

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Details	
Product Status	Active
Core Processor	PIC
Core Size	16-Bit
Speed	20 MIPS
Connectivity	CANbus, I ² C, IrDA, LINbus, PMP, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, POR, PWM, WDT
Number of I/O	35
Program Memory Size	128KB (43K x 24)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	8K x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 13x10b/12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 150°C (TA)
Mounting Type	Surface Mount
Package / Case	44-VQFN Exposed Pad
Supplier Device Package	44-QFN (8x8)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic24hj128gp504-h-ml

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

1.0 DEVICE OVERVIEW

- Note 1: This data sheet summarizes the features of the PIC24HJ32GP302/304, PIC24HJ64GPX02/X04 and PIC24HJ128GPX02/X04 families of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to the "dsPIC33F/PIC24H Family Reference Manual". Please see the Microchip web site (www.microchip.com) for the latest dsPIC33F/PIC24H Family Reference Manual sections.
 - Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

This document contains device specific information for the PIC24HJ32GP302/304, PIC24HJ64GPX02/X04 and PIC24HJ128GPX02/X04 devices.

Figure 1-1 shows a general block diagram of the core and peripheral modules in the PIC24HJ32GP302/304, PIC24HJ64GPX02/X04 and PIC24HJ128GPX02/X04 families of devices.

Table 1-1lists the functions of the various pinsshown in the pinout diagrams.

File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
C1RXF11SID	046C				SID<	10:3>					SID<2:0>		-	EXIDE	—	EID<1	7:16>	XXXX
C1RXF11EID	046E				EID<	15:8>							EID<	7:0>				XXXX
C1RXF12SID	0470				SID<	10:3>					SID<2:0>		—	EXIDE		EID<1	7:16>	XXXX
C1RXF12EID	0472				EID<	15:8>							EID<	7:0>				XXXX
C1RXF13SID	0474				SID<	10:3>					SID<2:0>		—	EXIDE		EID<1	7:16>	XXXX
C1RXF13EID	0476				EID<	15:8>							EID<	7:0>				XXXX
C1RXF14SID	0478				SID<	10:3>					SID<2:0>		—	EXIDE		EID<1	7:16>	XXXX
C1RXF14EID	047A				EID<	15:8>							EID<	7:0>				XXXX
C1RXF15SID	047C				SID<	10:3>					SID<2:0>		—	EXIDE	_	EID<1	7:16>	XXXX
C1RXF15EID	047E				EID<	15:8>							EID<	7:0>				XXXX

TABLE 4-18: ECAN1 REGISTER MAP WHEN C1CTRL1.WIN = 1 (FOR PIC24HJ128GP502/504 AND PIC24HJ64GP502/504) (CONTINUED)

Legend: x = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-19: PERIPHERAL PIN SELECT INPUT REGISTER MAP

File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
RPINR0	0680	_	_	—			INT1R<4:0>			_	_	_	_	—	—	—	—	1F00
RPINR1	0682	-	_	_	_	_	_	_	_			_			INT2R<4:02	>		001F
RPINR3	0686	_		_			T3CKR<4:0>			_	-	-			T2CKR<4:0	>		1F1F
RPINR4	0688	_	_	_			T5CKR<4:0>			_	_	_			T4CKR<4:0	>		1F1F
RPINR7	068E	_	_	_			IC2R<4:0>			-	-	_			IC1R<4:0>			1F1F
RPINR10	0694	_	_	_			IC8R<4:0>			_	_	_			IC7R<4:0>			1F1F
RPINR11	0696	_	_	_	_	_	_	_	_	-	-	_			OCFAR<4:0)>		001F
RPINR18	06A4	-	_	_			U1CTSR<4:0	>			-	_			U1RXR<4:0	>		1F1F
RPINR19	06A6	-	_	_			U2CTSR<4:0	>				_			U2RXR<4:0	>		1F1F
RPINR20	06A8	-	_	_			SCK1R<4:0>				-	_			SDI1R<4:0	>		1F1F
RPINR21	06AA	-	_	_	_	_	_	_	_			_			SS1R<4:0>	>		001F
RPINR22	06AC	-	_	_			SCK2R<4:0>				-	_			SDI2R<4:0	>		1F1F
RPINR23	06AE	_	_	_	_	_	_	_	_	_		_			SS2R<4:0>	>		001F
RPINR26 ⁽¹⁾	06B4	_		_	_	_	_	_	_		_	_			C1RXR<4:0	>		001F

nd: x = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note 1: This register is present for PIC24HJ128GP502/504 and PIC24HJ64GP502/504 devices only.

File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
BSRAM	0750	_	—	_			—	-	_	—	_		_	-	IW_BSR	IR_BSR	RL_BSR	0000
SSRAM	0752	_	_	_	—	—	—	-	-	—	—	—	—	—	IW_SSR	IR_SSR	RL_SSR	0000

Legend: x = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note 1: This register is not present in devices with 32K Flash (PIC24HJ32GP302/304).

TABLE 4-33: NVM REGISTER MAP

File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
NVMCON	0760	WR	WREN	WRERR	—	—	—	—	—	_	ERASE	_	-		NVMO	P<3:0>		0000
NVMKEY	0766		—	_	—	—	—						NVMKE	EY<7:0>				0000

Legend: x = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-34: PMD REGISTER MAP

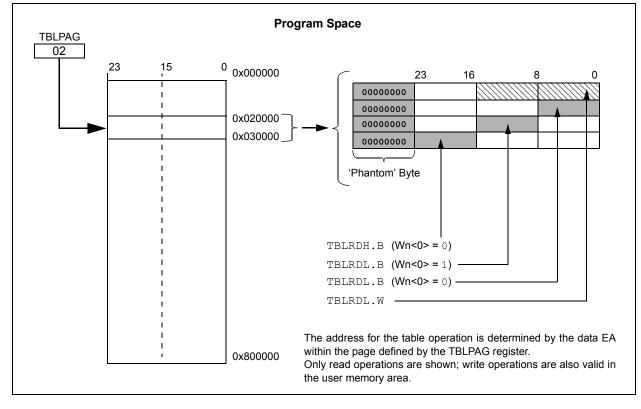
File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
PMD1	0770	T5MD	T4MD	T3MD	T2MD	T1MD	_	_	—	I2C1MD	U2MD	U1MD	SPI2MD	SPI1MD	—	C1MD	AD1MD	0000
PMD2	0772	IC8MD	IC7MD	_	_	_	_	IC2MD	IC1MD	_	_	_	_	OC4MD	OC3MD	OC2MD	OC1MD	0000
PMD3	0774	_	_	_	_	_	CMPMD	RTCCMD	PMPMD	CRCMD	_	_	_	_	_	_	_	0000

Legend: x = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

4.6.2 DATA ACCESS FROM PROGRAM MEMORY USING TABLE INSTRUCTIONS

The TBLRDL and TBLWTL instructions offer a direct method of reading or writing the lower word of any address within the program space without going through data space. The TBLRDH and TBLWTH instructions are the only method to read or write the upper 8 bits of a program space word as data.

The PC is incremented by two for each successive 24-bit program word. This allows program memory addresses to directly map to data space addresses. Program memory can thus be regarded as two 16-bit wide word address spaces, residing side by side, each with the same address range. TBLRDL and TBLWTL access the space that contains the least significant data word. TBLRDH and TBLWTH access the space that contains the upper data byte.


Two table instructions are provided to move byte or word-sized (16-bit) data to and from program space. Both function as either byte or word operations.

- TBLRDL (Table Read Low):
 - In Word mode, this instruction maps the lower word of the program space location (P<15:0>) to a data address (D<15:0>).

- In Byte mode, either the upper or lower byte of the lower program word is mapped to the lower byte of a data address. The upper byte is selected when Byte Select is '1'; the lower byte is selected when it is '0'.
- TBLRDH (Table Read High):
 - In Word mode, this instruction maps the entire upper word of a program address (P<23:16>) to a data address. The 'phantom' byte (D<15:8>), is always '0'.
 - In Byte mode, this instruction maps the upper or lower byte of the program word to D<7:0> of the data address, in the TBLRDL instruction. The data is always '0' when the upper 'phantom' byte is selected (Byte Select = 1).

Similarly, two table instructions, TBLWTH and TBLWTL, are used to write individual bytes or words to a program space address. The details of their operation are explained in Section 5.0 "Flash Program Memory".

For all table operations, the area of program memory space to be accessed is determined by the Table Page register (TBLPAG). TBLPAG covers the entire program memory space of the device, including user application and configuration spaces. When TBLPAG<7> = 0, the table page is located in the user memory space. When TBLPAG<7> = 1, the page is located in configuration space.

FIGURE 4-7: ACCESSING PROGRAM MEMORY WITH TABLE INSTRUCTIONS

7.3 Interrupt Control and Status Registers

PIC24HJ32GP302/304, PIC24HJ64GPX02/X04 and PIC24HJ128GPX02/X04 devices implement a total of 30 registers for the interrupt controller:

- INTCON1
- INTCON2
- IFSx
- IECx
- IPCx
- INTTREG

7.3.1 INTCON1 AND INTCON2

Global interrupt control functions are controlled from INTCON1 and INTCON2. INTCON1 contains the Interrupt Nesting Disable (NSTDIS) bit as well as the control and status flags for the processor trap sources. The INTCON2 register controls the external interrupt request signal behavior and the use of the Alternate Interrupt Vector Table.

7.3.2 IFSx

The IFS registers maintain all of the interrupt request flags. Each source of interrupt has a status bit, which is set by the respective peripherals or external signal and is cleared via software.

7.3.3 IECx

The IEC registers maintain all of the interrupt enable bits. These control bits are used to individually enable interrupts from the peripherals or external signals.

7.3.4 IPCx

The IPC registers are used to set the interrupt priority level for each source of interrupt. Each user interrupt source can be assigned to one of eight priority levels.

7.3.5 INTTREG

The INTTREG register contains the associated interrupt vector number and the new CPU interrupt priority level, which are latched into vector number (VECNUM<6:0>) and Interrupt level (ILR<3:0>) bit fields in the INTTREG register. The new interrupt priority level is the priority of the pending interrupt.

The interrupt sources are assigned to the IFSx, IECx and IPCx registers in the same sequence that they are listed in Table 7-1. For example, the INT0 (External Interrupt 0) is shown as having vector number 8 and a natural order priority of 0. Thus, the INT0IF bit is found in IFS0<0>, the INT0IE bit in IEC0<0>, and the INT0IP bits in the first position of IPC0 (IPC0<2:0>).

7.3.6 STATUS/CONTROL REGISTERS

Although they are not specifically part of the interrupt control hardware, two of the CPU Control registers contain bits that control interrupt functionality.

- The CPU STATUS register, SR, contains the IPL<2:0> bits (SR<7:5>). These bits indicate the current CPU interrupt priority level. The user software can change the current CPU priority level by writing to the IPL bits.
- The CORCON register contains the IPL3 bit which, together with IPL<2:0>, also indicates the current CPU priority level. IPL3 is a read-only bit so that trap events cannot be masked by the user software.

All Interrupt registers are described in Register 7-1 through Register 7-29.

7.4 Interrupt Resources

Many useful resources related Interrupts are provided on the main product page of the Microchip web site for the devices listed in this data sheet. This product page, which can be accessed using this link, contains the latest updates and additional information.

Note:	In the event you are not able to access the product page using the link above, enter this URL in your browser: http://www.microchip.com/wwwprod- ucts/Devices.aspx?dDoc-
	Name=en534555

7.4.1 KEY RESOURCES

- Section 32. "Interrupts (Part III)" (DS70214)
- Code Samples
- Application Notes
- Software Libraries
- Webinars
- All related dsPIC33F/PIC24H Family Reference Manuals Sections
- Development Tools

7.5 Interrupt Control Registers

REGISTER 7-1: SR: CPU STATUS REGISTER⁽¹⁾

U-0	U-0	U-0	U-0	U-0	U-0	U-0	R/W-0
_	—	—	—	—	—	—	DC
bit 15							bit 8
R/W-0 ⁽³⁾	R/W-0 ⁽³⁾	R/W-0 ⁽³⁾	R-0	R/W-0	R/W-0	R/W-0	R/W-0
	IPL<2:0> ⁽²⁾		RA	N	OV	Z	С

Ь	:4	7
1)	ш	1

Legend:			
C = Clear only bit	R = Readable bit	U = Unimplemented bit, read as '0'	
S = Set only bit	W = Writable bit	-n = Value at POR	
'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown	

bit 7-5

IPL<2:0>: CPU Interrupt Priority Level Status bits⁽²⁾

111 = CPU Interrupt Priority Level is 7 (15), user interrupts disabled

- 110 = CPU Interrupt Priority Level is 6 (14)
- 101 = CPU Interrupt Priority Level is 5 (13)
- 100 = CPU Interrupt Priority Level is 4 (12)
- 011 = CPU Interrupt Priority Level is 3 (11)
- 010 = CPU Interrupt Priority Level is 2 (10)
- 001 = CPU Interrupt Priority Level is 1 (9)
- 000 = CPU Interrupt Priority Level is 0 (8)

Note 1: For complete register details, see Register 3-1.

- 2: The IPL<2:0> bits are concatenated with the IPL<3> bit (CORCON<3>) to form the CPU Interrupt Priority Level. The value in parentheses indicates the IPL if IPL<3> = 1. User interrupts are disabled when IPL<3> = 1.
- 3: The IPL<2:0> Status bits are read-only when the NSTDIS bit (INTCON1<15>) = 1.

REGISTER 7-2: CORCON: CORE CONTROL REGISTER⁽¹⁾

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
_	—	—	—	—	—	—	—
bit 15							bit 8
U-0	U-0	U-0	U-0	R/C-0	R/W-0	U-0	U-0
	—	—	—	IPL3 ⁽²⁾	PSV	—	—
bit 7							bit 0
Legend:		C = Clear only	/ bit				
R = Readable I	oit	W = Writable	bit	-n = Value at	POR	'1' = Bit is set	
0' = Bit is clear	ed	'x = Bit is unkr	nown	U = Unimpler	nented bit, read	as '0'	
				(0)			
bit 3	IPL3: CPU Int	terrupt Priority	Level Status b	it 3 ⁽²⁾			
	1 = CPU inter	rupt priority lev	el is greater th	nan 7			
	0 = CPU inter	rupt priority lev	el is 7 or less				

Note 1: For complete register details, see Register 3-2.

2: The IPL3 bit is concatenated with the IPL<2:0> bits (SR<7:5>) to form the CPU Interrupt Priority Level.

bit 0

REGISTER	27-4: INTC	CON2: INTERR	UPT CONT	ROL REGIST	ER 2		
R/W-0	R-0	U-0	U-0	U-0	U-0	U-0	U-0
ALTIVT	DISI	_	_	—	—	—	_
bit 15							bit 8
U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0
_	_	_	_	—	INT2EP	INT1EP	INT0EP
bit 7		·					bit C
Legend: R = Readab	ole bit	W = Writable	bit	U = Unimpler	mented bit, read	as '0'	
-n = Value a	at POR	'1' = Bit is set	t	'0' = Bit is cle		x = Bit is unkr	nown
bit 14	1 = Use alt 0 = Use sta DISI: DISI 1 = DISI ir	nable Alternate Ir ernate vector tab andard (default) v Instruction Statu nstruction is activ nstruction is not a	le vector table is bit e				
bit 13-3	Unimplem	ented: Read as '	0'				
bit 2	1 = Interrup	xternal Interrupt 2 ot on negative ed ot on positive edg	ge	t Polarity Selec	t bit		
bit 1	1 = Interrup	xternal Interrupt of ot on negative ed ot on positive edg	ge	t Polarity Selec	t bit		
bit 0		xternal Interrupt (ot on negative ed		t Polarity Selec	t bit		

REGISTER 7-4: INTCON2: INTERRUPT CONTROL REGISTER 2

1 = Interrupt on negative edge 0 = Interrupt on positive edge

U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
_	DMA1IE	AD1IE	U1TXIE	U1RXIE	SPI1IE	SPI1EIE	T3IE
pit 15	·		·				bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
T2IE	OC2IE	IC2IE	DMA0IE	T1IE	OC1IE	IC1IE	INT0IE
bit 7			•				bit (
Legend:							
R = Readable		W = Writable	bit	U = Unimplen	nented bit, rea	d as '0'	
-n = Value at	POR	'1' = Bit is se	t	'0' = Bit is cle	ared	x = Bit is unkn	iown
bit 15	Unimpleme	nted: Read as	ʻ∩'				
bit 14	-	/A Channel 1 [omolete Interr	unt Enable hit		
	1 = Interrupt	request enable request not en	ed				
bit 13	-	1 Conversion (unt Enable bit			
	1 = Interrupt	request enable request not en	ed				
bit 12	-	RT1 Transmitte		hle hit			
		request enable	•				
		request not en					
bit 11	U1RXIE: UA	RT1 Receiver	Interrupt Enable	e bit			
	•	request enable					
L:1 10	•	request not en					
bit 10		1 Event Interrup request enable					
		request enable					
bit 9	SPI1EIE: SP	PI1 Error Interru	pt Enable bit				
		request enable request not en					
bit 8	T3IE: Timer3	B Interrupt Enat	ole bit				
		request enable request not en					
bit 7	T2IE: Timer2	2 Interrupt Enat	ole bit				
		request enable request not en					
bit 6	OC2IE: Outp	out Compare C	hannel 2 Interru	upt Enable bit			
		request enable request not en					
bit 5	IC2IE: Input	Capture Chanr	nel 2 Interrupt E	Enable bit			
		request enable request not en					
bit 4	DMA0IE: DM	/IA Channel 0 [Data Transfer C	omplete Interr	upt Enable bit		
		request enable request not en					
bit 3	-	I Interrupt Enat					
	1 = Interrupt	request enable	h				

REGISTER 7-10: IEC0: INTERRUPT ENABLE CONTROL REGISTER 0

U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0
_		U2TXIP<2:0>		—		U2RXIP<2:0>	
bit 15							bit 8
U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0
—		INT2IP<2:0>				T5IP<2:0>	
bit 7							bit (
Legend:							
R = Readab	le bit	W = Writable	bit	U = Unimple	emented bit, rea	ad as '0'	
-n = Value a	t POR	'1' = Bit is set		'0' = Bit is cl	eared	x = Bit is unkr	nown
bit 15	Unimpleme	ented: Read as '	0'				
bit 14-12	-	0>: UART2 Trans		upt Prioritv bits			
		rupt is priority 7 (
	•						
	•						
	001 = Interr	rupt is priority 1					
	000 = Interr	upt source is dis	abled				
bit 11	Unimpleme	ented: Read as '	0'				
bit 10-8	U2RXIP<2:	0>: UART2 Rece	eiver Interrup	t Priority bits			
	111 = Interr	rupt is priority 7 (highest priori	ity interrupt)			
	•						
	•						
	001 = Interr	rupt is priority 1					
	000 = Interr	rupt source is dis	abled				
bit 7	Unimpleme	ented: Read as '	0'				
bit 6-4		>: External Inter					
	111 = Interr	rupt is priority 7 (highest priori	ity interrupt)			
	•						
	•						
		rupt is priority 1 rupt source is dis	abled				
bit 3	Unimpleme	ented: Read as '	0'				
bit 2-0	T5IP<2:0>:	Timer5 Interrupt	Priority bits				
	111 = Interr •	rupt is priority 7 (highest prior	ity interrupt)			
	•						
	•	and in and the A					
		rupt is priority 1					

000 = Interrupt source is disabled

REGISTER 9-	4: OSCTI	JN: FRC OS	CILLATOR T	UNING REG	SISTER ⁽²⁾		
U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
_	_				_	_	_
bit 15							bit 8
U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
_	—			TUN	<5:0> ⁽¹⁾		
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimplemented bit, read as '0'			
-n = Value at P	OR	'1' = Bit is set		'0' = Bit is cleared x = Bit is			nown
bit 15-6	Unimplemen	ted: Read as '	כ'				
bit 5-0	TUN<5:0>: F	RC Oscillator T	uning bits ⁽¹⁾				
	111111 = Ce	nter frequency	-0.375% (7.34	15 MHz)			
	•						
	•						
	•		44.0050/ /0.5				
		nter frequency					
	100000 = Ce	nter frequency	-12% (6.49 M	HZ)			

Note 1: OSCTUN functionality has been provided to help customers compensate for temperature effects on the

FRC frequency over a wide range of temperatures. The tuning step size is an approximation and is neither

This register is reset only on a Power-on Reset (POI
--

011111 = Center frequency +11.625% (8.23 MHz) 011110 = Center frequency +11.25% (8.20 MHz)

000001 = Center frequency +0.375% (7.40 MHz) 000000 = Center frequency (7.37 MHz nominal)

•

characterized nor tested.

PIC24HJ32GP302/304, PIC24HJ64GPX02/X04 AND PIC24HJ128GPX02/X04

REGISTER	10-3: PMD3	: PERIPHER	AL MODULE	E DISABLE C	ONTROL RE	GISTER 3	
U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0
_	—	—		—	CMPMD	RTCCMD	PMPMD
bit 15							bit 8
D 444 0	DAMA						
R/W-0	R/W-0	U-0	U-0	U-0	U-0	U-0	U-0
CRCMD	DAC1MD	—	—	—	_	_	—
bit 7							bit C
Legend:							
R = Readabl	e bit	W = Writable I	bit	U = Unimplen	nented bit, rea	d as '0'	
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkn	own
bit 15-11	Unimplement	ted: Read as 'd)'				
bit 10	CMPMD: Con	nparator Modul	e Disable bit				
		or module is di					
	0 = Comparat	or module is er	nabled				
bit 9		CC Module Dis					
		dule is disable dule is enabled					
bit 8		P Module Disat	-				
DILO		ule is disabled					
		ule is enabled					
bit 7	CRCMD: CRO	C Module Disab	ole bit				
	1 = CRC mod	ule is disabled					
	0 = CRC mod	ule is enabled					
bit 6	DAC1MD: DA	C1 Module Dis	able bit				
		dule is disabled					
		dule is enabled					
bit 5-0	Unimplement	ted: Read as '()′				

REGISTER		R19: PERIPHE	_			-	
U-0	U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
—	—	—			U2CTSR<4:)>	
bit 15							bit 8
U-0	U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
_	_	_			U2RXR<4:0	>	
bit 7							bit (
Legend:							
R = Readab	le bit	W = Writable b	bit	U = Unimple	mented bit, rea	ad as '0'	
-n = Value a	t POR	'1' = Bit is set		'0' = Bit is cleared		x = Bit is unknown	
	• • 00001 = Inp	ut tied to RP25					
bit 7-5	•	ut tied to RP0 nted: Read as '0	,				
bit 4-0	•	>: Assign UART2		2RX) to the co	rresponding R	Pn nin	
511 4-0	11111 = Inp	ut tied to Vss ut tied to RP25				i ii piii	
	•						
	•						
	•						
		ut tied to RP1					

00000 = Input tied to RP0

REGISTER 11-12: RPINR22: PERIPHERAL PIN SELECT INPUT REGISTER 22

U-0	U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	
_	—	_			SCK2R<4:0	>		
bit 15							bit 8	
U-0	U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	
_	_	_			SDI2R<4:0>	>		
bit 7	·						bit C	
Legend:								
R = Readab	le bit	W = Writable I	oit	U = Unimpler	mented bit, rea	id as '0'		
-n = Value a	t POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	s unknown	
	11111 = Inpu 11001 = Inpu •	ut tied to RP25						
		ut tied to RP1 ut tied to RP0						
bit 7-5	Unimplemer	nted: Read as ')'					
bit 4-0	11111 = Inpu 11001 = Inpu •	ut tied to RP25	ata Input (SE	I2) to the corre	sponding RPr	pin		
		ut tied to RP1 ut tied to RP0						

PIC24HJ32GP302/304, PIC24HJ64GPX02/X04 AND PIC24HJ128GPX02/X04

U-0	U-0	R-0	R-0	R-0	R-0	R-0	R-0
				FBF	P<5:0>		
bit 15							bit 8
U-0	U-0	R-0	R-0	R-0	R-0	R-0	R-0
_					B<5:0>		
bit 7							bit (
Legend:			-	' can be writter			
R = Readab		W = Writable		U = Unimpler		ad as '0'	
-n = Value a	t POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown
bit 7-6	• • • 000001 = 7 000000 = 7	RB30 buffer IRB1 buffer IRB0 buffer ented: Read as '0	۰ ،				
bit 5-0	-	FIFO Next Read		ter hits			
dit 5-0	011111 = F 011110 = F • • • • 000001 = T	>: FIFO Next Rea RB31 buffer RB30 buffer IRB1 buffer IRB1 buffer	id Buπer Poin	ter dits			

REGISTER 21-1: CMCON: COMPARATOR CONTROL REGISTER (CONTINUED)

bit 6	C1OUT: Comparator 1 Output bit $\frac{\text{When } \text{C1INV} = 0:}{1 = \text{C1 } \text{ViN} + \text{C1 } \text{ViN}}$ $0 = \text{C1 } \text{ViN} + \text{C1 } \text{ViN}$ $\frac{\text{When } \text{C1INV} = 1:}{0 = \text{C1 } \text{ViN} + \text{C1 } \text{ViN}}$ $1 = \text{C1 } \text{ViN} + \text{C1 } \text{ViN}$
bit 5	C2INV: Comparator 2 Output Inversion bit
	 1 = C2 output inverted 0 = C2 output not inverted
bit 4	C1INV: Comparator 1 Output Inversion bit 1 = C1 output inverted 0 = C1 output not inverted
bit 3	C2NEG: Comparator 2 Negative Input Configure bit 1 = Input is connected to VIN+ 0 = Input is connected to VIN- See Figure 21-1 for the comparator modes.
bit 2	C2POS: Comparator 2 Positive Input Configure bit 1 = Input is connected to VIN+ 0 = Input is connected to CVREF See Figure 21-1 for the comparator modes.
bit 1	C1NEG: Comparator 1 Negative Input Configure bit 1 = Input is connected to VIN+ 0 = Input is connected to VIN- See Figure 21-1 for the comparator modes.
bit 0	C1POS: Comparator 1 Positive Input Configure bit 1 = Input is connected to VIN+ 0 = Input is connected to CVREF See Figure 21-1 for the comparator modes.

- **Note 1:** If C2OUTEN = 1, the C2OUT peripheral output must be configured to an available RPx pin. See **Section 11.6 "Peripheral Pin Select"** for more information.
 - 2: If C1OUTEN = 1, the C1OUT peripheral output must be configured to an available RPx pin. See Section 11.6 "Peripheral Pin Select" for more information.

22.1 RTCC Module Registers

The RTCC module registers are organized into three categories:

- RTCC Control Registers
- RTCC Value Registers
- Alarm Value Registers

22.1.1 REGISTER MAPPING

To limit the register interface, the RTCC Timer and Alarm Time registers are accessed through corresponding register pointers. The RTCC Value register window (RTCVALH and RTCVALL) uses the RTCPTR bits (RCFGCAL<9:8>) to select the desired timer register pair (see Table 22-1).

By writing the RTCVALH byte, the RTCC Pointer value, RTCPTR<1:0> bits, decrement by one until they reach '00'. Once they reach '00', the MINUTES and SECONDS value will be accessible through RTCVALH and RTCVALL until the pointer value is manually changed.

TABLE 22-1: RTCVAL REGISTER MAPPING

RTCPTR	RTCC Value Register Window				
<1:0>	RTCVAL<15:8>	RTCVAL<7:0>			
0 0	MINUTES	SECONDS			
01	WEEKDAY	HOURS			
10	MONTH	DAY			
11	—	YEAR			

The Alarm Value register window (ALRMVALH and ALRMVALL) uses the ALRMPTR bits (ALCFGRPT<9:8>) to select the desired Alarm register pair (see Table 22-2).

By writing the ALRMVALH byte, the Alarm Pointer value, ALRMPTR<1:0> bits, decrement by one until they reach '00'. Once they reach '00', the ALRMMIN and ALRMSEC value will be accessible through ALRMVALH and ALRMVALL until the pointer value is manually changed.

TABLE 22-2: ALRMVAL REGISTER MAPPING

ALRMPTR	Alarm Value Register Window				
<1:0>	ALRMVAL<15:8>	ALRMVAL<7:0>			
00	ALRMMIN	ALRMSEC			
01	ALRMWD	ALRMHR			
10	ALRMMNTH	ALRMDAY			
11	—	—			

Considering that the 16-bit core does not distinguish between 8-bit and 16-bit read operations, the user must be aware that when reading either the ALRMVALH or ALRMVALL bytes will decrement the ALRMPTR<1:0> value. The same applies to the RTCVALH or RTCVALL bytes with the RTCPTR<1:0> being decremented.

Note:	This only applies to read operations and
	not write operations.

22.1.2 WRITE LOCK

In order to perform a write to any of the RTCC Timer registers, the RTCWREN bit (RCFGCAL<13>) must be set (refer to Example 22-1).

Note: To avoid accidental writes to the timer, it is recommended that the RTCWREN bit (RCFGCAL<13>) is kept clear at any other time. For the RTCWREN bit to be set, there is only 1 instruction cycle time window allowed between the 55h/AA sequence and the setting of RTCWREN; therefore, it is recommended that code follow the procedure in Example 22-1.

EXAMPLE 22-1: SETTING THE RTCWREN BIT

MOV	#NVMKEY, W1	;move the address of NVMKEY into W1
MOV	#0x55, W2	
MOV	#0xAA, W3	
MOV	W2, [W1]	;start 55/AA sequence
MOV	W3, [W1]	
BSET	RCFGCAL, #13	;set the RTCWREN bit

REGISTER 23-2: CRCXOR: CRC XOR POLYNOMIAL REGISTER

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			Х<	15:8>			
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	U-0
			X<7:1>				—
bit 7							bit 0
Legend:							
R = Readable bit W = Writable bit			U = Unimplemented bit, read as '0'				
-n = Value at P	OR	'1' = Bit is set		'0' = Bit is cleared		x = Bit is unknown	

bit 15-1 X<15:1>: XOR of Polynomial Term Xⁿ Enable bits

bit 0 Unimplemented: Read as '0'

DC CHARACT	ERISTICS		Standard Operating Conditions: 3.0V to 3.6V(unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial $-40^{\circ}C \le TA \le +125^{\circ}C$ for Extended					
Parameter No. ⁽³⁾	Typical ⁽²⁾	Мах	Units Conditions					
Operating Cur	rent (IDD) ⁽¹⁾							
DC20d	18	21	mA	-40°C				
DC20a	18	22	mA	+25°C	3.3V			
DC20b	18	22	mA	+85°C	- 3.3V	10 MIPS		
DC20c	18	25	mA	+125°C				
DC21d	30	35	mA	-40°C				
DC21a	30	34	mA	+25°C	3.3V	16 MIPS		
DC21b	30	34	mA	+85°C	- 3.3V			
DC21c	30	36	mA	+125°C				
DC22d	34	42	mA	-40°C				
DC22a	34	41	mA	+25°C	2.21/			
DC22b	34	42	mA	+85°C	- 3.3V	20 MIPS		
DC22c	35	44	mA	+125°C				
DC23d	49	58	mA	-40°C				
DC23a	49	57	mA	+25°C	2.21/			
DC23b	49	57	mA	+85°C	- 3.3V	30 MIPS		
DC23c	49	60	mA	+125°C	1			
DC24d	63	75	mA	-40°C				
DC24a	63	74	mA	+25°C	2.21/			
DC24b	63	74	mA	+85°C	- 3.3V	40 MIPS		
DC24c	63	76	mA	+125°C	1			

TABLE 28-5: DC CHARACTERISTICS: OPERATING CURRENT (IDD)

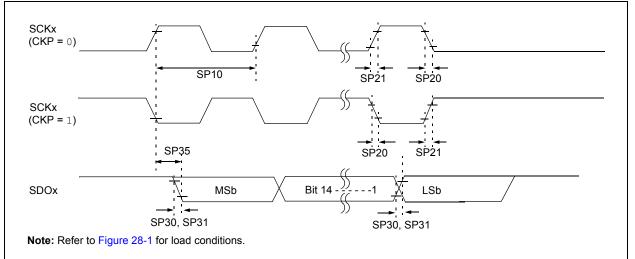
Note 1: IDD is primarily a function of the operating voltage and frequency. Other factors, such as I/O pin loading and switching rate, oscillator type, internal code execution pattern and temperature, also have an impact on the current consumption. The test conditions for all IDD measurements are as follows:

• Oscillator is configured in EC mode, no PLL until 10 MIPS, OSC1 is driven with external square wave from rail-to-rail (EC clock overshoot/undershoot < 250 mV required)

- · CLKO is configured as an I/O input pin in the Configuration word
- · All I/O pins are configured as inputs and pulled to Vss
- MCLR = VDD, WDT and FSCM are disabled
- CPU, SRAM, program memory and data memory are operational
- No peripheral modules are operating; however, every peripheral is being clocked (defined PMDx bits are set to zero)
- CPU executing while (1) statement
- JTAG is disabled
- **2:** Data in "Typ" column is at 3.3V, +25°C unless otherwise stated.
- 3: These parameters are characterized but not tested in manufacturing.

TABLE 28-7: DC CHARACTERISTICS: POWER-DOWN CURRENT (IPD)

DC CHARACI	ERISTICS		$\begin{array}{ll} \mbox{Standard Operating Conditions: 3.0V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industrial} \\ & -40^{\circ}C \leq TA \leq +125^{\circ}C \mbox{ for Extended} \end{array}$						
Parameter No. ⁽³⁾	Typical ⁽²⁾	Мах	Units Conditions						
Power-Down Current (IPD) ⁽¹⁾									
DC60d	24	68	μA	-40°C					
DC60a	28	87	μA	+25°C	3.3V	Base Power-Down Current ^(3,4)			
DC60b	124	292	μA	+85°C	3.3V	Base Power-Down Currenter /			
DC60c	350	1000	μA	+125°C					
DC61d	8	13	μA	-40°C					
DC61a	10	15	μA	+25°C	3.3V	Watchdog Timer Current: ∆IwDT ^(3,5)			
DC61b	12	20	μA	+85°C	3.3V				
DC61c	13	25	μA	+125°C	1				


Note 1: IPD (Sleep) current is measured as follows:

- CPU core is off (i.e., Sleep mode), oscillator is configured in EC mode and external clock active, OSC1 is driven with external square wave from rail-to-rail (EC clock overshoot/undershoot < 250 mV required)
- CLKO is configured as an I/O input pin in the Configuration word
- · All I/O pins are configured as inputs and pulled to Vss
- MCLR = VDD, WDT and FSCM are disabled, all peripheral modules are disabled (PMDx bits are all '1's)
- RTCC is disabled
- JTAG is disabled
- 2: Data in the "Typ" column is at 3.3V, +25°C unless otherwise stated.
- **3:** The Watchdog Timer Current is the additional current consumed when the WDT module is enabled. This current should be added to the base IPD current.
- 4: These currents are measured on the device containing the most memory in this family.
- 5: These parameters are characterized, but are not tested in manufacturing.

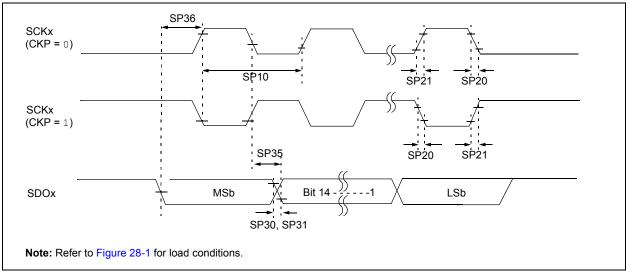

AC CHARAC	CTERISTICS		Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated) Operating temperature -40°C ≤TA ≤+85°C for Industrial -40°C ≤TA ≤+125°C for Extended				
Maximum Data Rate	Master Transmit Only (Half-Duplex)	Master Transmit/Receive (Full-Duplex)	Slave Transmit/Receive (Full-Duplex)	CKE	СКР	SMP	
15 MHz	Table 28-29	—	_	0,1	0,1	0,1	
9 MHz	—	Table 28-30	—	1	0,1	1	
9 MHz	—	Table 28-31	—	0	0,1	1	
15 MHz	_	_	Table 28-32	1	0	0	
11 MHz	_	—	Table 28-33	1	1	0	
15 MHz	_	—	Table 28-34	0	1	0	
11 MHz	_	—	Table 28-35	0	0	0	

TABLE 28-28: SPIx MAXIMUM DATA/CLOCK RATE SUMMARY

FIGURE 28-9: SPIX MASTER MODE (HALF-DUPLEX, TRANSMIT ONLY CKE = 0) TIMING CHARACTERISTICS

FIGURE 28-10: SPIX MASTER MODE (HALF-DUPLEX, TRANSMIT ONLY CKE = 1) TIMING CHARACTERISTICS

