                                                                                                                                                                                                                            | ADDEN                                                                                                                                                                                                                                                | RIDLE                                                                                                                    | PERR                                                                                           | FERR                                                               | OERR                                                      | URXDA                                            |
| Legend:       HC = Hardware cleared       C = Clear only bit         R = Readable bit       W = Writable bit       U = Unimplemented bit, read as '0'         -n = Value at POR       '1' = Bit is set       '0' = Bit is cleared       x = Bit is unknown         bit 15,13       UTXISEL<1:0>: Transmission Interrupt Mode Selection bits         11 = Reserved; do not use       10 = Interrupt when a character is transferred to the Transmit Shift Register, and as a result, the transmit buffer becomes empty         01 = Interrupt when a character is shifted out of the Transmit Shift Register (this implies there is at least one character open in the transmit buffer)         012 = Interrupt when a character is shifted out of the Transmit Shift Register (this implies there is at least one character open in the transmit buffer)         bit 14       UTXINV: Transmit Polarity Inversion bit         If IREN = 0;       I = UNTX Idle state is '1'         0 = InDA® encoded UXTX Idle state is '1'       0 = InDA® encoded UXTX Idle state is '0'         bit 11       UTXBRK: Transmit Break bit       1 = Send Sync Break on next transmission – Start bit, followed by twelve '0' bits, followed by Stop bit; cleared by hardware upon completion         0 = Sync Break transmitsoind disabled or completed       1 = Transmit tablebit.01*         1 = Transmit enable bit1*       1 = Transmit disabled, any pending transmission is aborted and buffer is reset. UXTX pin controlled by yopt         bit 10       UTXEF: Transmit Buffer Full Statu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | bit 7               |                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                      |                                                                                                                          |                                                                                                |                                                                    |                                                           | bit 0                                            |
| Legend:       HC = Hardware Cleared       C = Clear only bit         R = Readable bit       W = Writable bit       U = Unimplemented bit, read as '0'         -n = Value at POR       '1' = Bit is set       '0' = Bit is cleared       x = Bit is unknown         bit 15,13       UTXISEL<1:0: Transmission Interrupt Mode Selection bits                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -                   |                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                      |                                                                                                                          |                                                                                                |                                                                    |                                                           | ]                                                |
| R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'<br>-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown<br>bit 15,13 UTXISEL<1:0>: Transmission Interrupt Mode Selection bits<br>11 = Reserved; do not use<br>10 = Interrupt when a character is transferred to the Transmit Shift Register, and as a result, the<br>transmit buffer becomes empty<br>01 = Interrupt when the last character is shifted out of the Transmit Shift Register, all transmit<br>operations are completed<br>00 = Interrupt when a character is transferred to the Transmit Shift Register (this implies there is<br>at least one character open in the transmit buffer)<br>bit 14 UTXINV: Transmit Polarity Inversion bit<br>If IREN = 0:<br>1 = UxTX Idle state is '0'<br>0 = UxTX Idle state is '0'<br>1 = UxTX Idle state is '1'<br>1 = InDA <sup>®</sup> encoded UxTX Idle state is '1'<br>0 = InDA <sup>®</sup> encoded UxTX Idle state is '0'<br>bit 12 Unimplemented: Read as '0'<br>bit 11 UTXBRK: Transmit Break bit<br>1 = Send Sync Break on next transmission – Start bit, followed by twelve '0' bits, followed by Stop bit;<br>cleared by hardware upon completed<br>bit 10 UTXER: Transmit Enable bit <sup>(1)</sup><br>1 = Transmit dnabled, UXTX pin controlled by UARTX<br>0 = Transmit dnabled, UXTX pin controlled by UARTX<br>0 = Transmit dusfled, any pending transmission is aborted and buffer is reset. UxTX pin controlled<br>by port<br>bit 8 TRMT: Transmit Shift Register Empty bit (read-only)<br>1 = Transmit Shift Register is not full, at least one more character can be written<br>bit 8 TRMT: Transmit Shift Register Empty bit (read-only)<br>1 = Transmit Shift Register is not full, at least one more character can be written<br>bit 8 TRMT: Transmit Shift Register is not full, at least one more character can be written<br>bit 7-6 URXISEL<1:0>: Receive Interrupt Mode Selection bits<br>11 = Interrupt is set on UXRSR transfer making the receive buffer full (i.e., has 4 data characters)<br>10 = Interrupt is set on UXRSR transfer making the receive buffer full (i.e., has 4 data characters)<br>10 = Interrupt is set when any character is rec | Legend:             |                                                                                                                                                                                                                                                                    | HC = Hardwar                                                                                                                                                                                                                                         | e cleared                                                                                                                | C = Clear onl                                                                                  | y bit                                                              |                                                           |                                                  |
| <ul> <li>-n = Value at POR 1'1' = Bit is set 0' = Bit is cleared x = Bit is unknown</li> <li>bit 15,13 UTXISEL&lt;1:0&gt;: Transmission Interrupt Mode Selection bits</li> <li>11 = Reserved; do not use</li> <li>10 = Interrupt when a character is transferred to the Transmit Shift Register, and as a result, the transmit buffer becomes empty</li> <li>01 = Interrupt when the last character is shifted out of the Transmit Shift Register; all transmit operations are completed</li> <li>00 = Interrupt when a character is transferred to the Transmit Shift Register; all transmit operations are completed</li> <li>00 = Interrupt when a character is transferred to the Transmit Shift Register (this implies there is at least one character open in the transmit buffer)</li> <li>bit 14 UTXINV: Transmit Polarity Inversion bit</li> <li>firence = 0;</li> <li>1 = UxTX Idle state is '0'</li> <li>0 = UXTX Idle state is '1'</li> <li>0 = IrDA® encoded UXTX Idle state is '1'</li> <li>0 = IrDA® encoded UXTX Idle state is '1'</li> <li>0 = IrDA® encoded UXTX Idle state is '0'</li> <li>bit 11 UTXBRK: Transmit Break bit</li> <li>1 = Send Sync Break on next transmission - Start bit, followed by twelve '0' bits, followed by Stop bit; cleared by hardware upon completion</li> <li>0 = Sync Break transmission disabled or completed</li> <li>bit 10 UTXEN: Transmit Enableb bit<sup>(1)</sup></li> <li>1 = Transmit disabled, any pending transmission is aborted and buffer is reset. UxTX pin controlled by port</li> <li>1 = Transmit buffer is not full, at least one more character can be written</li> <li>bit 8 TRMT: Transmit Shift Register Empty bit (read-only)</li> <li>1 = Transmit Shift Register is empty and transmission is in progress or queued</li> <li>bit 7-6 URXISEL&lt;1:0&gt;: Receive Interrupt Mode Selection bits</li> <li>1 = Interrupt is set on UXRSR transfer making the receive buffer full (i.e., has 4 data characters)</li> <li>10 = Interrupt is set when any character is received and transfered full (i.e., has 3 data characters)</li> <li>10 = Interupt is set when any char</li></ul>                                                                    | R = Readable        | bit                                                                                                                                                                                                                                                                | W = Writable b                                                                                                                                                                                                                                       | bit                                                                                                                      | U = Unimpler                                                                                   | nented bit, read                                                   | as '0'                                                    |                                                  |
| bit 15,13 UTXISEL<1:0>: Transmission Interrupt Mode Selection bits<br>1 = Reserved; do not use<br>10 = Interrupt when a character is transferred to the Transmit Shift Register, and as a result, the<br>transmit buffer becomes empty<br>0 = Interrupt when a character is transferred to the Transmit Shift Register; all transmit<br>operations are completed<br>00 = Interrupt when a character is transferred to the Transmit Shift Register (this implies there is<br>at least one character open in the transmit buffer)<br>bit 14 UTXINV: Transmit Polarity Inversion bit<br>17 I = UxTX Idle state is '0'<br>0 = UxTX Idle state is '0'<br>0 = UxTX Idle state is '1'<br>1 = InDA® encoded UxTX Idle state is '1'<br>0 = InDA® encoded UxTX Idle state is '1'<br>1 = InDA® encoded UxTX Idle state is '0'<br>bit 12 Unimplemented: Read as '0'<br>bit 11 UTXBRK: Transmit Break bit<br>1 = Send Sync Break on next transmission – Start bit, followed by twelve '0' bits, followed by Stop bit;<br>cleared by hardware upon completion<br>0 = Sync Break transmission disabled or completed<br>bit 10 UTXEN: Transmit Enable bit <sup>(1)</sup><br>1 = Transmit enabled, uXTX pin controlled by UARTx<br>0 = Transmit Buffer Full Status bit (read-only)<br>1 = Transmit Buffer Full Status bit (read-only)<br>1 = Transmit buffer is full<br>0 = Transmit Shift Register Empty bit (read-only)<br>1 = Transmit Shift Register is most und transmission is aported and buffer is reset. UXTX pin controlled<br>by port<br>bit 8 TRMT: Transmit Shift Register is empty and transmitsoin is in progress or queued<br>bit 7-6 URXISEL<1:0>: Receive Interrupt Mode Selection bits<br>1 = Interrupt is set on UXRSR transfer making the receive buffer full (i.e., has 4 data characters)<br>10 = Interrupt is set on UXRSR transfer making the receive buffer full (i.e., has 3 data characters)<br>0 × Interrupt is set on UXRSR transfer making the receive buffer full (i.e., has 3 data characters)<br>10 = Interrupt is set on UXRSR transfer making the receive buffer full (i.e., has 3 data characters)<br>10 = Interrupt is set on UXRSR transfer making the receive buffer full (i.e., has                      | -n = Value at F     | POR                                                                                                                                                                                                                                                                | '1' = Bit is set                                                                                                                                                                                                                                     |                                                                                                                          | '0' = Bit is cle                                                                               | ared                                                               | x = Bit is unkr                                           | nown                                             |
| bit 12       Unimplemented: Read as '0'         bit 11       UTXBRK: Transmit Break bit         1 = Send Sync Break on next transmission – Start bit, followed by twelve '0' bits, followed by Stop bit; cleared by hardware upon completion         0 = Sync Break transmission disabled or completed         bit 10       UTXEN: Transmit Enable bit <sup>(1)</sup> 1 = Transmit enabled, UxTX pin controlled by UARTx         0 = Transmit disabled, any pending transmission is aborted and buffer is reset. UxTX pin controlled by port         bit 9       UTXBF: Transmit Buffer Full Status bit (read-only)         1 = Transmit buffer is full       0 = Transmit buffer is full         0 = Transmit buffer is not full, at least one more character can be written         bit 8       TRMT: Transmit Shift Register Empty bit (read-only)         1 = Transmit Shift Register is empty and transmit buffer is empty (the last transmission has completed)         0 = Transmit Shift Register is not empty, a transmission is in progress or queued         bit 7-6       URXISEL<1:0>: Receive Interrupt Mode Selection bits         11 = Interrupt is set on UxRSR transfer making the receive buffer full (i.e., has 4 data characters)         10 = Interrupt is set on UxRSR transfer making the receive buffer full (i.e., has 3 data characters)         10 = Interrupt is set when any character is received and transferred from the UxRSR to the receive buffer. Receive buffer has one or more characters                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | bit 15,13<br>bit 14 | UTXISEL<1:0<br>11 = Reserve<br>10 = Interrupt<br>operatio<br>00 = Interrupt<br>operatio<br>00 = Interrupt<br>at least of<br>UTXINV: Tran<br>If IREN = 0:<br>1 = UxTX Idlo<br>0 = UxTX Idlo<br>If IREN = 1:<br>1 = IrDA <sup>®</sup> en<br>0 = IrDA <sup>®</sup> en | D>: Transmissioned; do not use<br>t when a charact<br>buffer becomes<br>t when the last of<br>ins are completed<br>t when a charact<br>one character of<br>namit Polarity In<br>e state is '0'<br>e state is '1'<br>coded UxTX Idi<br>coded UxTX Idi | In Interrupt M<br>eter is transfe<br>s empty<br>character is s<br>ed<br>eter is transfe<br>pen in the tra<br>version bit | ode Selection I<br>rred to the Trar<br>hifted out of the<br>rred to the Trar<br>insmit buffer) | bits<br>nsmit Shift Regia<br>e Transmit Shift<br>nsmit Shift Regia | ster, and as a r<br>Register; all tr<br>ster (this implie | result, the<br>ansmit<br>as there is             |
| bit 11       UTXBRK: Transmit Break bit         1 = Send Sync Break on next transmission – Start bit, followed by twelve '0' bits, followed by Stop bit; cleared by hardware upon completion         0 = Sync Break transmission disabled or completed         bit 10       UTXEN: Transmit Enable bit <sup>(1)</sup> 1 = Transmit enabled, UxTX pin controlled by UARTx         0 = Transmit disabled, any pending transmission is aborted and buffer is reset. UxTX pin controlled by port         bit 9       UTXBF: Transmit Buffer Full Status bit (read-only)         1 = Transmit buffer is full       0 = Transmit buffer is not full, at least one more character can be written         bit 8       TRMT: Transmit Shift Register Empty bit (read-only)         1 = Transmit Shift Register is empty and transmit buffer is empty (the last transmission has completed)         0 = Transmit Shift Register is not empty, a transmission is in progress or queued         bit 7-6       URXISEL<10>: Receive Interrupt Mode Selection bits         11 = Interrupt is set on UxRSR transfer making the receive buffer full (i.e., has 4 data characters)         10 = Interrupt is set on UxRSR transfer making the receive buffer 3/4 full (i.e., has 3 data characters)         0x = Interrupt is set when any character is received and transferred from the UxRSR to the receive buffer. Receive buffer As one or more characters                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | bit 12              | Unimplemen                                                                                                                                                                                                                                                         | ted: Read as '0                                                                                                                                                                                                                                      | )'                                                                                                                       |                                                                                                |                                                                    |                                                           |                                                  |
| <ul> <li>1 = Send Sync Break on next transmission – Start bit, followed by twelve '0' bits, followed by Stop bit; cleared by hardware upon completion         <ul> <li>0 = Sync Break transmission disabled or completed</li> </ul> </li> <li>bit 10         <ul> <li>UTXEN: Transmit Enable bit<sup>(1)</sup></li> <li>1 = Transmit enabled, UXTX pin controlled by UARTx</li> <li>0 = Transmit disabled, any pending transmission is aborted and buffer is reset. UxTX pin controlled by port</li> </ul> </li> <li>bit 9         <ul> <li>UTXBF: Transmit Buffer Full Status bit (read-only)</li> <li>1 = Transmit buffer is full</li> <li>0 = Transmit buffer is not full, at least one more character can be written</li> </ul> </li> <li>bit 8         <ul> <li>TRMT: Transmit Shift Register Empty bit (read-only)</li> <li>1 = Transmit Shift Register is not empty, a transmission is in progress or queued</li> </ul> </li> <li>bit 7-6         <ul> <li>URXISEL&lt;1:0&gt;: Receive Interrupt Mode Selection bits</li> <li>11 = Interrupt is set on UXRSR transfer making the receive buffer full (i.e., has 4 data characters)</li> <li>10 = Interrupt is set on UXRSR transfer making the receive buffer 3/4 full (i.e., has 3 data characters)</li> <li>0x = Interrupt is set when any character is received and transferred from the UXRSR to the receive buffer. Receive buffer has one or more characters</li> </ul> </li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | bit 11              | UTXBRK: Tra                                                                                                                                                                                                                                                        | ansmit Break bi                                                                                                                                                                                                                                      | t                                                                                                                        |                                                                                                |                                                                    |                                                           |                                                  |
| bit 9 UTXBF: Transmit Buffer Full Status bit (read-only)<br>1 = Transmit buffer is full<br>0 = Transmit buffer is not full, at least one more character can be written<br>bit 8 TRMT: Transmit Shift Register Empty bit (read-only)<br>1 = Transmit Shift Register is empty and transmit buffer is empty (the last transmission has completed)<br>0 = Transmit Shift Register is not empty, a transmission is in progress or queued<br>bit 7-6 URXISEL<1:0>: Receive Interrupt Mode Selection bits<br>11 = Interrupt is set on UxRSR transfer making the receive buffer full (i.e., has 4 data characters)<br>10 = Interrupt is set on UxRSR transfer making the receive buffer 3/4 full (i.e., has 3 data characters)<br>0x = Interrupt is set when any character is received and transferred from the UxRSR to the receive<br>buffer. Receive buffer has one or more characters                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | bit 10              | <ol> <li>Send Synches</li> <li>Sync Bree</li> <li>Sync Bree</li> <li>UTXEN: Transit</li> <li>Transmit</li> <li>Transmit</li> </ol>                                                                                                                                 | nc Break on nex<br>by hardware upo<br>eak transmissior<br>smit Enable bit<br>enabled, UxTX<br>disabled, any p                                                                                                                                        | tt transmissio<br>on completior<br>disabled or<br>(1)<br>pin controlle<br>bending trans                                  | n – Start bit, fol<br>completed<br>d by UARTx<br>mission is abo                                | llowed by twelve                                                   | ; '0' bits, follow                                        | ed by Stop bit;<br>pin controlled                |
| <ul> <li>1 = Transmit buffer is full</li> <li>0 = Transmit buffer is not full, at least one more character can be written</li> <li>bit 8</li> <li>TRMT: Transmit Shift Register Empty bit (read-only)</li> <li>1 = Transmit Shift Register is empty and transmit buffer is empty (the last transmission has completed)</li> <li>0 = Transmit Shift Register is not empty, a transmission is in progress or queued</li> <li>bit 7-6</li> <li>URXISEL&lt;1:0&gt;: Receive Interrupt Mode Selection bits</li> <li>11 = Interrupt is set on UXRSR transfer making the receive buffer full (i.e., has 4 data characters)</li> <li>10 = Interrupt is set on UXRSR transfer making the receive buffer 3/4 full (i.e., has 3 data characters)</li> <li>0x = Interrupt is set when any character is received and transferred from the UXRSR to the receive buffer. Receive buffer has one or more characters</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | hit 9               | IITXBE: Tran                                                                                                                                                                                                                                                       | smit Buffer Full                                                                                                                                                                                                                                     | Status hit (re                                                                                                           | ad-only)                                                                                       |                                                                    |                                                           |                                                  |
| bit 8 <b>TRMT:</b> Transmit Shift Register Empty bit (read-only)1 = Transmit Shift Register is empty and transmit buffer is empty (the last transmission has completed)0 = Transmit Shift Register is not empty, a transmission is in progress or queuedbit 7-6 <b>URXISEL&lt;1:0&gt;:</b> Receive Interrupt Mode Selection bits11 = Interrupt is set on UxRSR transfer making the receive buffer full (i.e., has 4 data characters)10 = Interrupt is set on UxRSR transfer making the receive buffer 3/4 full (i.e., has 3 data characters)0x = Interrupt is set when any character is received and transferred from the UxRSR to the receive buffer. Receive buffer has one or more characters                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | bit 9               | 1 = Transmit<br>0 = Transmit                                                                                                                                                                                                                                       | buffer is full<br>buffer is not ful                                                                                                                                                                                                                  | l, at least one                                                                                                          | e more characte                                                                                | er can be writter                                                  | n                                                         |                                                  |
| <ul> <li>1 = Transmit Shift Register is empty and transmit buffer is empty (the last transmission has completed)</li> <li>0 = Transmit Shift Register is not empty, a transmission is in progress or queued</li> <li>bit 7-6</li> <li>URXISEL&lt;1:0&gt;: Receive Interrupt Mode Selection bits</li> <li>11 = Interrupt is set on UxRSR transfer making the receive buffer full (i.e., has 4 data characters)</li> <li>10 = Interrupt is set on UxRSR transfer making the receive buffer 3/4 full (i.e., has 3 data characters)</li> <li>0x = Interrupt is set when any character is received and transferred from the UxRSR to the receive buffer. Receive buffer has one or more characters</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | bit 8               | TRMT: Transi                                                                                                                                                                                                                                                       | mit Shift Registe                                                                                                                                                                                                                                    | er Empty bit (                                                                                                           | read-only)                                                                                     |                                                                    |                                                           |                                                  |
| bit 7-6 URXISEL<1:0>: Receive Interrupt Mode Selection bits<br>11 = Interrupt is set on UxRSR transfer making the receive buffer full (i.e., has 4 data characters)<br>10 = Interrupt is set on UxRSR transfer making the receive buffer 3/4 full (i.e., has 3 data characters)<br>0x = Interrupt is set when any character is received and transferred from the UxRSR to the receive<br>buffer. Receive buffer has one or more characters                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                     | 1 = Transmit<br>0 = Transmit                                                                                                                                                                                                                                       | Shift Register is<br>Shift Register i                                                                                                                                                                                                                | empty and tr<br>s not empty, a                                                                                           | ansmit buffer is transmission                                                                  | s empty (the last<br>is in progress o                              | transmission h<br>r queued                                | as completed)                                    |
| <ul> <li>11 = Interrupt is set on UxRSR transfer making the receive buffer full (i.e., has 4 data characters)</li> <li>10 = Interrupt is set on UxRSR transfer making the receive buffer 3/4 full (i.e., has 3 data characters)</li> <li>0x = Interrupt is set when any character is received and transferred from the UxRSR to the receive buffer. Receive buffer has one or more characters</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | bit 7-6             | URXISEL<1:                                                                                                                                                                                                                                                         | 0>: Receive Inte                                                                                                                                                                                                                                     | errupt Mode                                                                                                              | Selection bits                                                                                 |                                                                    |                                                           |                                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                     | 11 = Interrupt<br>10 = Interrupt<br>0x = Interrup<br>buffer. F                                                                                                                                                                                                     | t is set on UxRS<br>t is set on UxRS<br>t is set when ar<br>Receive buffer h                                                                                                                                                                         | SR transfer m<br>SR transfer m<br>ny character<br>as one or mo                                                           | aking the recei<br>aking the recei<br>is received and<br>ore characters                        | ve buffer full (i.e<br>ve buffer 3/4 ful<br>d transferred fro      | e., has 4 data c<br>l (i.e., has 3 da<br>m the UxRSR      | characters)<br>Ita characters)<br>to the receive |

**Note 1:** Refer to **Section 17. "UART"** (DS70232) in the *"dsPIC33F/PIC24H Family Reference Manual"* for information on enabling the UART module for transmit operation.

# **19.4 ECAN Resources**

Many useful resources related to ECAN are provided on the main product page of the Microchip web site for the devices listed in this data sheet. This product page, which can be accessed using this link, contains the latest updates and additional information.

Note: In the event you are not able to access the product page using the link above, enter this URL in your browser: http://www.microchip.com/wwwproducts/ Devices.aspx?dDocName=en532315

## 19.4.1 KEY RESOURCES

- Section 21. "Enhanced Controller Area Network (ECAN™)" (DS70185)
- Code Samples
- Application Notes
- Software Libraries
- Webinars
- All related dsPIC33F/PIC24H Family Reference Manuals Sections
- Development Tools

# PIC24HJ32GP302/304, PIC24HJ64GPX02/X04 AND PIC24HJ128GPX02/X04

# **REGISTER 19-8:** CIEC: ECAN<sup>™</sup> TRANSMIT/RECEIVE ERROR COUNT REGISTER

| R-0              | R-0 | R-0              | R-0          | R-0                  | R-0           | R-0             | R-0   |
|------------------|-----|------------------|--------------|----------------------|---------------|-----------------|-------|
|                  | 10  | 11.0             |              |                      | 11.0          | 100             | 11.0  |
|                  |     |                  | IERRO        | JN1<7:0>             |               |                 |       |
| bit 15           |     |                  |              |                      |               |                 | bit 8 |
|                  |     |                  |              |                      |               |                 |       |
| R-0              | R-0 | R-0              | R-0          | R-0                  | R-0           | R-0             | R-0   |
|                  |     |                  | RERRO        | CNT<7:0>             |               |                 |       |
| bit 7            |     |                  |              |                      |               |                 | bit 0 |
|                  |     |                  |              |                      |               |                 |       |
| Legend:          |     | C = Writeable b  | it, but only | '0' can be written t | o clear the   | bit             |       |
| R = Readable bi  | t   | W = Writable bit | t            | U = Unimplemer       | nted bit, rea | ad as '0'       |       |
| -n = Value at PO | R   | '1' = Bit is set |              | '0' = Bit is cleare  | d             | x = Bit is unkr | nown  |
|                  |     |                  |              |                      |               |                 |       |

| bit 15-8 | <b>TERRCNT&lt;7:0&gt;:</b> Transmit Error Count bits |
|----------|------------------------------------------------------|
| bit 7-0  | <b>RERRCNT&lt;7:0&gt;</b> : Receive Error Count bits |

# REGISTER 19-9: CiCFG1: ECAN™ BAUD RATE CONFIGURATION REGISTER 1

| U-0    | U-0 | U-0 | U-0 | U-0 | U-0 | U-0 | U-0   |
|--------|-----|-----|-----|-----|-----|-----|-------|
| —      | _   | _   | —   | _   | —   | _   | —     |
| bit 15 |     |     |     |     |     |     | bit 8 |
|        |     |     |     |     |     |     |       |

| R/W-0 | R/W-0 | R/W-0 | R/W-0 | R/W-0 | R/W-0  | R/W-0 | R/W-0 |
|-------|-------|-------|-------|-------|--------|-------|-------|
| SJW   | <1:0> |       |       | BRF   | P<5:0> |       |       |
| bit 7 |       |       |       |       |        |       | bit 0 |

| Legend:           |                  |                             |                    |
|-------------------|------------------|-----------------------------|--------------------|
| R = Readable bit  | W = Writable bit | U = Unimplemented bit, read | as '0'             |
| -n = Value at POR | '1' = Bit is set | '0' = Bit is cleared        | x = Bit is unknown |

| bit 15-8 | Unimplemented: Read as '0'                  |
|----------|---------------------------------------------|
| bit 7-6  | SJW<1:0>: Synchronization Jump Width bits   |
|          | 11 = Length is 4 x TQ                       |
|          | $10 = \text{Length is } 3 \times \text{TQ}$ |
|          | 01 = Length is 2 x TQ                       |
|          | 00 = Length is 1 x TQ                       |
| bit 5-0  | BRP<5:0>: Baud Rate Prescaler bits          |
|          | 11 1111 = TQ = 2 x 64 x 1/FCAN              |
|          | •                                           |
|          | •                                           |
|          | •                                           |
|          | 00 0010 = Tq = 2 x 3 x 1/Fcan               |
|          | 00 0001 = Tq = 2 x 2 x 1/Fcan               |
|          | 00 0000 = Tq = 2 x 1 x 1/FCAN               |

# 22.2 RTCC Resources

Many useful resources related to RTCC are provided on the main product page of the Microchip web site for the devices listed in this data sheet. This product page, which can be accessed using this link, contains the latest updates and additional information.

Note: In the event you are not able to access the product page using the link above, enter this URL in your browser: http://www.microchip.com/wwwproducts/ Devices.aspx?dDocName=en534555

## 22.2.1 KEY RESOURCES

- Section 37. "Real-Time Clock and Calendar (RTCC)" (DS70301)
- · Code Samples
- Application Notes
- Software Libraries
- Webinars
- All related dsPIC33F/PIC24H Family Reference Manuals Sections
- Development Tools

| TABLE 28-17: | PLL CLOCK TIMING SPECIFICATIONS ( | $(V_{DD} = 3.0V TO 3.6V)$ |
|--------------|-----------------------------------|---------------------------|
|              |                                   | (                         |

| AC CHARACTERISTICS |        |                                                                     | Standard<br>Operating                   | <b>Operating</b><br>temperat | <b>g Conditio</b><br>ure -40°<br>-40° | ons: 3.0V<br>°C ≤ TA ≤ +<br>°C ≤ TA ≤ + | <b>′ to 3.6V</b><br>⊦85°C fo<br>⊦125°C f | (unless otherwise stated)<br>r Industrial<br>or Extended |
|--------------------|--------|---------------------------------------------------------------------|-----------------------------------------|------------------------------|---------------------------------------|-----------------------------------------|------------------------------------------|----------------------------------------------------------|
| Param<br>No.       | Symbol | Characteris                                                         | ristic Min Typ <sup>(1)</sup> Max Units |                              |                                       |                                         |                                          | Conditions                                               |
| OS50               | Fplli  | PLL Voltage Controlled<br>Oscillator (VCO) Input<br>Frequency Range |                                         | 0.8                          | _                                     | 8                                       | MHz                                      | ECPLL, HSPLL, XTPLL<br>modes                             |
| OS51               | Fsys   | On-Chip VCO Syster<br>Frequency                                     | m                                       | 100                          | —                                     | 200                                     | MHz                                      | —                                                        |
| OS52               | TLOCK  | PLL Start-up Time (L                                                | ock Time)                               | 0.9                          | 1.5                                   | 3.1                                     | mS                                       | —                                                        |
| OS53               | DCLK   | CLKO Stability (Jitter                                              | r)                                      | -3                           | 0.5                                   | 3                                       | %                                        | Measured over 100 ms period                              |

**Note 1:** Data in "Typ" column is at 3.3V, 25°C unless otherwise stated. Parameters are for design guidance only and are not tested.

2: These parameters are characterized by similarity, but are not tested in manufacturing. This specification is based on clock cycle by clock cycle measurements. To calculate the effective jitter for individual time bases or communication clocks use this formula:

$$Peripheral Clock Jitter = \frac{DCLK}{\sqrt{\frac{FOSC}{Peripheral Bit Rate Clock}}}$$

For example: Fosc = 32 MHz, DCLK = 3%, SPI bit rate clock, (i.e., SCK) is 2 MHz.

$$SPI SCK Jitter = \left[\frac{D_{CLK}}{\sqrt{\left(\frac{32 \ MHz}{2 \ MHz}\right)}}\right] = \left[\frac{3\%}{\sqrt{16}}\right] = \left[\frac{3\%}{4}\right] = 0.75\%$$

## TABLE 28-18: AC CHARACTERISTICS: INTERNAL RC ACCURACY

| AC CHA       | RACTERISTICS            | $\begin{array}{ll} \mbox{Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industrial} \\ -40^{\circ}C \leq TA \leq +125^{\circ}C \mbox{ for Extended} \end{array}$ |                    |    |   |                                                        |                |  |  |  |
|--------------|-------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|----|---|--------------------------------------------------------|----------------|--|--|--|
| Param<br>No. | Characteristic          | Min Typ Max Units Conditions                                                                                                                                                                                                                                                 |                    |    |   |                                                        |                |  |  |  |
|              | Internal FRC Accuracy @ | 0 7.3728                                                                                                                                                                                                                                                                     | MHz <sup>(1)</sup> |    |   |                                                        |                |  |  |  |
| F20          | FRC                     | -2                                                                                                                                                                                                                                                                           | —                  | +2 | % | $-40^\circ C \le T A \le +85^\circ C$                  | VDD = 3.0-3.6V |  |  |  |
|              | FRC                     | -5                                                                                                                                                                                                                                                                           | _                  | +5 | % | $-40^{\circ}C \le TA \le +125^{\circ}C$ VDD = 3.0-3.6V |                |  |  |  |

Note 1: Frequency calibrated at 25°C and 3.3V. TUN bits can be used to compensate for temperature drift.

# TABLE 28-19: INTERNAL RC ACCURACY

| АС СН/       | ARACTERISTICS                    | $\begin{array}{llllllllllllllllllllllllllllllllllll$ |    |     |   |                                                               |  |  |  |
|--------------|----------------------------------|------------------------------------------------------|----|-----|---|---------------------------------------------------------------|--|--|--|
| Param<br>No. | Characteristic                   | Min Typ Max Units Conditions                         |    |     |   |                                                               |  |  |  |
|              | LPRC @ 32.768 kHz <sup>(1)</sup> |                                                      |    |     |   |                                                               |  |  |  |
| F21          | LPRC                             | -20                                                  | ±6 | +20 | % | $-40^{\circ}C \le TA \le +85^{\circ}C$ VDD = 3.0-3.6V         |  |  |  |
|              | LPRC                             | -30                                                  | _  | +30 | % | $-40^{\circ}C \le TA \le +125^{\circ}C \qquad VDD = 3.0-3.6V$ |  |  |  |

**Note 1:** Change of LPRC frequency as VDD changes.





# TABLE 28-21: RESET, WATCHDOG TIMER, OSCILLATOR START-UP TIMER, POWER-UP TIMER TIMING REQUIREMENTS TIMING REQUIREMENTS

| АС СНА       | AC CHARACTERISTICS |                                                                |      | ard Operatin<br>s otherwise<br>ting tempera | g Cond<br>stated)<br>ture -4 | litions: 3<br>40°C ≤ T/<br>40°C ≤ T/ | <b>3.0V to 3.6V</b><br>TA $\leq$ +85°C for Industrial<br>TA $\leq$ +125°C for Extended    |  |  |  |
|--------------|--------------------|----------------------------------------------------------------|------|---------------------------------------------|------------------------------|--------------------------------------|-------------------------------------------------------------------------------------------|--|--|--|
| Param<br>No. | Symbol             | Characteristic <sup>(1)</sup>                                  | Min  | Тур <sup>(2)</sup>                          | Мах                          | Conditions                           |                                                                                           |  |  |  |
| SY10         | TMCL               | MCLR Pulse Width (low)                                         | 2    |                                             |                              | μs                                   | -40°C to +85°C                                                                            |  |  |  |
| SY11         | Tpwrt              | Power-up Timer Period                                          | _    | 2<br>4<br>16<br>32<br>64<br>128             | _                            | ms                                   | -40°C to +85°C<br>User programmable                                                       |  |  |  |
| SY12         | TPOR               | Power-on Reset Delay                                           | 3    | 10                                          | 30                           | μs                                   | -40°C to +85°C                                                                            |  |  |  |
| SY13         | Tioz               | I/O High-Impedance from<br>MCLR Low or Watchdog<br>Timer Reset | 0.68 | 0.72                                        | 1.2                          | μs                                   | —                                                                                         |  |  |  |
| SY20         | Twdt1              | Watchdog Timer<br>Time-out Period                              | _    | _                                           |                              | _                                    | See Section 25.4<br>"Watchdog Timer (WDT)"<br>and LPRC specification F21<br>(Table 28-19) |  |  |  |
| SY30         | Tost               | Oscillator Start-up Timer<br>Period                            | _    | 1024 Tosc                                   |                              | _                                    | Tosc = OSC1 period                                                                        |  |  |  |
| SY35         | TFSCM              | Fail-Safe Clock Monitor<br>Delay                               |      | 500                                         | 900                          | μs                                   | -40°C to +85°C                                                                            |  |  |  |

**Note 1:** These parameters are characterized but not tested in manufacturing.

**2:** Data in "Typ" column is at 3.3V, 25°C unless otherwise stated.

## FIGURE 28-8: OC/PWM MODULE TIMING CHARACTERISTICS



## TABLE 28-27: SIMPLE OC/PWM MODE TIMING REQUIREMENTS

| AC CHAF      | AC CHARACTERISTICS |                                  |                              | Standard Operating Conditions: 3.0V to 3.6V(unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial $-40^{\circ}C \le TA \le +125^{\circ}C$ for Extended |          |    |   |  |  |
|--------------|--------------------|----------------------------------|------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|----|---|--|--|
| Param<br>No. | Symbol             | Characteristic <sup>(1)</sup>    | Min Typ Max Units Conditions |                                                                                                                                                                                                      |          |    |   |  |  |
| OC15         | Tfd                | Fault Input to PWM I/O<br>Change | —                            |                                                                                                                                                                                                      | Tcy + 20 | ns | — |  |  |
| OC20         | TFLT               | Fault Input Pulse Width          | Tcy + 20                     | _                                                                                                                                                                                                    | _        | ns | — |  |  |

Note 1: These parameters are characterized but not tested in manufacturing.

| AC CHARA             | CTERISTICS                               |                                             | Standard Operating Conditions: 3.0V to 3.6V         (unless otherwise stated)         Operating temperature       -40°C ≤TA ≤+85°C for Industrial         -40°C ≤TA ≤+125°C for Extended |     |     |     |  |  |
|----------------------|------------------------------------------|---------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----|-----|--|--|
| Maximum<br>Data Rate | Master<br>Transmit Only<br>(Half-Duplex) | Master<br>Transmit/Receive<br>(Full-Duplex) | Slave<br>Transmit/Receive<br>(Full-Duplex)                                                                                                                                               | CKE | СКР | SMP |  |  |
| 15 MHz               | Table 28-29                              | —                                           | _                                                                                                                                                                                        | 0,1 | 0,1 | 0,1 |  |  |
| 9 MHz                | _                                        | Table 28-30                                 | —                                                                                                                                                                                        | 1   | 0,1 | 1   |  |  |
| 9 MHz                | _                                        | Table 28-31                                 | —                                                                                                                                                                                        | 0   | 0,1 | 1   |  |  |
| 15 MHz               | _                                        | —                                           | Table 28-32                                                                                                                                                                              | 1   | 0   | 0   |  |  |
| 11 MHz               | _                                        | _                                           | Table 28-33                                                                                                                                                                              | 1   | 1   | 0   |  |  |
| 15 MHz               | _                                        | _                                           | Table 28-34                                                                                                                                                                              | 0   | 1   | 0   |  |  |
| 11 MHz               |                                          | _                                           | Table 28-35                                                                                                                                                                              | 0   | 0   | 0   |  |  |

## TABLE 28-28: SPIx MAXIMUM DATA/CLOCK RATE SUMMARY

# FIGURE 28-9: SPIX MASTER MODE (HALF-DUPLEX, TRANSMIT ONLY CKE = 0) TIMING CHARACTERISTICS



# FIGURE 28-10: SPIX MASTER MODE (HALF-DUPLEX, TRANSMIT ONLY CKE = 1) TIMING CHARACTERISTICS







# TABLE 28-30:SPIX MASTER MODE (FULL-DUPLEX, CKE = 1, CKP = x, SMP = 1) TIMING<br/>REQUIREMENTS

| АС СНА       | RACTERIST             | Standard Operating Conditions: 3.0V to 3.6V(unless otherwise stated)Operating temperature-40°C ≤TA ≤+85°C for Industrial-40°C ≤TA ≤+125°C for Extended |                                            |   |    |     |                               |  |
|--------------|-----------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------|---|----|-----|-------------------------------|--|
| Param<br>No. | Symbol                | Characteristic <sup>(1)</sup>                                                                                                                          | Min Typ <sup>(2)</sup> Max Units Condition |   |    |     |                               |  |
| SP10         | TscP                  | Maximum SCK Frequency                                                                                                                                  | _                                          | _ | 9  | MHz | See Note 3                    |  |
| SP20         | TscF                  | SCKx Output Fall Time                                                                                                                                  | —                                          |   | _  | ns  | See parameter DO32 and Note 4 |  |
| SP21         | TscR                  | SCKx Output Rise Time                                                                                                                                  | —                                          |   | _  | ns  | See parameter DO31 and Note 4 |  |
| SP30         | TdoF                  | SDOx Data Output Fall Time                                                                                                                             | —                                          | _ |    | ns  | See parameter DO32 and Note 4 |  |
| SP31         | TdoR                  | SDOx Data Output Rise Time                                                                                                                             | —                                          | _ |    | ns  | See parameter DO31 and Note 4 |  |
| SP35         | TscH2doV,<br>TscL2doV | SDOx Data Output Valid after SCKx Edge                                                                                                                 | —                                          | 6 | 20 | ns  |                               |  |
| SP36         | TdoV2sc,<br>TdoV2scL  | SDOx Data Output Setup to<br>First SCKx Edge                                                                                                           | 30                                         | _ |    | ns  |                               |  |
| SP40         | TdiV2scH,<br>TdiV2scL | Setup Time of SDIx Data<br>Input to SCKx Edge                                                                                                          | 30                                         | — | _  | ns  | —                             |  |
| SP41         | TscH2diL,<br>TscL2diL | Hold Time of SDIx Data Input to SCKx Edge                                                                                                              | 30                                         | _ |    | ns  |                               |  |

**Note 1:** These parameters are characterized, but are not tested in manufacturing.

**2:** Data in "Typ" column is at 3.3V, 25°C unless otherwise stated.

**3:** The minimum clock period for SCKx is 111 ns. The clock generated in Master mode must not violate this specification.

4: Assumes 50 pF load on all SPIx pins.